

Stony Brook

University

MAT 308:

Spring 2017

Home
General Information
Syllabus
Homework
Exams

Welcome to MAT 308

Textbook: Multivariable Mathematics, (4th ed.) by Williamson and Trotter.

Lecturer: Sabyasachi Mukherjee

Office: Math Tower 4115
Office Hours: F 10:30am-12:30pm in my office, M 1:00pm2:00pm in MLC (S235), or by appt.

E-mail: sabya@math.stonybrook.edu

Homework

Homework assignments will be posted here and on BlackBoard. Please hand them in to your recitation instructor the following week. Please note that your TA will NOT accept late homework.

Quizzes

There will be a short quiz in your recitation session every other week. The first quiz will be taken in the week of Feb 6 Feb 10.

Exams and Grading

There will be two midterms, and a final exam (dates here), whose weights in the overall grade are listed below.

15\% Homework

10\% Quizzes
20\% Midterm 1
20\% Midterm 2
35\% Final Exam (cumulative)

MAT 308:

Spring 2017

Home
General Information
Syllabus
Homework
Exams

General Information

Stony Brook University expects students to maintain standards of personal integrity that are in harmony with the educational goals of the institution; to observe national, state, and local laws as well as University regulations; and to respect the rights, privileges, and property of other people. Faculty must notify the Office of Judicial Affairs of any disruptive behavior that interferes with their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn.

Information for students with disabilities

If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact Disability Support Services at (631) 632-6748 or http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential.

Students who might require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information go to the following website:
http://www.sunysb.edu/ehs/fire/disabilities.shtml

Stony Brook

 UniversityHome
General Information
Syllabus
Homework
Exams

MAT 308:

 Spring 2017
Syllabus and Weekly Plan

Week of	Topics	Comments
Jan 23	10.1: 1st order DE, direction fields 10.2: Separation of variables 10.3: linear equations, integrating factors	
Jan 30	3.1: Linear Maps/Euclidean spaces 3.2, 3.3: Vector Spaces and Linear Maps	
Feb 6	3.4, 3.5 Image and Null Space, Coordinates and Dimension 3.6 Eigenvalues and Eigenvectors	
Feb 13	3.6 Eigenvalues and Eigenvectors 3.7 Inner Products	
Feb 20	Ch.3/Ch.10/Midterm Review	No HW/Quiz this week,

April 17	Nonhomogenous Linear Systems 14.7 Power Series Solutions	
April 24	13.4 Equilibrium and Stability	
May 1	Final Review	
May 9	Final Exam Tuesday, May 9, 8:30pm11:00pm	

MAT 308:

Stony Brook
 Spring 2017

 University

$* \|$
 Stony Brook University

MAT 308: Spring 2017

Home
General Information
Syllabus
Homework
Exams

Exams

Midterm I, Wed. Feb 22
Midterm II, Wed. April 12
Final Exam, Tue. May 9

Differential equations and linearity consider the differential equation

$$
\begin{equation*}
\frac{d y}{d x}+y=0 \tag{x}
\end{equation*}
$$

let $y_{1}(x)$ and $y_{2}(x)$ be two distinct solutions of (x).
Then for any two constants a, b, weave:

$$
\begin{aligned}
& \frac{d}{d x}\left(a y_{1}+b y_{2}\right)+\left(a y_{1}+b y_{2}\right) \\
= & a\left(\frac{d y_{1}}{d x}+y_{1}\right)+b\left(\frac{d y_{2}}{d x}+y_{2}\right) \\
= & a \cdot 0+b \cdot 0 \quad\left[\text { Since } y_{1} \text { and } y_{2} \text { are }\right] \\
= & 0 .
\end{aligned}
$$

This shows that $\left(a y_{1}+b y_{2}\right)$ is also a solution of \circledast.

We inst observed that the space oof solutions of the differential equation * satisfies a certain linearity property:
if $a, b \in \mathbb{R}$, and $y_{1}, y_{2} \in \rho_{1}$ then $\left(a y_{1}+b y_{2}\right) \in \rho$.

Hence, any linear combination of elements of ρ also lies in ρ.

Loosely, such a space S is called a linear/vector space.

This leads us to the study of linear spaces.

Moreover, the derivative operator also satisfies a linearity property. For any two real constants a, b, and $a n y$ two differentiable functions y_{1}, y_{2}, weave:

$$
\frac{d}{d x}\left(a^{y_{1}}+b y_{2}\right)=a \frac{d y_{1}}{d x}+\frac{b d y_{2}}{d x}
$$

An operator with the linearity property $* *$ is called a
linear operator.
The upshot of the preceding analysis is that the study of derivatives and differential equations naturally lead us to the study of linear spaces and linear operators.

Before we start a formal discussion of linear spales/operators, let us restrict our attention a concrete example; the simplest
linear space \mathbb{R}^{n}.
Vote: Understanding an example well enough makes the study of tan abstract Concept much simpler.]

Definition $\left(\mathbb{R}^{n}\right)$:
The real Euclidean space of dimension n is defined as the cartesian product:

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}\right\} .
$$

In other words, \mathbb{R}^{n} Consists of all n-tuples of real numbers. (well sometimes call them vectors).
There's a natural notion of addition on \mathbb{R}^{n} :

$$
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)
$$

one can also define a scalar multiplication. for any $c \in \mathbb{R}$ and $\left(x_{i}, x_{n}\right) \in \mathbb{R}^{2}$, one defines:

$$
c\left(x_{1}, \ldots, x_{n}\right)=\left(c x_{1}, \ldots, c x_{n}\right)
$$

Definition (Linear maps/trans formations on \mathbb{R}^{n}):
A map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called linear if it Satisfies

$$
T(a u+b V)=a \Gamma(u)+b T(V)_{1}
$$

where $a, b \in \mathbb{R}$, and $u, v \in \mathbb{R}^{n}$.
Example:

1) A real
2) Let A be an $m \times n$ matrix; ill. A has m rows and n colum is

In Particular:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

Any element of \mathbb{R}^{n} is of the form:

$$
u=\left(x_{1} \ldots x_{n}\right)
$$

We define a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by:

$$
\begin{aligned}
& T\left(\left(x_{1,=-} x_{n}\right)\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}}{a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}}
\end{aligned}
$$

clearly, $T\left(\left(x_{1}, x_{n}\right)\right) \in \mathbb{R}^{n}$.
Also, matrix multiplication satisfies:

$$
A(a u+b v)=a A u+b A v
$$

for any $a, b \in \mathbb{R}, u, v \in \mathbb{R}^{n}$

Therefore, T is a linear map from
\mathbb{R}^{2} to \mathbb{R}^{2}.
2) Reflection in \mathbb{R}^{2} (crt a line).
3) Rotation in \mathbb{R}^{2} (crt the origin),
4) Scaling
well see in class (geometrically) why these define linear maps.

Example (1) had a concrete algebraic description in terms of a matrix. one can ask whether every linear map from \mathbb{R}^{n} to \mathbb{R}^{m} has a Similar representation.
well now proceed to answer this question affirmatively. Let's start with the notion of a basis.

In \mathbb{R}^{n}, the vectors

$$
e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots), \ldots, e_{n}=(0, \ldots, 0,1)
$$

play a special role.

Indeed, any vector $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ in \mathbb{R}^{n} can be written as a linear combination of e_{1}, \ldots, e_{n} :

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}\right) & =x_{1}(1,0, \cdots, 0)+\cdots+x_{n}(0, \ldots, 0,1) \\
& =x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}
\end{aligned}
$$

well see later that $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of π^{n}. A simple yet crucial observation: Since the vectors $\left\{e_{1}, e_{n}\right\}$ span/ generate all of R^{n}, it is enough to understand the action of a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ on the vectors $\left\{e_{1}, e_{n}\right\}$.

Whore precisely, any element of \mathbb{R}^{n} can be written as $x_{1} e_{1}+\cdots+x_{n} e_{n}$, for Some real numbers x, \ldots, x_{n}.

Then, $T\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)$

$$
=x_{1} T\left(e_{1}\right)+\cdots+x_{n} T\left(e_{n}\right)
$$

Thus, the action of T on $\left\{e_{1} \ldots e_{n}\right\}$ determines the action of T on all of \mathbb{R}^{n}.

