Stony Brook University Yu Li (李宇)

Yu Li Sitemap

Yu Li CV

Teaching

MAT 303: Calculus IV with Applications

MAT 319: Foundations of Analysis

Sitemap

Teaching >

MAT 319: Foundations of Analysis

Fall 2019

Course Description: A careful study of the theory underlying topics in onevariable calculus, with an emphasis on those topics arising in high school calculus. The real number system. Limits of functions and sequences. Differentiation, integration, and the fundamental theorem. Infinite series.

Textbook: *Robert G. Bartle and Donald R. Sherbert, Introduction to Real Analysis, 4th edition*

Instructor: Yu Li, Math Tower 4-101B. Office Hours: TuTh 12:00-1:00, Email: yu.li.4@stonybrook.edu.

TAs: James Seiner, Ruijie Yang

Class schedule: TuTh 10:00-11: 20 Javits 103

Search this site

Homework: Weekly problem sets will be assigned, and collected on Wednesday or Thursday recitation. The emphasis of the course is on writing proofs, so please try to write legibly and explain your reasoning clearly and fully. You are encouraged to discuss the homework problems with others, but your write-up must be your own work. Late homework will never be accepted, but underdocumented extenuating circumstances the grade may be dropped.

Week	Lectures	Homework
9/30	3.4, 3.5	3.3:4,7,10,11,13; 3.4:3,9,12,16
10/7	3.6, 4.1, 4.2	3.5:5,9,13; 3.6: 6,9; 4.1: 4,6,12
10/14	5.1,5.2	4.2:3,5,10; 5.1:4,11,15
10/21	5.2,5.3,5.4	5.2:2,5,8,11; 5.3:3,13,18
10/28	5.6, Second midterm	5.4:2,3,5,14
11/4	5.6,6.1	5.6:1,5,9,12; 6.1:4,7,9,12
11/11	6.2,6.3	6.1:13,14,15; 6.2:1,4,6,11
11/18	6.4	6.3:3,8,11; 6.4:1,10,14,15
11/25	7.1, Thanksgiving	7.1:1,2,6,8,15
12/2	7.2, 7.3	

Exams: The second midterm exam is in-class on **Oct. 31.** The final exam is on **Dec. 19, 8:00 am-10:45 am** and the room is **Javits 103**.

If you register for this course you must make sure that you are available at these times, as there will be **no make-ups** for missed exams.

The course grade is computed by the following scheme:

Homework: 20%

Midterm Test I: 20%

Midterm Test II: 20%

Final Exam: 40%

Help: The <u>Math Learning Center</u> (MLC) is located in Math Tower S-235, and offers free help to any student requesting it. It also provides a locale for students wishing to form study groups. The MLC is open 9 am-7 pm Monday through Friday. A list of graduate students available for hire as private tutors is maintained by the Undergraduate Mathematics Office, Math Tower P-143.

Disability Support Services (DSS)

If you have a physical, psychological, medical or learning disability that may impact your course work, please contact Disability Support Services, ECC (Educational Communications Center) Building, room 128, (631) 632-6748. They will determine with you what accommodations, if any, are necessary and appropriate. All information and documentation is confidential. Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information go to the following website: http://www.stonybrook.edu/ehs/fire/disabilities

Academic Integrity

Representing another person's work as your own is always wrong. Faculty are required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology & Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/commcms/academic_integrity/index.html

Critical Incident

Management Statement

Comments

Č

Stony Brook University expects students to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of Judicial Affairs any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn. Faculty in the HSC Schools and the School of Medicine are required to follow their school-specific procedures.

C Final Exam Practice Pro Yu Li, Dec 5, 2019, 9:20	v.1	ď
C Final practice exam ansYu Li, Dec 8, 2019, 5:08	v.1	ď
C Midterm 2 Practice Pro Yu Li, Oct 19, 2019, 7:42	v.1	ď
C Practice exam answersYu Li, Oct 26, 2019, 12:1	v.1	ď

Sign in | Recent Site Activity | Report Abuse | Print Page | Powered By Google Sites

Midterm 2 Practice Problems

Problem 1. Let the sequence (x_n) be defined as

$$x_n = \begin{cases} 1 + \frac{1}{n} & \text{if } n \text{ is odd;} \\ \frac{1}{n^2} & \text{if } n \text{ is even.} \end{cases}$$

Is (x_n) convergent?

Problem 2. Suppose $\lim_{n\to\infty} x_n = a > 0$. Prove that there exists a $K \in \mathbb{N}$ such that

$$\frac{a}{2} < x_n < 2a$$

for any $n \geq K$.