Theorem:
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a lin lear map. Then there exists an $m \times n$ real matrix A such that for any $u=\left(x_{1}, x_{n}\right) \in \mathbb{R}^{n}$ we've

$$
T u=A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Proof: Note that $T\left(e_{1}\right), T\left(e_{2}\right), \ldots T\left(e_{r}\right)$ are elements of \mathbb{R}^{m} and we can think of them as column vectors.
Let A be the $m \times n$ matrix whose columns are:

$$
T\left(e_{1}\right), \cdots \tau\left(e_{n}\right) ;
$$

ie. the isth Column of A is Tee).
Now, a direct Computation shows that

$$
A e_{i}=A\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
0
\end{array}\right)<\text { roth }=\text { The } i-t h \text { of Column }
$$

Therefore, we've: $\quad A e_{i}=T\left(e_{i}\right)$, for $i=1, \ldots n$.
By linearity, this yields:

$$
\begin{aligned}
& T\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right) \\
= & x_{1} T\left(e_{1}\right)+\cdots+x_{n} T\left(e_{n}\right) \\
= & x_{1} A e_{1}+\cdots+x_{n} H e_{n} \\
= & A\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right) . \\
= & A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) .
\end{aligned}
$$

Remark: The matrix A (as above) is called the matrix of the linear map T with respect to $\left\{e_{1}, \ldots, e_{n}\right\}$.
composition of linear maps and multiplication of matrices.

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{2}$ and $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ be two linear maps with corresponding matrices A and B respectively.

Then the composition

$$
\text { SoT: } \mathbb{R}^{n} \rightarrow \mathbb{R}^{k} \text { is a map }
$$

satisfying

$$
\begin{aligned}
& S \circ T(a u+b v) \\
= & S \cdot(T \cdot(a u+b v))=S(a T(u)+b T(v)) \\
= & a S(T(u))+b S(T(v)) \\
= & a(S \circ T)(u)+b(S \circ T)(v)
\end{aligned}
$$

for all $a, b \in \mathbb{R}, u, v \in \mathbb{R}^{n}$.
Thus, the composition SOT is a linear map from \mathbb{R}^{n} to \mathbb{R}^{k}.

What is the matrix of SOT? Recall that $e_{1}^{n}=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right), \ldots e_{n}^{n}=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right)$ span π^{n}.

Now, by definition of A, we've:

$$
\begin{aligned}
T\left(e_{i}^{n}\right) & =A e_{1}^{n}=\left(\begin{array}{ccc}
a_{11} a_{12}-a_{i n} \\
a_{21} & a_{22} & \cdots \\
a n \\
- & a_{2 n} \\
a_{m 1} a_{m 2}-a_{m n}
\end{array}\right)\left(\begin{array}{c}
0 \\
1 \\
\vdots
\end{array}\right) \\
& =\left(\begin{array}{c}
a_{1 i} \\
a_{2 i} \\
\vdots \\
a_{m i}
\end{array}\right)=a_{1 i} e_{1}+\cdots+a_{m i} e_{m n}^{m} .
\end{aligned}
$$

Again l $(S . T)\left(e_{i}\right)=S\left(T\left(e_{i}\right)\right)$

$$
\begin{aligned}
& =s\left(a_{1 i} e_{1}^{m}+\cdots+a_{m i} e_{m}^{m}\right) \\
& =a_{1 i} s\left(e_{1}^{m}\right)+\cdots+a_{m i} s\left(e_{m}^{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =a_{1 i} B\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\cdots+a_{m i} B\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
1
\end{array}\right)\left[\begin{array}{c}
B y \text { definition } \\
0 \text { f } B
\end{array}\right] \\
& =a_{1 i}\left(\begin{array}{c}
b_{11} \\
i \\
b_{k 1}
\end{array}\right)+\cdots+a_{m i}\left(\begin{array}{c}
b_{1 m} \\
\vdots \\
b_{k m}
\end{array}\right) \\
& =\left(\begin{array}{c}
a_{1 i} b_{11}+\cdots+a_{m_{i}} b_{i m} \\
a_{1 i} b_{k 1}+ \\
+a_{m i} b_{k m}
\end{array}\right) \\
& =\text { isth column of }\left(\begin{array}{lll}
b_{11} & & b_{m} \\
- & - & \\
b_{k 1} & \cdots & b_{k m}
\end{array}\right)\left(\begin{array}{ll}
a & -a \\
a_{m i} & -a_{m i n}
\end{array}\right) \\
& \Rightarrow(S . T)\left(e_{i}^{n}\right)=i-t h \text { column of } B A \\
& \Rightarrow(S \cdot T)\left(e_{i}^{n}\right)=(B A)\left(e_{i}^{n}\right)=(B A)\left(\begin{array}{c}
0 \\
1 \\
\vdots
\end{array}\right) \Rightarrow i{ }^{i} \text { th row }
\end{aligned}
$$

Thus, the matrix of $S \cdot T: \mathbb{R}^{7} \rightarrow \mathbb{R}^{k}$ is the $k \times n$ matrix: $B A$.
the
Hence, composition of two linear maps is given by the product of the corresponding matrices.

Note: This is the real reason why matrices are multiplied the way they are.

Definition:

- Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear

Then; Image $(T):=\left\{T u: u \in \mathbb{R}^{n}\right\}$.

- $\operatorname{Domain}(T)=\mathbb{R}^{n}$.
- T is called onto iff

$$
\operatorname{Image}(T)=\mathbb{R}^{m}
$$

- T is called one-to-one iff 4 $\quad T(u)=T(v)$

$$
\therefore \Rightarrow u=v
$$

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be one-to-one and onto. Such a map is called biriective. In this case, there exists an inverse $T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ of T. In fact,

$$
T \cdot T^{-1}=T^{-1}: T=I d .
$$

Let $T(u)=u^{\prime}, T(v)=v^{\prime}$.
Then, by definition, $T^{-1}\left(u^{\prime}\right)=u$,

$$
T^{-1}\left(V^{\prime}\right)=V
$$

Also, by linearity of T,

$$
T(a u+b v)=a T(u)+b T(v)=a u^{\prime}+b v!
$$

Therefore,

$$
\begin{aligned}
& \text { re, } T^{-1}\left(a u^{\prime}+b v^{\prime}\right) \\
& =\quad a u+b v=a T^{-1}\left(u^{\prime}\right)+b T^{-1}\left(v^{\prime}\right)
\end{aligned}
$$

for all $a, b \in \mathbb{R}, u^{\prime} v^{\prime} \in \mathbb{R}^{h}$
Hence, $T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is also linear.
Let B be the matrix of A.
Since, $T \cdot T^{-1}=T^{-1} \cdot T=I d$ fer nacre ebseruect and the matrices of $T \cdot T^{-1}, T^{-1} \cdot T$ and $I d$ are $A B, B A$ and I_{n} respectively weve:
$A B=B A=I d_{n}$, where $I d_{n}$ is the $n \times n$ identity matrix.
Thus, the matrix of T^{-1} is $B=A^{-1}$.

Vector spaces and linear mops on them

Definition:
A real/Complex vector space V is a set V together with operations

$$
\begin{aligned}
+: V \times V \rightarrow V, & : \mathbb{R} \times V \rightarrow V \\
& (\text { or }(\times V \rightarrow V)
\end{aligned}
$$

Satisfying
i) $u+v \in V$, whenever $u, v \in v$
iii) $u+v=v+u$, for all $u, v \in V$
iii) $u+(v+w)=(u+v)+w, \quad \forall u, v, w \in V$
iv) \exists a unique element $0 \in V$
such that $0+u=u+0=u \quad \forall u \in V$.
v) For each $u \in v$, there exists $-u \in V$

$$
\text { with } u+(-u)=(-u)+u=0
$$

vi) $c \cdot u \in v \quad \forall c \in \mathbb{R}(o r a), \forall u \in V$.
vii) c. $(u+v)=c \cdot u+c \cdot v \quad \forall c \in \mathbb{R}(\operatorname{or} \mathbb{C})$

$$
\forall u, v \in V .
$$

viii) $(c+d) \cdot u=c \cdot u+d \cdot u \quad \forall c, d \in \mathbb{R}$ (or $d)$, $\forall u \in V$.

$$
\begin{aligned}
& \text { iix) } 1 \cdot d x=u \quad \forall u \in V, \\
& x)(c d) \cdot u=c \cdot(d \cdot u), \quad \forall c, d \in \mathbb{R}(\text { or } \mathbb{C}) \\
& \forall u \in V .
\end{aligned}
$$

Example: 1) $\mathbb{R}^{n}\left(o r \mathbb{C}^{n}\right)$ over \mathbb{R} (or $\left.\mathbb{C}\right)$,
2) All real $m \times n$ matrices over \mathbb{R},
3) All Continuous/differentiable functions

$$
f: R \rightarrow R \text { (over } R \text {) }
$$

4) For any integer $d \geq 1$, the set

$$
P_{d}=\left\{a_{0}+a_{1} x+\cdots+a_{d} x^{d}: a_{i} \in \mathbb{R}\right\} \text { of }
$$

polynomials of degree at most d (over \mathbb{R})

Consequenter of definition:

1) $0 . u=0 \quad \forall u \in V$,
2) $c \cdot 0=0 \quad \forall c \in \mathbb{R}$ (or \mathbb{C}).
3) $c u=0 \Rightarrow c=0$ or $u=0$

Defoe. (linear combination):
A vector $u \in V$ is called a linear combination of $u_{1}, u_{n} \in V$ if there exist $c_{1}, \quad c_{n} \in \mathbb{R}$ (or \mathbb{C}) such that:

$$
\begin{aligned}
u & =c_{1} u_{1}+\cdots+c_{n} u_{n} \\
& =\sum_{i=1}^{n} c_{i} u_{i}
\end{aligned}
$$

Def (subspace):
A subset $W \subseteq V$ is a (vector) subspace if every linear combination of elements of w lies in W; i.e.
for any $c_{1}, c_{2} \in \mathbb{R}$ (or (\in) and for and $\omega_{1}, \omega_{2} \in W$, we ie that $\left(c_{1} \omega_{1}+c_{2} \omega_{2}\right) \in \omega$

Examples:

1) Any hyperplane

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=0 \text { in } \mathbb{R}^{2}
$$

2) The set of all diagonal matrices

$$
\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{n}
\end{array}\right) \text { in } \operatorname{Mat}_{n}(\mathbb{R})
$$

3) All differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
\text { with } \quad f^{\prime}(0)=0 \text {. }
$$

Non-example:
The set $\left\{(x, y, z) \in \mathbb{R}^{3}=z=x^{2}+y^{2}\right\}$ is not a vector subspace of \mathbb{R}^{3}

Span:
Let V_{1} be a subset of V.
The span of V_{1} is defined as the
set of all possible linear combinations of elements of V_{1}. In notations,

$$
\left.\begin{array}{rl}
\operatorname{span}\left(V_{1}\right)=\left\{c_{1} \alpha_{1}+c_{2} \alpha_{2}+\cdots+c_{n} \alpha_{n}:\right. & c_{i} \in \mathbb{R} / \\
& \alpha_{i} \in V_{1}
\end{array}\right\}
$$

Linear independence:
A collection of vectors $\left\{V_{1}, \ldots, v_{n}\right\}$ in V is called linearly independent if there is no nontrivial linear relation between them; i.e for some $c_{1}, \cdots, c_{n} \in \mathbb{R}$

$$
\text { if } c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=0
$$

then $\quad c_{1}=c_{2}=\cdots=c_{n}=0$.
otherwise, the collection of vectors is called linearly Remark:
I) A linearly independent set of vectors cannot Contain the O vector
2) If $\left\{v_{1}, \ldots v_{n}\right\}$ is a linearly dependent set of non-zero vectors, then by definition,
there exist $c_{1}, \ldots c_{n} \in \mathbb{R}$ such that at least one of the $c_{i} S$ is non-zero and

$$
c_{1} v_{1}+\cdots+c_{n} v_{n}=0
$$

suppose $c_{i} \neq 0$, for some $i \in\{1, \cdots n\}$.
Hence, $\quad C_{i} V_{i}=-c_{1} V_{1}-\cdots-C_{i-1} V_{i-1}-c_{i+1} V_{i+1}$

$$
\cdots-c_{n} v_{n}
$$

$$
\begin{array}{r}
\Rightarrow V_{i}=-\frac{C_{1}}{C_{i}} V_{1}-\cdots-\frac{C_{i}-1}{C_{i}} V_{i-1}-\frac{C_{i+1}}{C_{i}} V_{i+1} \\
-\cdots+\frac{C_{n}}{C_{i}} V_{n} \\
\Rightarrow V_{i}=d_{1} V_{1}+\cdots+d_{i-1} v_{i-1}+d_{i+1} V_{i+1}+\cdots+d_{n} V_{n} .
\end{array}
$$

Also, by our assumption, $V_{i} \neq 0$.
Therefore, not every d_{j} is equal to 0 .
This shows that in a linearly dependent set of non-zero Vectors there is at least one vector that can be expressed as a linear combination of the others This justifies the term "dependent"; in the worked out example, Vi "depends" On the other rectors non-trivially.

Defer (Basis):
Let β be a subset of a vector space $V . \beta$ is said to be a basis of V if
i) β is linearly independent, and ii) $\operatorname{span}(\beta)=V$ if β spans V.
$\begin{aligned} \text { Example: i) }\left\{e_{1}=(1,0, \cdots, 0), e_{2}=\right. & (0,1,0, \ldots, 0) \ldots \\ & \left.e_{n}=(0,0, \ldots, 0,1)\right\}\end{aligned}$ is a basis of \mathbb{R}^{n}.
2) Any two linearly independent vectors, egg $\{(1,0),(1,1)\}$ is a basis of \mathbb{R}^{2}. Similarly, any collection of n linearly independent vectors is a basis of \mathbb{R}^{n}.
3) ABasis of $T_{2}(\mathbb{R})=$

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

4) A basis for the space, of Polynomials of degree at most d :

Coordinates:
Let V be a vector space and $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a basis of v. By definition, β is linearly independent and $\operatorname{sPan}(\beta)=V$.
choose any $\alpha \in V=\operatorname{SPan}(\beta)$.
Then there exist scalars $C_{1}, C_{2}, \ldots, C_{n}$ (in \mathbb{R} or \mathbb{C}) Such that

$$
\begin{equation*}
\alpha=c_{1} u_{1}+\cdots+c_{n} u_{n} \tag{1}
\end{equation*}
$$

We claim that the scalars $\left\{c_{1}, \ldots, c_{n}\right\}$ are unique. Suppose that $\left\{d_{1}, \ldots, d_{n}\right\}$ be another set of scalars such that

$$
\alpha=d_{1} u_{1}+\cdots+d_{n} u_{n}
$$

By (1) and (2), we re:

$$
\begin{align*}
& \text { (1) and (2), we be: } \\
& c_{1} u_{1}+\cdots+c_{n} u_{n}=d_{1} u_{1}+\cdots+d_{n} u_{n} \tag{3}\\
& \Rightarrow \frac{\left(c_{1}-d_{1}\right) u_{1}+\cdots+\left(c_{n}-d_{n}\right) u_{n}=0}{1} \rightarrow \text { (3) }
\end{align*}
$$

Since $\left\{u_{1,1}, u_{n}\right\}$ is linearly independent, we must have $c_{1}-d_{1}=\cdots=c_{n}-d_{n}=0$

$$
\begin{aligned}
& c_{1}-d_{1}=\cdots=c_{n}-d_{n}=0 \\
& \Rightarrow\left.c_{1}=d_{1}, c_{2}=d_{2}\right) \cdots, c_{n}=d_{n} \\
& \hline
\end{aligned}
$$

Defy: The unique n-tuple $\left(c_{1}, \ldots, c_{n}\right)$ is called the coordinates of α w.r.t. the basis β.

Dimension.
Let V be a vector space and β be a finite basis of V. In other words, β ' is a finite set
i) $\operatorname{SPan}(\beta)=V$, and
ii) β is linearly ind pendent

Such a vector space V is called finite dimensional.

Theorem:
Any two bases of a finite dimensional vector space V have the same cardinality (i.e. the same number of elements).

Defy. Let V be a finite dimensional vector space and β be a basis of V. We define

$$
\operatorname{dim}(V)=\text { Cardinality of } \beta
$$

The above number is called the dimension of V. In light of the above theorem, $\operatorname{dim}(v)$ doesnot depend on the choice of a basis.

Example: i) $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.
2) $\operatorname{dim}(\operatorname{Mat}(\mathbb{R}))=n^{2}$.
3) $\operatorname{dim}\left(\rho_{d}\right)=d+1$.
4) The space of all real Poly nomials (of any degree) is also a vector space. However it has no finite basis. A basis of this vector space is given by:

$$
\left\{1, t, t^{2}, \ldots t^{2}, \cdots\right\}
$$

such a space is called infinite dimensional.
5) The space of continuous/differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is another example of an infinite dimensional vector space.

Theorem:
Let V be an n-dimensional vector space. Then
i any subset of V containing more than n elements is linearly dependent;
ii) no subset of V with fewer than n elements can span V.