Problem 3. 1. Let the function f be defined as

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}; \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Prove that f is continuous at 0.

2. Let the function f be defined as

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}; \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Prove that f is discontinuous everywhere.

Problem 4. Give examples of functions f and g such that f and g do not have limits at c, but fg has the limit at c.

Problem 5. Suppose for any $x \in [-1, 1]$, $|f(x)| \leq 2|x|$. Prove that f is continuous at 0.

Problem 6. Let f be a continuous function on [0, 1] such that $f(x) \in [0, 1]$ for any $x \in [0, 1]$. Prove that there exists a $c \in [0, 1]$ such that f(c) = c.

Problem 7. 1. Let (x_n) be a sequence such that $|x_{n+1} - x_n| < 2^{-n}$ for any $n \in \mathbb{N}$. Prove that (x_n) is convergent.

2. Is the result still true if we only assume $|x_{n+1} - x_n| < \frac{1}{n}$ for any $n \in \mathbb{N}$?

Problem 8. Let f and g be continuous functions on (a, b) such that f(r) = g(r) for each rational number $r \in (a, b)$. Prove f(x) = g(x) for all $x \in (a, b)$.

- **Problem 9.** 1. Let f be a continuous function on $[0, \infty)$. Prove that if f is uniformly continuous on $[k, \infty)$ for some k > 0, then f is uniformly continuous on $[0, \infty)$.
 - 2. Prove \sqrt{x} is uniformly continuous on $[0, \infty)$.

Problem 10. Let f be a continuous function on [0, 1] such that $f(x) \in \mathbb{Q}$ for any $x \in [0, 1]$. Prove that f is constant.

1) Let
$$(x_n)$$
 be defined by
 $x_n = \begin{cases} 1+\frac{1}{n} & n \text{ odd} \\ \frac{1}{n^2} & n \text{ cun} \end{cases}$
is (x_n) convergent?
No. By Divergence Criterion for seguences, we need
only Find two subscreaments of (x_n) with different
imits. Consider (x_{2n}) . (x_{2n-1})
 $x_{2n} = \frac{1}{2k_s} \leq \frac{1}{k}$. Since $(\frac{1}{2k_s} \ge 0)$ and $\lim_{k \to \infty} \frac{1}{k} = 0$,
we have $\lim_{k \to \infty} x_{2n} = \lim_{k \to \infty} (2k_s) = 0$ by the squeeze that.
However, $x_{2n-1} = 1 + \frac{1}{2n-1}$. Able that For any $\sum 9$,
 $\exists M \in \mathbb{N}$ S.t. $M > \frac{1}{2} + 1$ (And index). S, $|\frac{1}{2m-1}| < \mathbb{E}$.
So $\forall k \ge M$ we have $|\frac{1}{2k-1}| < \mathbb{E}$. So $\lim_{k \to \infty} x_{2n-1} = 1$.
Thus, $\lim_{k \to \infty} x_{2n} = 1 + \lim_{k \to \infty} x_{2n-1} = 1$.
So $\lim_{k \to \infty} x_{2n} \neq \lim_{k \to \infty} x_{2n-1} = 1$.

converge.

3 KEW such that z) Suppose lim 2 = a >0. Proce a < 7 < 2a. Ynzk. Since a so, 270. Since (Xn) converges to a, ∃ KENN s.t. Vn≥k, lx, -al< €. That is -a < x -a < a , Equivalently, a L. X. < 3a. Since 3 < 2 and a > 2, 2 L. X. < Z. ve have <u>3a</u> 22a, so Vn2k, a 12 12a. F be defined by 3)i) Let $F(x) = \begin{cases} x & x \in Q \\ 0 & x \notin Q \end{cases}$ Prove that I is continuous at O. Let $\varepsilon > 0$. we want to Find $\varepsilon > 0$ s.t. \forall x s.t. $\partial < |x - 0| < \varepsilon$. $|F(x) - 0| < \varepsilon$. Let $\varepsilon = \varepsilon$. Then, for any x s.t. OKIXIXS, either $\chi \in \mathbb{R}$ or $\chi \notin \mathbb{Q}$. So either $f(\chi) = \chi$ or $f(\chi) = 0$. in eather case, (F(x)] = [x] so $|F(x) - 0| = |F(x)| \le |x| < \delta = \varepsilon$ as desired.

3) (i) let F be defined by

$$F(x) = \begin{cases} 1 & x \in \mathbb{R} \\ 0 & x \notin \mathbb{R} \end{cases}$$

Prove that F is discontinuous everywhere.
Let cell. Let $\mathcal{E} = \frac{1}{2}$, we claim that $\forall S>0$,
 $\exists x = 1 & 0 < 1x - cl < S & s.l. |F(x) - f(c)| > E.$
Well, let $S>0$. In class (ch 2) we proved
that $\exists y \in \mathbb{R}$ and $\mathcal{D} \in \mathbb{R} \setminus \mathbb{R}$ s.t.
 $\mathcal{L} - S \neq g, z < ct S$. If $c \in \mathbb{R}$, then
 $[F(v) - F(c)] = [0 - 1] = [2 > E$
if $c \neq \mathbb{R}$, then $|F(y) - f(c)] = [1 - 0] = 1 > E$.
So F is not continuous at C.
Let G is examples of functions f, g such that
F and g do not have limits at s but fg has
a limit at c.
Ex. let $f(v) = \begin{cases} 0 & x \leq 0 \\ 1 & x > 0 \end{cases}$, $g(v) = \begin{cases} 1 & x \leq 0 \\ 0 & x > 0 \end{cases}$.
Then neither F, nor g has a limit at 0.
(Take $v \in v = \frac{1}{2}$, then every S - node of 10 contains
both positive land negative numbers so each of
F and g the terms have numbers so each of
There is no the values 0 and 1 in this model.
F and g there is no number L s.t. $|\mathcal{D} - \mathcal{L}| c \leq v = \frac{1}{2}$.

However, $f_{g}(x) = \begin{cases} 0.1 & x \le 0 \\ 1.0 & x > 0 \end{cases} = 0$ 4) contid So Fg is constant, and therefore has a limit at 0. 5) Suppose that for my xeE-1,13 (F(x)/=2/x/ Prove that F is continuous at 0. Wote that, by hypothesis $|F(0)| \leq 2|0| = 0$. Since $|F(0)| \geq 0$, we have |F(0)| = 0, so f(0) = 0. Let 270. he want to find & s.t. Ux with ox/x-0125, we have IF(x)-012E. Let S=min {= 13. Then whenever ax 12-01<8, we have $\chi \in [-1, 1]$ and $(F(x) - 0] = |F(x)| \le 2|x| = 2|x-0| < 25$ $\leq 2 \cdot \frac{5}{2} = 5$ $\int shie x \in [-1, 1].$

ces despred.

Case 1: If f(o) = o or f(1) = 1 then c = o or 1 satisfies f(c) = c

Case 2: If $f(0) \neq 0$ and $f(1) \neq 1$, then f(0) > 0 and f(1) < 1, because $f(x) \in [0,1]$ for all $x \in [0,1]$.

Let $g(x) = f(x) - \chi$, g is a function defined on [0,1], Because f and χ are continuous functions on [0,1], g is also a continuous function on [0,1].

Note that g(o) = f(o) - o > o by our assumption.

 $g(\Delta) = f(1) - 1 < 0$

(5.3.7) Then by Intermediate Value Theorem there exists a point $c \in [0, 2]$ is such that g(c) = 0. In particular, f(c) = C.

1. It suffices to show that (Xn) is a Couchy sequence, because any Cauchy sequence must be convergent (3.5.5.) $\forall \epsilon > 0$, choose N such that $2^{N-1} > \frac{1}{\epsilon}$ ($\Leftrightarrow N > \log_2 \frac{1}{\epsilon} + 1$) For any m,n such that m > n > N, we have $|Xm - Xn| \leq |Xm - Xm_1| + \dots + |X_{n+1} - Xn|$ (triangular inequality) $< \frac{1}{2^{m-1}} + \dots + \frac{1}{2^n}$ (property of |Xn|) Let $S = \frac{1}{2^{m-1}} + \frac{1}{2^{m-2}} + \dots + \frac{1}{2^n}$, then $2S = \frac{1}{2^{m-2}} + \dots + \frac{1}{2^n} + \frac{1}{2^{n-1}}$. Hence $S = 2S - S = \frac{1}{2^{n-1}} - \frac{1}{2^{m-1}}$. Therefore $|Xm - Xn| < \frac{1}{2^{n-1}} - \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}} <$

2. The result is not true if we only assume $|X_{n+1}-X_n| < \frac{1}{n}$ Here is a counter-example. Let $X_n = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}$, $\forall n \in \mathbb{N}$. Then $|X_{n+1} - X_n| = \frac{1}{2n+2} < \frac{1}{n}$, hence it satisfies the assumption. But $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, hence $\sum_{n=1}^{\infty} \frac{1}{2n}$ diverges. Because X_n is the partial sum of $\sum_{n=1}^{\infty} \frac{1}{2n}$, hence (X_n) diverges.