Linear maps of vector spaces:
Let V, W be vector spaces. A map $T: V \rightarrow W$ is called linear if

$$
\begin{aligned}
T(a u+b v)=a T(u)+b T(V), & \forall a, b \in \mathbb{R}, \\
& \forall u, v \in V .
\end{aligned}
$$

Examples: 1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
T(x, y)=(x+y, x-y)
$$

2) $T: P_{d} \rightarrow P_{d-1}$

$$
T(f)=f^{\prime}
$$

3) $T: \operatorname{Tat}(\mathbb{R}) \rightarrow \mathbb{R}$

$$
T(A)=\operatorname{trace}(A)=\frac{a_{11}+a_{22}+\cdots+a_{n n}}{e}
$$

Sum of the diagonal elements of A
4)

Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is continuous)
$T: V \rightarrow V$ is defined as:

$$
(T f)(x)=\int_{0}^{x} f(t) d t \text {, for any } f \in V \text {. }
$$

Consequence of definition:

1) $T(0)=0$
2) $T\left(c_{1} u_{1}+\cdots+c_{n} u_{n}\right)=c_{1} T\left(u_{1}\right)+\cdots+c_{n} T\left(u_{n}\right)$

Theorem (easy consequence of property (2)): Let V be a finite dimensional vector spall and $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a basis of V. Let W be another vector space and $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be any n vectors in W. Then there exists a unique linear map

$$
\begin{aligned}
& T: V \rightarrow W \text { satisfying } \\
& T\left(u_{k}\right)=\omega_{k}, \text { for } k=1, \ldots, n .
\end{aligned}
$$

Proof: We need to check that T can be extended as a linear map to all of V.
To this end, pick any $\alpha \in V$. Then (by ow r discussion of coordinates), there exist $\$$ unique scalars c_{1}, \ldots, c_{n} such that

$$
\alpha=\quad c_{1} u_{1}+\cdots+c_{n} u_{n}
$$

We define: $T(\alpha)$
$\binom{$ extendeld to }{ guarantee }$:=c_{1} T\left(u_{1}\right)+\cdots+c_{n} T\left(u_{n}\right)$
(linearity $=c_{1} \omega_{1}+\cdots+c_{n} \omega_{n}$.

Since the scalars $\left\{c_{1}, \ldots, c_{n}\right\}$ are unique, this defines T in a well-defined way on all of V.

Linearity of T is now an easy exercise. The fact that such an extension is unique follows from the fact that any linear map
$S: V \rightarrow W$ Satisfying $s\left(u_{k}\right)=w_{k}$,
$($ for $k=1,-n)$
must satisfy the property

$$
\begin{aligned}
S(\alpha)=S\left(c_{1} u_{1}+\cdots+c_{n} u_{n}\right) & =c_{1} S\left(u_{1}\right)+\cdots+c_{n} S\left(u_{n}\right) \\
& =c_{1} \omega_{1}+\cdots+c_{n} \omega_{n}
\end{aligned}
$$

Hence, any such S must be equal

Remark: Although the proof of the previous theorem is elementary, it turns out to be quite an important result. In fact, this gives us an easy way to define a linear map with very little data.

Image and Null-space:
Let $T: V \rightarrow W$ be a linear map.

$$
T(v)=\{T(u): u \in V\} \rightarrow \text { Image of } T
$$ well show that $T(V)$ is a subspace of ω.

To do so, choose scalars $a, b \in \mathbb{R}$ (or \mathbb{C}) and $\omega_{1}, \omega_{2} \in T(V)$
Then there exist $u_{1}, u_{2} \in V$ such that

$$
\omega_{1}=T\left(u_{1}\right) \text { and } u_{2}=T\left(u_{2}\right)
$$

Then, $a w_{1}+b w_{2}$

$$
\begin{aligned}
& =a T\left(u_{1}\right)+b T\left(u_{2}\right) \\
& =T\left(a u_{1}+b u_{2}\right) \in T(V) .
\end{aligned}
$$

Therefore, $a \omega_{1}+b \omega_{2} \in T(V)$.
This shows that $T(V)$ is a subspace of w.

- T is called onto/suriective if

$$
\operatorname{Im}(T):=T(V)=W .
$$

- The null space of T, denoted by Null (T), is defined as:

$$
\operatorname{Null}(T):=\left\{u \in V_{:} \quad T(u)=0\right\}
$$

If $u_{1}, u_{2} \in \operatorname{Null}(T)$ and $a, b \in \mathbb{R}$, then

$$
\begin{aligned}
& T\left(a u_{1}+b u_{2}\right)=a T\left(u_{1}\right)+b T\left(u_{2}\right) \\
&=a \cdot 0+b \cdot 0 \\
&=0 . \\
& \Rightarrow a u_{1}+b u_{2} \in \operatorname{Null}(T)
\end{aligned}
$$

Hence, $\operatorname{Vull}(T)$ is a subspace of V.

- Image (T) and $\operatorname{Null}(T)$ are the two most important/fundamental "subspaces associated with a linear map T. In fact, these subspaces contain substantial information about the map T.
- Since $T(0)=0$, we always have $0 \in \operatorname{Null}(T)$.

The orem:
T is one-to-one iff $\operatorname{Null}(T)=\{00$
proof: \Rightarrow
Let us assume that T is one-to-one.

If $u \in$ Trull (T), then weave

$$
T(u)=0
$$

But $T(0)=0$ for any linear map.
Hence, $T(u)=T(0)$
Since T is one-to-one, we conclude that $u=0$. So, 0 is the only element of $\operatorname{Null}(T)$ vul $(T)=\{0\}$.
\Leftarrow Conversely bet us assume that $\left.\operatorname{Null}(T)=\alpha_{0}\right\}$.

Let $u_{1}, u_{2} \in V$ such that $T\left(u_{1}\right)=T\left(u_{2}\right)$
Then, $T\left(u_{1}\right)-T\left(u_{2}\right)=0$

$$
\begin{aligned}
& \Rightarrow T\left(u_{1}-u_{2}\right)=0 \\
& \Rightarrow u_{1}-u_{2} \in \operatorname{Nul}(T)=\{0\} \\
& \Rightarrow u_{1}-u_{2}=0 \Rightarrow u_{1}=u_{2} . \text { Hen, } T \text { is one-to-one }
\end{aligned}
$$

Matrix of a linear map:
Let V and W be finite dimensional vector spaces with bases

$$
\begin{aligned}
& P_{V}=\left\{u_{1}, \ldots, u_{n}\right\} \text { and } \\
& \beta_{W N}=\left\{w_{1}, \ldots, w_{m}\right\} \text { respective } / y .
\end{aligned}
$$

For any $i \in\{1, \ldots, n\}$, we have $T\left(U_{i}\right) \in W$. Hence, there exist unique scalars
$\left\{a_{1 i}, a_{2 i}, \ldots, a_{m i}\right\}$ such that

$$
T\left(u_{i}\right)=a_{1} i \omega_{1}+a_{2 i} \omega_{2}+\cdots+a_{m i} \omega_{m}
$$

(Since $\left\{\omega_{1}, ., \omega_{m}\right\}$ is a basis of w)
We define the matrix of T with respect to the bases β_{V} and β_{w} as:

$$
[T]_{\beta_{v, ~}^{2}}:=\left(\left.\begin{array}{lll}
a_{11} & a_{12} & a_{1 i} \\
a_{21} & a_{22} & a_{1 n} \\
-a_{2 i} & a_{2 n} \\
a_{m 1} a_{m 2} & a_{m 1} & \cdots
\end{array} a_{m n} \right\rvert\,\right.
$$

- T is formed by the coordinate Column vectors of $T\left(u_{1}\right), \ldots, T\left(u_{n}\right)$.
(Here and in the next page, (19) $(V, W, Y$ are finite dimensional spaces)
- Composition:

Let $T: V \rightarrow W, S: W \rightarrow Y$ be linear maps. Let A be the matrix of T with respect to the bases β_{V} and β_{w}, and B be the matrix of S wot the bases β_{w} and β_{y}.

Then, the matrix of
SOT: $V \rightarrow Y$ with respect to the bases β_{V} and β_{Y} is given by $B A$.
The proof of this fact is similar to the corresponding proof in the setting of Euclidean spaces (see Jan. 30 lecture notes).

Inverse:
Let $T: V \rightarrow V$ be a one to -one and suriective linear map.
Let $\operatorname{dim}(v)=n$, and $\beta=\left\{u_{1}, \dot{u}\right\}$ be a basis of V.

Further suppose that $[T]_{\beta, \beta}=\frac{A}{\uparrow}$
The matrix of T wat β
Since T is bijective, there exists a linear map $T^{-1}: V \rightarrow V$ such that

$$
T \cdot T^{-1}=T^{-1} \circ T=I d_{V} .
$$

If B is the matrix of T^{-1} art B, then by our discussion on the previous page, we've:

$$
A B=B A=I d_{n}
$$

Hence, $B=A^{-1}$, the inverse of the matrix A.