Let $x \in (a, b)$, by the density of rational numbers, there exists $(x_n)_{n \in IN}$ such that x_n is a rational number in (a,b) and $\lim_{n \to \infty} x_n = x$. (5.1.3) Because f.g are continuous, by the sequencial criterion, $\lim_{n \to \infty} f(x_n) = f(x)$ and $\lim_{n \to \infty} g(x_n) = g(x)$. $n \to \infty$ Because f(x) = g(x) if x is a rational number, then $f(x_n) = g(x_n)$ $\forall n \ge 1$ Therefore $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n)$ This means that f(x) = g(x).

1. Since f is continuous on $[0, \infty)$ and $[0, k] \subseteq [0, \infty)$ hence f is continuous on [0, k]. Note that [0, k] is a closed bounded interval, by Uniform Continuity Theorem f is uniformly continuous on [0, k]. (5.4.3)

Now I want to show that f is uniformly continuous on $[0, \infty)$. $\forall \epsilon > 0$, because f is uniformly continuous on [0,k]and $[k, +\infty)$, $\exists \delta_i$ and δ_2 such that 0 If $|x-y| < \delta_i$ and $x,y \in [0,k]$, then $|f(x) - f(y)| < \epsilon/2$. 2 If $|x-y| < \delta_2$ and $x,y \in [k, +\infty)$, then $|f(x) - f(y)| < \epsilon/2$.

Then choose $\delta = \min \{\delta_1, \delta_2\}$ want to show that if $|X-Y| < \delta$ and $X, Y \in [0, +\infty)$, then $|f(x) - f(y)| < \epsilon$.

Case 1: If $|x-y| < \delta$ and $x, y \in [0, k]$, then $|x-y| < \delta \leq \delta_i$, therefore by (D), $|f(x) - f(y)| < \varepsilon/2 < \varepsilon$ Case 2: If $|x-y| < \delta$ and $x, y \in [k, +\infty)$, then $|x-y| < \delta \leq \delta_2$, therefore by (D), $|f(x) - f(y)| < \varepsilon/2 < \varepsilon$. Then $|X-k| < \delta \leq \delta_1$, by \mathbb{D} $|f(x) - f(k)| < \frac{2}{2}$. $|y-k| < \delta \leq \delta_2$, by P $|f(y) - f(k)| < \frac{2}{2}$.

By triangular inequality,

$$|f_{(x)} - f_{(y)}| \leq |f_{(x)} - f_{(k)}| + |f_{(k)} - f_{(y)}|$$
$$< \epsilon_{2} + \epsilon_{2}$$
$$= \epsilon$$

Therefore, all three cases together show that $if |X-y| < \delta$ and $x, y \in [0, +\infty)$, then $|f(x) - f(y)| < \epsilon$. This means that f is uniformly continuous on $[0, +\infty)$.

2.
$$\sqrt{x}$$
 is continuous on $[0, +\infty)$.
For $x, y \in [1, +\infty)$, $|\sqrt{x} - \sqrt{y}| = \frac{1}{\sqrt{x} + \sqrt{y}} |x - y| \le \frac{1}{2} |x - y|$
because $x, y \ge 1$ so $\sqrt{x}, \sqrt{y} \ge 1$. Therefore \sqrt{x} is a
Lipschitz function on $[1, +\infty)$ and must be Uniformly Continuous
on $[1, +\infty)$ by $(5.4.4)$. Hence by 1 , \sqrt{x} is Uniformly
Continuous on $[0, +\infty)$.

We prove by contradiction.

Suppose f is not constant, then there exists $x, y \in [0, 1]$ such that f(x) = f(y). Without loss of generality, let's assume f(x) < f(y).

By the property of real numbers, there must exist z which is an irrational number and

f(x) < z < f(y).

Since f is continuous on [0,1], by Intermediate Value Theorem (5.3.7), there exists $c \in [0,1]$ such that f(c) = Z.

But we know that $f(x) \in Q \quad \forall x \in [0,1]$, this means $f(c) = z \in Q$, which is impossible.

Therefore our assumption is not connect and f must be a constant function.

Final Exam Practice Problems

Problem 1. Let the sequence (x_n) be defined as follows: $x_1 = 1, x_2 = 2$ and $x_{n+2} = \frac{1}{2}(x_n + x_{n+1})$ for any $n \in \mathbb{N}$. Prove that $1 \le x_n \le 2$ for any $n \in \mathbb{N}$.