Therefore, the matrix of a bijective linear $\operatorname{map} \quad T: V \rightarrow V$ is invertible, and the matrix of the inverse map T^{-1} is given by the inverse of the matrix of T (wat a fixed basis).

Coordinates:
Let V be a vector space, and $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a basis of v. By definition, β is linearly independent and $\operatorname{SPan}(\beta)=V$.
choose any $\alpha \in V=\operatorname{SPan}(\beta)$.
Then there exist scalars $C_{1}, C_{2}, \ldots, C_{n}$ (in \mathbb{R} or $\mathbb{C})$ Such that

$$
\begin{equation*}
\alpha=c_{1} u_{1}+\cdots+c_{n} u_{n} \tag{1}
\end{equation*}
$$

we claim that the scalars $\left\{c_{1}, \ldots, c_{n}\right\}$ are unique. Suppose that $\left\{d_{1}, \ldots, d_{n}\right\}$ be another set of scalars such that

$$
\alpha=d_{1} u_{1}+\cdots+d_{n} u_{n}
$$

By (1) and (2), we ie:

$$
\begin{align*}
& \text { (1) and (2), we ve: } \\
& c_{1} u_{1}+\cdots+c_{n} u_{n}=d_{1} u_{1}+\cdots+d_{n} u_{n} \\
& \Rightarrow \frac{\left.\left(c_{1}-d_{1}\right) u_{1}+\cdots+d_{n}\right) u_{n}=0}{\left(c_{1}\right)}
\end{align*}
$$

Since $\left\{u_{1,-}, u_{n}\right\}$ is linearly independent, we must have $c_{1}-d_{1}=\cdots=c_{n}-d_{n}=0$

$$
\begin{aligned}
& c_{1}-d_{1}=\cdots=c_{n}-d_{n}=0 \\
& \Rightarrow \frac{\left.c_{1}=d_{1}, c_{2}=d_{2}\right) \cdots, c_{n}=d_{n}}{\left(c_{1}, \ldots, c_{n}\right) \text { is called }}
\end{aligned}
$$

Defy: The unique n-tuple $\left(c_{1}, \ldots, c_{n}\right)$ is called the coordinates of α w.r.t. the basis β.

Example:

1) P_{3} is the vector space of all real polynomials of degree ≤ 3. We know that $\beta=\left\{1, x, x^{2}, x^{3}\right\}$ is an ordered basis of P_{3} (ordered in the sense that wive arranged the elements of the basis in some order).
Then, the coordinates of the vector
hen, the Coordinates of with respect
to the ordered basis β is

$$
\begin{aligned}
& \text { basis } \beta \text { is : } \\
& \left(\begin{array}{c}
2 \\
-3 \\
4 \\
-5
\end{array}\right) \text { coefficient of } \rightarrow+x^{2} \\
& -\quad-\quad x^{3}
\end{aligned}
$$

$2 \beta=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ is an ordered basis of $\mathrm{M}_{2}(\mathbb{R})$.
Then any matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{R})$ can be written as: $\quad\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+c\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)+d\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. Hence, the coordinates of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with respect the basis β is $\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)$.

Dimension.
Let V be a vector space and β be a finite basis of V. In other words, β is a finite set
i) $\operatorname{span}(\beta)=V$ and
ii) β is linearly independent

Such a vector space V is called finite dimensional.

Theorem:
Any two bases of a finite dimensional vector space V have the same cardinality (i.e. The same number of elements).

Defy. Let V be a finite dimensional vector space and β be a basis of V. We define

$$
\operatorname{dim}(V)=\text { Cardinality of } \beta
$$

The above number is called the dimension of V. In light of the above theorem, dim (v) doesnot depend on the choice of a basis.

Example: 1) $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$
2) $\operatorname{dim}\left(\operatorname{mat}_{n}(\mathbb{R})\right)=n^{2}$
3) $\operatorname{dim}\left(p_{d}\right)=d+1$.
4) The space of all real poly nomials (of any degree) is also a vector space. However it has no finite basis. A basis of this vector space is given by:

$$
\left\{1, t, t^{2}, \ldots \ldots t^{n}, \ldots\right\}
$$

Such a space is called infinite dimensional.
5) The space of Continuous/differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is another example of an infinite dimensional vector space.

Theorem:
Let V be an n-dimensional Vector space. Then
i any subset of V containing more than n elements is linearly dependent;
ii" no subset of V with fewer than n elements can span V.

Theorem: Let V be a finite dimensional (vector space with $\operatorname{dim}(v)=n$.
Let $\left\{u_{1}, \ldots, u_{k}\right\}$ be a set of linearly independent vectors in V, with $k<n$.
Then we can choose $(n-k)$ linearly. independent vectors

$$
\begin{aligned}
& \left\{u_{k+1}, \ldots,{ }_{n}\right\rangle \hat{} \text { such that } \\
& \left\{u_{1, \ldots}, u_{k}, u_{k+1}, \ldots u_{n}\right\} \text { is a basis of } V .
\end{aligned}
$$

Linear maps of vector spaces:
Let V, W be vector spaces. A map $T: V \rightarrow W$ is called linear if

$$
\begin{aligned}
T(a u+b v)=a T(u)+b T(v), & \forall a, b \in \mathbb{R}, \\
& \forall u, v \in V .
\end{aligned}
$$

Ex lamples: 1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
T(x, y)=(x+y, x-y) .
$$

2) $T: P_{d} \rightarrow P_{d-1}$

$$
T(f)=f^{\prime}
$$

3) $T: \operatorname{Tat}(\mathbb{R}) \rightarrow \mathbb{R}$

$$
T(A)=\operatorname{trace}(A)=\frac{a_{11}+a_{22}+\|+a_{n n}}{\text { sum of the }}
$$

4)

Let $V=\{\overline{f: \mathbb{R}} \rightarrow \mathbb{R}: f$ is continuous $\}$ $T: V \rightarrow V$ is defined as:
$(T f)(x)=\int_{0}^{x} f(t) d t$, for any $f \in V$.
Consequence of definition:

1) $T(0)=0$
2) $T\left(c_{1} u_{1}+\cdots+c_{n} u_{n}\right)=c_{1} T\left(u_{1}\right)+\cdots+c_{n} T\left(u_{n}\right)$

Image and Null-space:
Let $T: V \rightarrow W$ be a linear map.
$T(V)=\{T(u): u \in V\} \rightarrow$ Image of T well show that $T(V)$ is a subspace of W.
To do so, choose scalars $a, b \in \mathbb{R}$ (or \mathbb{C}) and $\omega_{1}, \omega_{2} \in T(V)$
Then there exist $u_{1}, u_{2} \in V$ such that

$$
\omega_{1}=T\left(u_{1}\right) \text { and } u_{2}=T\left(u_{2}\right)
$$

Then, $a \omega_{1}+b \omega_{2}$

$$
\begin{aligned}
& =a T\left(u_{1}\right)+b T\left(u_{2}\right) \\
& =T\left(a u_{1}+b u_{2}\right) \in T(V) .
\end{aligned}
$$

Therefore, $a \omega_{1}+b \omega_{2} \in T(V)$.
This shows that $T(V)$ is a subspace of w.

- T is called onto/suriective if

$$
\operatorname{Range}(T)=\operatorname{Im}(T):=T(V)=W .
$$

Remark: well denote the image (range) of T by $\operatorname{Range}(T)(0) \operatorname{Im}(T))$.

Thu. Let V, W he finite dimensional vector spaces and
$P=\left\{u_{1}, \ldots, u_{n}\right\}$ be a basis of V. Let $T: V \rightarrow W$ be a linear map. Then,

$$
\text { range }(T)=\operatorname{sean}\left\{T\left(u_{1}\right), T\left(u_{2}\right) \ldots, T\left(n_{n}\right)\right\}
$$

Proof: Let $u \in \mathbb{V}$
Then there exist unique scalars $\alpha_{1,}, \alpha_{n} \in \mathbb{R}$ such that

$$
\begin{aligned}
u & =\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n} \\
\Rightarrow T(u) & =T\left(\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}\right) \\
\Rightarrow T(u) & =\alpha_{1} T\left(u_{1}\right)+\cdots+\alpha_{n} T\left(u_{n}\right)
\end{aligned}
$$

$$
\Rightarrow T(u) \in \operatorname{span}_{\text {for every }}\left\{T\left(u_{1}\right) \cdots T\left(u_{n}\right)\right\}
$$

for every $u \in V$.

$$
\Rightarrow \operatorname{Range}(\hbar) \subseteq \operatorname{SPan}\left\{\hat{T}\left(u_{1}\right), \cdots T\left(u_{n}\right)\right\}
$$

The opposite containment is trivial.
Thus, $\operatorname{Range}(T)=\operatorname{Span}\left\{T\left(u_{1}\right), \ldots T\left(u_{n}\right)\right\}$
Remark: T is completely determined by its action on a basis of V.

Theorem (easy Consequence of property (2)):
Let V be a finite dimensional vector spall and $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a basis of V. Let W be another vector space and $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be any n vectors in W. Then there exists a unique linear map

$$
\begin{aligned}
T: V & \rightarrow W \text { satisfying } \\
T\left(u_{k}\right) & =\omega_{k}, \text { for } k=1, \ldots, n .
\end{aligned}
$$

proof: We need to check that T can be extended as a linear map to all of V.
To this end, Pick any $\alpha \in V$.
Then (by ow discussion of Coordinates), there exist $\$$ unique scalars C_{1}, \ldots, C_{n} such that

$$
\alpha=\quad c_{1} u_{1}+\cdots+c_{n} u_{n}
$$

We define: $T(\alpha)$
$\binom{$ extended to }{ guarantee }$:=c_{1} T\left(u_{1}\right)+\cdots+c_{n} T\left(u_{n}\right)$
guarantee
(linearity) $=C_{1} \omega_{1}+\cdots+C_{n} \omega_{n}$.

Since the scalars $\left\{C_{1}, ., C_{n}\right\}$ are unique, this defines T in a well-defined way on all of V.

Linearity of T is now an easy exercise. The fact that such an extension is unique follows from the fact that any linear map

$$
S: W \rightarrow W \quad \text { Satisfying } s\left(u_{k}\right)=w_{k}
$$

$($ for $k=1,-n)$
must satisfy the property

$$
\begin{aligned}
S(\alpha)=S\left(c_{1} u_{1}+\cdots+c_{n} u_{n}\right) & =c_{1} S\left(u_{1}\right)+\cdots+c_{n} S\left(u_{n}\right) \\
& =c_{1} \omega_{1}+\cdots+c_{n} \omega_{n}
\end{aligned}
$$

Hence, any such S must be equal to,T.

Remark: Although the proof of the previous theorem is elementary, it turns out to be quite an important result. In fact, this gives us an easy way to define a linear map with very little data.

- The null space of T, denoted by Null (T) is defined as:

$$
\operatorname{Null}(T):=\left\{u \in V_{:} \quad T(u)=0\right\}
$$

If $u_{1}, u_{2} \in \operatorname{Null}(T)$ and $a, b \in \mathbb{R}$, then

$$
\begin{aligned}
& T\left(a u_{1}+b u_{2}\right)=a T\left(u_{1}\right)+b T\left(u_{2}\right) \\
&=a \cdot 0+b \cdot 0 \\
&=0 . \\
& \Rightarrow a u_{1}+b u_{2} \in \operatorname{Null}(T)
\end{aligned}
$$

Hence, Null (T) is a subspace of V

- Image (T) and Null (T) are the two most important/fundamental ${ }^{\text {n }}$ subspaces associated with a linear map T. In fact, these subspaces contain substantial information about the map T.
- $\operatorname{since} T(0)=0$, we always have $0 \in$ Null (T).

The orem:
T is one-to-one iff Null $(T)=\{00$
proof: \Rightarrow
Let us assume that T is one-to-one.

If $u \in$ Vul (T), then weive

$$
T(u)=0
$$

But $T(0)=0$ for any linear map
Hence, $T(u)=T(0)$
Since T is one-to-one, we conclude that $u=0$. So, 0 is the only element of $\operatorname{Nall}(T)$.
Thus, $\operatorname{vall}(T)=\{0\}$.
\Leftarrow Conversely beet us assume that $\left.\operatorname{Null}(T)=\alpha_{0}\right\}$.

Let $u_{1}, u_{2} \in V$ such that $T\left(u_{1}\right)=T\left(u_{2}\right)$
Then, $T\left(u_{1}\right)-T\left(u_{2}\right)=0$

$$
\begin{aligned}
& \Rightarrow T\left(u_{1}-u_{2}\right)=0 \\
& \Rightarrow u_{1}-u_{2} \in N u \|(T)=\{0\} \\
& \Rightarrow u_{1}-u_{2}=0 \Rightarrow u_{1}=u_{2} . \text { Hence, } T \text { is one-to-one }
\end{aligned}
$$

Theorem: Let $T: V \rightarrow W$ be a linear map. Let $U_{0} \in V$ be a solution of the non-homogenous equation
(1) $\rightarrow T(u)=\widetilde{\omega}$, where $\widetilde{\omega}$ is some element of W.
Then the set of all solutions of ic given by:

$$
\left\{u_{0}+u: u \in \mathbb{N}_{u l l}(T)\right\}
$$

proof: Let, S be the set of all
solutions of (1);i.e.

$$
S=\{x \in V: \quad T(x)=\widetilde{\omega}\} .
$$

For any $u \in \mathbb{N u l l}(T)$ we have:

$$
\begin{aligned}
& T\left(u_{0}+u\right)=T\left(u_{0}\right)+T(u) \\
& \begin{array}{l}
=\widetilde{\omega}+0 \quad\left[\begin{array}{c}
\sin c e T\left(u_{0}\right)=\omega \\
=\widetilde{\omega} \\
\text { and } T(u)=0
\end{array}\right]
\end{array} \\
& \Rightarrow T\left(u_{0}+u\right)=\omega \text {, for each } u \in \mathbb{N}_{u} \|(T) \\
& \Rightarrow u_{0}+u \in S, \ldots \text { —— } \\
& \Rightarrow\left\{u_{0}+u: u \in \operatorname{Null}(T)\right\} \subseteq S \rightarrow(2)
\end{aligned}
$$

Conversely, let $x \in S$.
Then, $T(x)=\widetilde{\omega}$

$$
\begin{aligned}
& \Rightarrow T(x)=T\left(u_{0}\right)\left[\text { as } T\left(u_{0}\right)=\widetilde{\omega}\right] \\
& \Rightarrow T(x)-T\left(u_{0}\right)=0 \\
& \Rightarrow T\left(x-u_{0}\right)=0 \\
& \Rightarrow x-u_{0} \in N_{u} l(T) \\
& \Rightarrow x-u_{0}=u, \text { for some } u \in N u l l(t) \\
& \Rightarrow x=u_{0}+u, \text { for some } u \in N_{n}(T)
\end{aligned}
$$

Hence, $\left.x \in \alpha u_{0}+u: \quad u \in \operatorname{Nul(CT}\right) \rho$
Therefore, $S \subseteq\left\{u_{0}+U: u \in \operatorname{Null}(T)\right\}$

By (2) and (3), we 've that:

$$
S=\left\{u_{0}+u: u \in \operatorname{vull}(T)\right\}
$$

An application:
$V=$ The vector space of all seal differentiable functions.
$W=$ The vector space of all real Continuous functions

Then, $T: \frac{d}{d x}: V \rightarrow W$ is a linear map. Fix $g \in W$, and consider the equation

$$
\begin{aligned}
T(f) & =g \rightarrow \\
o g \frac{d f}{d x} & =g
\end{aligned}
$$

Note that $\operatorname{Null}(T)$

$$
\begin{aligned}
& =\{f \in V: T(f)=0\} \\
& =\left\{f \in V: \frac{d f}{d x} \equiv 0\right\} \\
& =\{f \in V: f \text { is a constant }\} \\
& =\text { set of all constant functions } \\
& =\{c: c \in \mathbb{R}\}
\end{aligned}
$$

Now let f_{0} be a solution ot \otimes; i.e, $\quad \frac{d f_{0}}{d x}=g$.

We usu usually call f_{0} an anti-derivative/integral of g

By the Previous theorem, the set of all solutions of $*$; i.e. the set of all integrals of of are given by:

$$
\begin{aligned}
& \left\{f_{0}+f: f \in \operatorname{NuN}(T)\right\} \\
= & \left\{f_{0}+c: C \in \mathbb{R}\right\}
\end{aligned}
$$

This justifies our old habit of adding constants in indefinite integration.