Problem 2. Let S be a nonempty subset of \mathbb{R} that is bounded above. Prove that $\sup S = -\inf\{-s : s \in S\}$.

Problem 3. Find the infimum of the set $A = \{1 + \frac{(\sin n)^2}{\sqrt{n}} \mid n \in \mathbb{N}\}.$

Problem 4. Prove

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$

Problem 5. Let (a_n) be a positive sequence such that $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = 0$. Prove that (a_n) is unbounded.

Problem 6. Assume that $\lim_{n\to\infty} x_n = +\infty$. Prove that

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = +\infty.$$

Problem 7. Suppose f(x) is a strictly increasing function on [a, b] and $(x_n) \subset [a, b]$ is a sequence such that $\lim_{n\to\infty} f(x_n) = f(a)$. Prove that $\lim_{n\to\infty} x_n = a$.

Problem 8. * Let f be a function defined on (0, 1) such that for any $c \in (0, 1)$, $\lim_{n\to\infty} f(\frac{c}{n}) = 0$. Can we conclude that $\lim_{x\to 0^+} f(x) = 0$?

Problem 9. Assume that the function f is continuous at 0 and f(0) > 0. Prove that there exists a $\delta > 0$ such that f(x) > 0 for any $|x| < \delta$.

Problem 10. For any function f, we define $w_a(\delta) = \sup\{|f(x) - f(y)| \mid |x - a| < \delta \text{ and } |y - a| < \delta\}$. Prove that f is continuous at a if and only if $\lim_{\delta \to 0^+} w_a(\delta) = 0$.

Problem 11. Suppose there exists a constant L > 0 such that for any $x, y \in [a, \infty)$ we have

$$|f(x) - f(y)| \le L|x - y|.$$

If a > 0, prove that $\frac{f(x)}{x}$ is uniformly continuous on $[a, \infty)$.

Problem 12.

Let the function f be defined as

$$f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q}; \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Prove that f is differentiable at 0.

Problem 13. Suppose |f(x)| is differentiable at a and f(a) = 0, prove that f'(a) = 0.

Problem 14. Assume there exist constants M and a > 1 such that for any $x, y \in \mathbb{R}$,

$$|f(x) - f(y)| \le M|x - y|^a.$$

Prove that f is a constant.

Problem 15. Let f(x) and g(x) be convex functions and f is increasing. Prove that f(g(x)) is convex.

Problem 16. If f defined on [0, 1] is a continuous and $\int_0^x f = \int_x^1 f$ for all $x \in [0, 1]$. Prove that f(x) = 0 for any $x \in [0, 1]$.

We prove by induction on n. (1) Base case: n=1, $x_1=1$ and $1 \le x_1 \le 2$ n=2, $x_2=2$ and $1 \le x_2 \le 2$ (2) Inductive step: assume it is true for any $1 \le k \le n$

then $| \leq X_{n-1} \leq 2$ and $| \leq X_n \leq 2$ Hence $| \leq X_{n+1} = \frac{X_n + X_{n-1}}{2} \leq 2$ Therefore it also holds for n+1. #

Problem 2

Denote $A = \sup S$ and $B = \inf \{ -s : s \in S \}$. We need to show that A = -B. By definition of $\sup S \leq A$, $\forall s \in S$ $\Rightarrow \quad -s \geq -A$, $\forall s \in S$ $\Rightarrow \quad B = \inf \{ -s : s \in S \} \geq -A \Rightarrow \quad A \geq -B$ ①

By definition of inf

$$-s \ge B \quad \forall s \in S$$

 $\Rightarrow s \le -B \quad \forall s \in S$
 $\Rightarrow A = \sup S \le -B$ (2)
Combining (1) and (2) we get $A = -B$. #

First we notice that $\lim_{n \to +\infty} \frac{(\sin n)^2}{\sqrt{n}} = 0$

This is because

$$0 \leqslant \frac{(\sin n)^2}{\sqrt{n}} \leqslant \frac{1}{\sqrt{n}}$$

Since $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$, by squeeze theorem, $\lim_{n \to \infty} \frac{(\sin n)^2}{\sqrt{n}} = 0$

$$\forall n \in IN$$
, $I + \frac{(sinn)^2}{\sqrt{n}} \ge 1$. Therefore 1 is a lower bound
of the set A. We claim that 1 is the greatest lower
bound

Suppose there exists Eo > o such that

$$1 + \frac{(\sin n)^2}{\sqrt{n}} \ge 1 + \varepsilon_0 \qquad \forall n \in \mathbb{N}$$

By the comparison property of limits,

$$1 = \lim_{n \to \infty} \left(1 + \frac{(\sin n)^{2}}{\sqrt{n}} \right) \ge 1 + \varepsilon_{o}$$

which is a contradiction ! Therefore $\inf A = 1$ #

[Alternatively, one can argue $\forall \epsilon > 0$, $\exists N \ge 1$ such that

$$| \leq \frac{(\sin N)^2}{\sqrt{N}} + 1 < \varepsilon + 1$$

therefore by Lemma 2.3.4 , $1 = \inf A$. (for inf)

Notice that for each Isisn

$$\frac{1}{\sqrt{n^2+n}} \leq \frac{1}{\sqrt{n^2+\lambda}} \leq \frac{1}{n}$$

-therefore $\frac{n}{\sqrt{n^2+n}} \leq \frac{1}{\sqrt{n^2+1}} + \cdots + \frac{1}{\sqrt{n^2+n}} \leq \frac{n}{n} = 1$.

Since
$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n^2}}} = \frac{1}{\sqrt{1 + 0}} = 1$$
,
by squeeze theorem, we have
 $\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1$. #

Problem 5

Since
$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 0$$
, for $E = \frac{1}{2}$, there exists N
such that for $n > N$, we have
 $\left|\frac{a_n}{a_{n+1}}\right| < \frac{1}{2}$.
Since $a_n > 0$ for each n , we have
 $a_{n+1} > 2a_n$ for $n > N$.
Therefore $a_n > 2^{n-N} \cdot a_N$ for $n > N$.
We can conclude that a_n is unbounded because
 $\lim_{n \to \infty} 2^{n-N} \cdot a_N = +\infty$ #

Problem 6 First proof

To show $\lim_{N \to \infty} \frac{a_1 + \dots + a_n}{n} = +\infty$, we need to show that for any A > 0, there exists $N \ge 1$ such that when n > N, $\frac{a_1 + \dots + a_n}{N} > A$.

For any A > 0, because $\lim_{n \to \infty} a_n = +\infty$, there exists $N_1 \ge 1$ such that $a_n > 2A$ for $n > N_1$.

Therefore
$$\frac{\alpha_1 + \dots + \alpha_n}{n} = \frac{a_1 + \dots + a_{N_1} + a_{N_1 + 1} + \dots + a_n}{n}$$

> $\frac{\alpha_1 + \dots + \alpha_{N_1} + (n - N_1) \cdot 2A}{n}$ if $n > N_1$

Notice that $l_{\bar{l}m} = \frac{a_1 + \dots + a_{N_1} + (n - N_1) \cdot 2A}{n}$

$$= \lim_{n \to \infty} 2A + \frac{a_{1} + \dots + a_{N_{1}} - 2N_{1}A}{n}$$
$$= 2A > A$$

Therefore by the property of limit, there exists $N_2 \ge 1$ such that when $n > N_2$, $a_1 + \cdots + a_{N_1} + (n - N_1) \ge A$

Hence if we choose N= max {N1, N2}, for n>N we have

$$\frac{a_{1}+\cdots+a_{n}}{n} > \frac{a_{1}+\cdots+a_{N_{1}}+(n-N_{1})2A}{n} > A \qquad \#$$

Problem 6 Second proof $\forall A > 0$, we need to choose N such that when n > N, $\frac{\chi_1 + \chi_2 + \dots + \chi_n}{n} > A$

() Since $\lim_{x \to \infty} x_n = +\infty$, there exists N₁ such that when $n > N_1$, $x_n > zA$. (2) Choose N₂ such that $N_2 > \frac{2N_1A - (x_1 + \dots + x_{N_1})}{A}$. Then we choose $N = \max\{N_1, N_2\}$.

If
$$n > N$$
, then $\frac{X_{1} + \dots + X_{n}}{n} = \frac{(X_{1} + \dots + X_{n}) + (X_{n+1} + \dots + X_{n})}{n}$

$$> \frac{X_{1} + \dots + X_{n} + (n - N_{1}) \ge A}{n}$$

$$= A + \frac{nA - (\ge N_{1}A - (\times_{1} + \dots + \times_{n}))}{n}$$

$$> A + \frac{N_{\ge}A - (\ge N_{1}A - (\times_{1} + \dots + \times_{n}))}{n} > A + o = A$$