Matrix of a linear map:
Let V V and W be finite dimensional vector spaces with bases

$$
\begin{aligned}
& \beta_{v}=\left\{u_{1}, \ldots, u_{n}\right\} \text { and } \\
& \beta_{W}=\left\{w_{1}, \ldots, w_{m}\right\} \text { respective } / y .
\end{aligned}
$$

For any ie $\{1, \ldots, n\}$, we have $T\left(U_{i}\right) \in W$.
Hence, there exist unique scalars

$$
\begin{aligned}
& \left\{a_{1 i}, a_{2 i}, \ldots, a_{m i}\right\} \text { such that } \\
& T\left(u_{i}\right)=a_{1} i \omega_{1}+a_{2 i} \omega_{2}+\cdots+a_{m i} u_{m}
\end{aligned}
$$

(Since $\left\{\omega_{1}, \ldots, \omega_{m}\right\}$ is a basis of ω)
We define the matrix of T with respect to the bases β_{V} and β_{w} as:

$$
[T]_{B_{V, \beta}, \beta_{1}}:=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{1 i} \\
a_{21}-a_{22} & a_{1 n} \\
-a_{2 i} & a_{2 n} \\
a_{m 1} & a_{m 2} & a_{m i}
\end{array} a_{m n}\right)
$$

- T is formed by the coordinate column vectors of $T\left(u_{1}\right), \ldots, T\left(u_{n}\right)$.
(Here and in the next pase, (V,W,Y are finite dimensional spaces)
- Composition:

Let $T: V \rightarrow W, S: W \rightarrow Y$ be linear maps. Let A be the matrix of T with respect to the bases β_{V} and β_{W}, and
B be the matrix of S writ the bases β_{w} and β_{y}.

Then, the matrix of
SOT: $V \rightarrow Y$ with respect to the bases β and B_{y} is given by $B A$.

The proof of this fact is similar to the corresponding proof in the setting of Euclidean spaces (see Jan. 30 lecture notes).

Inverse:
Let $T: V \rightarrow V$ be a one to -one and suriective linear map.
Let $\operatorname{dim}(v)=n$, and $\beta=\left\{u_{1}, \gamma u_{n}\right\}$ bel a basis of V.

Further suppose that $[T]_{\beta, \beta}=A$
The matrix of T wat β
Since T is bijective, there exists a linear map $T^{-1}: V \rightarrow V$ such that

$$
T \circ T^{-1}=T^{-1} \circ T=I d_{V}
$$

If B is the matrix of T^{-1} art B then by our discussion on the previous page, weave:

$$
A B=B A=I d_{n}
$$

Hence, $B=A^{-1}$, the inverse of the matrix A.

Therefore, the matrix of a bijective linear $\operatorname{map} \quad T: V \rightarrow V$ is invertible, and the matrix of the inverse map T^{-1} is given by the inverse of the matrix of T (wot a fixed basis).

Matrix of a linear map:
Let V V and W be finite dimensional vector spaces with bases

$$
\begin{aligned}
& \beta_{v}=\left\{u_{1}, \ldots, u_{n}\right\} \text { and } \\
& \beta_{W}=\left\{w_{1}, \ldots, w_{m}\right\} \text { respective } / y .
\end{aligned}
$$

For any ie $\{1, \ldots, n\}$, we have $T\left(U_{i}\right) \in W$.
Hence, there exist unique scalars

$$
\begin{aligned}
& \left\{a_{1 i}, a_{2 i}, \ldots, a_{m i}\right\} \text { such that } \\
& T\left(u_{i}\right)=a_{1} i \omega_{1}+a_{2 i} \omega_{2}+\cdots+a_{m i} a_{m}
\end{aligned}
$$

(Since $\left\{\omega_{1}, \ldots, \omega_{m}\right\}$ is a basis of ω)
We define the matrix of T with respect to the bases β_{V} and β_{w} as:

$$
[T]_{\beta_{V, \beta}, \beta_{1}}:=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{1 i} \\
a_{21}-a_{22} & a_{1 n} \\
-a_{2 i} & a_{2 n} \\
a_{m 1} & a_{m 2} & a_{m i}
\end{array} a_{m n}\right)
$$

- T is formed by the coordinate column vectors of $T\left(u_{1}\right), \ldots, T\left(u_{n}\right)$.
(Here and in the next pase, $(V, W, Y$ are finite dimensional spaces)
- Composition:

Let $T: V \rightarrow W, S: W \rightarrow Y$ be linear maps. Let A be the matrix of T with respect to the bases β_{V} and β_{W}, and
B be the matrix of S writ the bases β_{w} and β_{y}.

Then, the matrix of
SOT: $V \rightarrow Y$ with respect to the bases β and B_{y} is given by $B A$.

The proof of this fact is similar to the corresponding proof in the setting of Euclidean spaces (see Jan. 30 lecture notes).

Inverse:
Let $T: V \rightarrow V$ be a onettone and suriective linear map.
Let $\operatorname{dim}(v)=n$, and $\beta=\left\{u_{1}, \gamma u_{n}\right\}$ be a basis of V.

Further suppose that $[T]_{\beta, \beta}=A$
The matrix of T wert β
Since T is bijective, there exists a linear map $T^{-1}: V \rightarrow V$ such that

$$
T \cdot T^{-1}=T^{-1} \circ T=I d_{V} .
$$

If B is the matrix of T^{-1} art β, then by our discussion on the previous page, we 've:

$$
A B=B A=I d_{n}
$$

Hence, $B=A^{-1}$, the inverse of the matrix A.

Therefore, the matrix of a bijective linear map $T_{:} V \rightarrow V$ is invertible, and the matrix of the inverse map T^{-1} is given by the inverse of the matrix of T (crt a fixed basis).

Well now see that if $[T]_{\beta}$ is the matrix of a linear map $T: V \rightarrow V$ w.r.t. the basis β (of V), then the action of T on any vector in V is given by multiplication by $[T]_{\beta}$.
Let $u \in V$ since $\beta \beta=\left\{u_{i}, \ldots, u_{n}\right\}$ is a basis of V, there exist unique scalars $C_{1}, c_{2}, \ldots c_{n} \in \mathbb{R}$ such that

$$
u=c_{1} u_{1}+\cdots+c_{n} u_{n} ;
$$

i.e. $\left(\begin{array}{c}c_{1} \\ c_{1} \\ c_{n}\end{array}\right)$ are the coordinates of u w.r.t to β.
suppose that

$$
\begin{aligned}
& {[T]_{\beta}=\left(\begin{array}{l}
a_{11}-a_{1 j}-a_{1} n \\
a_{21}-a_{2 j} a_{2 n} \\
a_{i 1}^{-}-\bar{a}_{i j} \overline{\sigma_{i n}} \\
a_{n i}-a_{\overline{n j}} \cdot \overline{a_{n n}}
\end{array}\right)} \\
& \text { Then } n, T(u)=\sum_{j=1}^{n} c_{j} T\left(u_{j}\right) \\
& =\sum_{j=1}^{n} c_{j}\left(\sum_{i=1}^{n} a_{i j} u_{i}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} c_{j} a_{i j} u_{i}
\end{aligned}
$$

$$
=\sum_{i=1}^{n}\left(\sum_{i=1}^{n} c_{j} a_{i j}\right) u_{i}
$$

Hence, the coordinates of $T(u)$ w.r.t.

$$
\begin{aligned}
& \text { is } \\
& \left(\begin{array}{l}
\sum_{j=1}^{n} c_{j} \\
a_{1 j} \\
\sum_{j=1}^{n} c_{j}
\end{array} a_{2 j},\right. \\
& =\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots
\end{array}-a_{1 n}\left(\begin{array}{c}
c_{1} \\
a_{21}
\end{array} a_{22} \ldots \ldots-a_{2 n}\right)\left(\begin{array}{c}
c_{2} \\
\vdots \\
a_{n 1} \\
a_{n 2}
\end{array} \cdots \cdots a_{n n}\right)\right. \\
& =[T]_{\beta}\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
\end{aligned}
$$

To sum up, wive showed that:
The coordinates of $T(\dot{u})=[T]_{\beta} \cdot$ (The coordinate wet β column vector

Hence, the matrix of T (wert some basis β) contains $\frac{\text { Complete }}{\text { arbitrary }}$ in ormation about T.
However, an $n \times n$ matrix may look rather unwieldy and may not give away any geometric information readily.

The question that we ought to ash at this point is that:

Is there a better/best choice of a basis β w.r.t. which the matrix $[\tau] \beta$ looks simple?

Example: Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ a linear map whose matrix wert the standard basis $\left\{\binom{1}{0},\binom{0}{1}\right\}$ ils given by $A=\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)$. Evidently this matrix doesn't say much about the map T, at least. You cannot inst stare at the matrix to figure what it does to vectors.