#

$$\begin{bmatrix} less informal proof: \frac{X_1 + \dots + X_{N_1} + (n - N_1) 2A}{n} > A \\ \Leftrightarrow \qquad X_1 + \dots + X_{N_1} + (n - N_1) 2A > nA \\ \Leftrightarrow \qquad nA > 2N_1A - (X_1 + \dots + X_{N_1}) \\ \Leftrightarrow \qquad n > \frac{2N_1A - (X_1 + \dots + X_{N_1})}{A} \end{bmatrix}$$

We will prove by contradiction. Suppose $\lim_{n \to \infty} x_n \neq a$ then there exists $\varepsilon_0 > 0$ and a subsequence $(x_{n_k}) \subset [a, b]$ such that $|x_{n_k} - a| > \varepsilon_0$, in particular $x_{n_k} > a + \varepsilon_0$.

Since f is a strictly increasing function,

$$(*) \quad f(x_{n_k}) > f(a + \varepsilon_o) \quad \forall k \ge 1$$

Because $\lim_{n \to \infty} f(x_n) = x_i \text{ sts}$ $\lim_{k \to \infty} f(x_{n_k}) = \lim_{n \to \infty} f(x_n) = f(a)$

From (*) we know that

$$\lim_{k \to \infty} f(X_{n_k}) \ge f(a + \varepsilon_0)$$

In particular this implies that

$$f(a) \geq f(a + \varepsilon_0)$$

But this contradicts with the fact that f is strictly increasing. Therefore our assumption is wrong and we must have $\lim_{n \to \infty} x_n = \alpha$. #

We cannot conclude that $\lim_{X\to 0^+} f(x) = 0$. Here is the construction of a counter-example.

Because (0,1) is uncountable we can choose a number $b \in (0,1)$, such that $\forall k \ge 1$, $b^k \notin Q$. (For example b can be chosen to be any transcendental number like $\frac{1}{2}$ or $\frac{1}{2}$).

Let
$$f(x) = \int 1$$
 if $x = b^k$ for some $k \ge 1$
| o else.

 $(a) \qquad \lim_{X \to 0^+} f(x) \neq 0$

(1) Let $C \in (0, 1)$ be any real number, then there is at most one integer n such that $\frac{C}{n} = b^{|\mathbf{k}|}$ for some $|\mathbf{k}| \ge 1$. Suppose this is not true and there exists n_1, n_2 such that $\frac{C}{n_1} = b^{|\mathbf{k}|}$, $\frac{C}{n_2} = b^{|\mathbf{k}|_2}$ and $|\mathbf{k}| \ge |\mathbf{k}|_1$. $\Rightarrow b^{|\mathbf{k}|} \cdot n_1 = b^{|\mathbf{k}|_2} \cdot n_2 \Rightarrow b^{|\mathbf{k}|_2 - |\mathbf{k}|_1} = \frac{n_1}{n_2} \in Q$ This contradicts the choice of b. Therefore for n large enough, $\frac{C}{n}$ is not equal to any b^{k} . By the definition of f, we have $f(\frac{C}{n}) = 0$. Thus $\lim_{N \to \infty} f(\frac{C}{n}) = 0$.

(2) We will prove
$$\lim_{X \to 0^+} f(x) \neq 0$$
 by contradiction.
Suppose lim $f(X) = 0$, then for any sequence x_n
 $x \to 0^+$
Such that $\lim_{N \to \infty} x_n = 0$, we must have $\lim_{N \to \infty} f(x_n) = 0$
 $n \to \infty$

Let $X_n = b^n$ since b < 1, $\lim_{n \to \infty} X_n = \lim_{n \to \infty} b^n = 0$. But $\lim_{n \to \infty} f(X_n) = \lim_{n \to \infty} f_1 b^n$ = $\lim_{n \to \infty} 1 = 1 \neq 0$ Therefore $\lim_{x \to 0^+} f_1 x$ = b^n .

The conclusion is that f is a counterexample . #

9) F continuous at 0, F(0)>0. Want 8 s.t. f(x)>0 A IXIX8 Say F(0)=a>0. Note that E:= 2>0. Since f is continuous at 0, 7 S>O S.C. V IX-OIKS, ne have $|F(x) - \alpha| \leq \varepsilon$. That is, $\forall |x| < \delta$, $|F(x) - \alpha| < \frac{\alpha}{2}$ => $-\frac{\alpha}{2} \langle f(x) - \alpha \langle \frac{\alpha}{2} \rangle \langle s_0 \rangle \rangle = \frac{\beta}{2} \langle f(x) \rangle \langle \frac{s_0}{2} \rangle$ So F(x) >>> V /x/LS as desired (ne will reference this argument later in a more general setting. The content is the same, just with "" replaced 5~ ~ (") 10. wa (S) != sup { [f(x) - f(y)] ! |x-a| ≤ S, 1y-a < S}, wat f cts at a $() \lim_{s \to 0^+} u_a(s) = 0.$ (=>): suppose f is cts at a. Want to show that VE>2, JY>0 S.d. Vo<8-0<), ne have mals)<E. Since wals) is the sup of a set that mens me mont it s.t. & o<s<t E is an upper bound for Elf(x)-f(y)1: 1x-a155, 1y-aKSZ=: 5,16 Since fis at a, 3 y >0 sit. UZ sit. 12-ally we have IF(z)-f(a) 12 Ez. Now, for Sid x, y s.f. $|x-a| \le 5$, $|y-a| \le 5$. Then $|x-a| \le 5 \le 3$ so $|f(x) - f(a)| \le \frac{1}{2}$ and $|f(y) - f(a)| \le \frac{1}{2}$. $|y-a| \le 5 \le 3$ $=> |f(x) - f(y)| = |f(x) - f(y) + f(y) - f(y)| \leq |f(x) - f(y)| + |f(y) - f(y)| = |f(x) - f(y)| + |f(y) - f(y)| = |f(x) - f(y)| = |f(y) - f(y$ $\xi = \xi = \xi$. So ξ is a strict upper bound for $S_q(S)$ and 50 mg (8) < E. ((=): Suppose lim wa (S) =0. wat: VEDO 3 200 5.1. whenever 12-a/
have IF(Z)-F(a)/<E. Fix E70.</p>
he tenor (hypothesis) '7 870 st. whenever 0<8< Y we have</p>

•

14) J Marl Et V Xyer (F(x) - F(y) / EM / x-y / a Show F ts const. we will show that F is daffible at every cell and that f'(c) = 0. Let $c \in \mathbb{R}$. $\left|\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\right| = \lim_{x \to c} \left|\frac{f(x) - F(c)}{x - c}\right| \leq \lim_{x \to c} \frac{m[x - c]^a}{[x - c]} = [m[i]_m \frac{[x - c]^a}{[x - c]}$ Since $a > 1 \lim_{x \to c} \frac{|x - c|^{q}}{|x - c|} = 0$ So $\lim_{x \to c} \frac{f(x) - f(c)}{|x - c|} \leq M \cdot 0 = 0$ so fis differentiable at a and F'(c)=0. This holds & cell, so f is constant. 15) Let F(x), g(x) concer, fincreasing. Prac f(g(x)) is conver. Let x, x e IR, felo, 1] unt $F(g((1-t) \times_i + t \times_2)) \leq (1-\epsilon) F(g(\times_i)) + F(g(\times_2)).$ well, g_i 's convex, so $g((1-t)x_i + tx_2) \in (1-t)g(x_i) + tg(x_2)$ f is increasing so $f(g((1-t)x_1+tx_2)) \in f((1-t)g(x_1)+tg(x_2))$ F. S convex, So $f((1-t)y_1 + ty_2) \leq (1-t)Ry_1 + tF(y_2)$ = (1-t) $F(g(x_i)) + f(g(x_2))$ as desired. 16) F: [0, 1]->R is cts, "JF= JF V x c[0, 1] hart F(x)=0 V XELO,1] Note that Y x (20,1] [] =] f +] f (The 7, 2, 13) = 25 F. Setting X=0=> JF=0 Now, JF+JF=0, so (SF= > by def) * [F = - x] F = > x [F = > A x 6 [0, 1]

For
$$x, y \in \mathbb{D}, (3, x \leq y)$$
, we have $\int_{0}^{x} f = 0 = \int_{0}^{y} f$
and $\iint_{x} f = \iint_{0}^{y} f - \iint_{0}^{y} f = 0$, Finally, for $L \in [0, 13]$; if
 $F(c) > 0$, by problem Q , f a, $b \in \mathbb{D}, (1]$ s. (. $f(x) > 0$ $\forall x \in \mathbb{E}a, b f$
 $= 7 \quad \iint_{0}^{y} f > 0$, but this is a contradiction.
if $F(c) < 0$, then $-f(c) > 0$ so $- \iint_{0}^{b} f > 0$ (where a, b are as
abare)
 $: so \quad \iint_{0}^{y} F < 0$, but this is a contradiction.
so $f(c) = 0$. This holds $\forall c \in \mathbb{E}0, [3]$, size c
was arbitrary.

.