Now let's consider the basis

$$
\left\{(1),\binom{1}{-1}\right\}
$$

These two vectors are since $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$, they form a basis.
A simple computation shows that:

$$
\begin{aligned}
T\binom{1}{1} & =T\left(1\binom{1}{0}+1\binom{0}{1}\right) \\
& =1 . T\binom{1}{0}+1 . T\binom{0}{1} \\
& =\binom{2}{3}+\binom{3}{2}=\binom{5}{5}=5\binom{1}{1}+0 .\binom{1}{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
T\binom{1}{-1} & =T\left(1 \cdot\binom{1}{0}-1 \cdot\binom{0}{1}\right) \\
& =1 \cdot T\binom{1}{0}-1 . T\binom{0}{1} \\
& =\binom{2}{3}-\binom{3}{2}=\binom{-1}{1}=0 .\binom{1}{1}+(-1) \cdot\binom{1}{-1}
\end{aligned}
$$

Hence, the matrix of T wot the basis

$$
\left\{\binom{1}{1},\binom{1}{-1}\right\} \text { is : } B=\left(\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right)
$$

Wow! A diagonal matrix is much simpler to work with, both algebraically and seometrically. Algebraically, by our discussion on compositions. of linear maps, we see that the matrix of

$$
T^{0 n}=\frac{T_{0} T_{0} \cdots \circ T}{n \text {-times }}
$$

wort $\left\{\binom{1}{1} \cdot\binom{1}{-1}\right\}$ is given by

$$
\left.\begin{array}{l}
B^{n}=B \cdot B \cdots, B \\
\binom{\text { multiplying diagonal }}{\text { matrices is }}=\left(\begin{array}{cc}
5^{n} & 0 \\
0 & (-1)^{n}
\end{array}\right) \\
\text { much simpler deduct } \\
\text { than molt. } \\
\text { arbitrary matrices }
\end{array}\right)
$$

Geometrically, T is given by
π^{2} y $\lambda^{v} V_{1} \frac{a n}{5}$ expansion (by a factor 5) in the direction of v_{1} and reflection writ the origin on the straight line spanned by V_{2}.
represented
Therefore, having the linear map
T by a diagonal matrix wert some basis, weive done ourselves a bilk
geometric and algebraic favor!
Definition (Diagonalizability):
A linear map $T: V \rightarrow V$ is called diagonalizable if there exists a basis $\beta=\left\{u_{1}, \ldots, u_{n}\right\}$ of .V whit. which the matrix $[T] \beta$ of T is a diagonal matrix.

You are perhaps wondering how we arrived at the "good choice of basis" $\left\{\binom{1}{1},\binom{1}{-1}\right\}$ in the previous example. Tore generally how do we find out whether a linear map is diagonalizable? Or how do we find the "right" basis wot which it has a diagonal matrix?

In the rest of these notes, well delve into this topic and arrive at somewhat satisfactory answers to these questions.
Definition (Eigenvectors /Eigenvalues).
Let $T: V \rightarrow V$ be a linear map. Let $\lambda \in \mathbb{R}(o r \mathbb{C})$ and $u \in V(u \neq 0)$ be such that:

$$
T u=\lambda u .
$$

Then λ is called an eigenvalue of T, and u is an eigenvector of T associated with the eigenvalue λ.

Remark: In the previous example, the eigenvalues of T were 5 and -1 . An eigenvector of I associated with s (respectively -1) was $\binom{1}{1}\left(\right.$ respectively $\left.\binom{1}{-1}\right)$.

Theorem: Diagonalizable \Leftrightarrow basis of eigenvectors) \% $T: V \rightarrow V$ is diagonalizable if there exists a basis of V consisting of eigenvectors of T.
$\frac{\text { Proof: }}{\text { Then }} \Rightarrow$ Let's assume that T is diagonalizable. Then there exists a basis $\left\{u_{b}, u_{n}\right\}=\beta$ of V S.t. $[T] \beta$ is a diagonal matrix. Hence

$$
[T]_{\beta}=\left(\begin{array}{ll}
\lambda_{1} & \\
\lambda_{2} & 0 \\
\hat{0}^{2} & \ddots \\
& \\
& \lambda_{n}
\end{array}\right)
$$

for some $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ $\in \mathbb{R}$ (os \cos).
By definition of $[T]_{\beta}$, this means that

$$
\begin{aligned}
& T\left(u_{1}\right)=\lambda_{1} u_{1}+0 . u_{2}+\cdots+0 . u_{n} \\
& T\left(u_{2}\right)=0 \cdot u_{1}+\lambda_{2} \cdot u_{2}+\cdots+0 \cdot u_{n} \\
& T\left(u_{j}\right)=0: u_{1}+\cdots+0 \cdot u_{j-1}+\lambda_{j} \cdot u_{j}+0 \cdot u_{j+1}+\cdot \\
& +0 . u_{n} \\
& T\left(u_{n}\right)=0 \cdot u_{1}+\cdots \cdots+\lambda_{n} \cdot u_{n} \\
& \Rightarrow T\left(u_{1}\right)=\lambda_{1} u_{1}, T\left(u_{2}\right)=\lambda_{2} u_{2}, \ldots T\left(u_{j}\right)=\lambda_{j} u_{j}, \\
& T\left(u_{n}\right)=\lambda_{n} u_{n}
\end{aligned}
$$

clearly, $u_{j} \neq 0$, for $j=1, \ldots, n$.
Therefore, each u_{j} (for $j=1, \ldots, n$) is an eigenvector of T associated with the eigenvalue λ_{j};
$\Rightarrow\left\{u_{1}, \ldots u_{n}\right\}$ is a basis of $I V$ consisting of eigenvectors of T.

We now assume that V admits a basis $\beta=\left\{u_{1}, \ldots, u_{r}\right\}$ such that each u_{j} is an eigenvector of T.
Then, for each $j=1 \ldots, n$ there exists a scalar λ_{j} (in \mathbb{R} or \mathbb{C}) such that

$$
T\left(u_{j}\right)=\lambda_{j} u_{j}
$$

But then,

$$
\left\{\begin{array}{l}
T\left(u_{1}\right)=\lambda_{1} \cdot u_{1}+0 \cdot u_{2}+\cdots+0 \cdot u_{n} \\
T\left(u_{2}\right)=0 \cdot u_{1}+\lambda_{2} \cdot u_{2}+\cdots+u_{n} \\
T\left(u_{n}\right)=0 \cdot u_{1}+0 \cdot u_{2}+\cdots+\lambda_{n} \cdot u_{n}
\end{array}\right.
$$

By definition, the matrix of T writ B is given by:

$$
[T]_{\beta}=\left(\begin{array}{ll}
\lambda_{1} & \\
{ }^{1} \lambda_{2} & 0 \\
0 & \lambda_{n}
\end{array}\right)
$$

This, β is a basis of V writ. which the matrix of T is a diagonal matrix:
$\Rightarrow T$ is diagonalizable.

All that sounds good in theory but how do we find eisenvalues/vectors in practice?
Suppose that $\beta^{l}=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a basis of V, and $T: V \rightarrow V$ is a linear llmap suck that

$$
[T]_{\beta^{\prime}}=\left(\begin{array}{ll}
a_{11} & a_{1 n} \\
a_{11} & -a_{2 n} \\
a_{n 1} & - \\
a_{n 1} & a_{n n}
\end{array}\right)=A .
$$

Further suppose that u is an eigenvector of T associated with the eigenvalue λ.

Let, $u=c_{1} \omega_{1}+c_{2} \omega_{2}+\cdots+c_{n} \omega_{n}$, so the coordinates of u w.r.t. β^{r} is

$$
\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

By ow r assumption, weave:

$$
T(u)=\lambda u \text {. Hence, } T(u) \text { and }
$$ λu have the same coordinates writ β ! The coordinates of $T(u)$ writ. B' are given by:

$$
A \cdots\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{n}
\end{array}\right) \text {, and }
$$

the coordinates of λu w.r.t. β^{\prime} are given by:

$$
\begin{aligned}
&\left(\begin{array}{c}
\lambda c_{1} \\
\lambda c_{2} \\
\vdots \\
c_{n}
\end{array}\right) \\
& \text { Hence, } A \cdot\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
\lambda c_{1} \\
\lambda c_{2} \\
\vdots \\
\lambda c_{n}
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{1 n} \\
a_{21} & a_{22} & \cdots \\
a_{2 n} \\
a_{n 1}-a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{l}
\lambda c_{1} \\
\lambda c_{n 2} \\
i \\
\lambda c_{n}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(\begin{array}{l}
a_{11} c_{1}+a_{12} c_{2}+\cdots+a_{1 n} c_{n}-\lambda c_{1} \\
a_{21} c_{1}+a_{22} c_{2}+\cdots+a_{2 n} c_{n}-\lambda c_{2} \\
-a_{n 1} c_{1}+a_{n 2} c_{2}+\cdots+a_{n n} c_{n}-\lambda c_{n}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{c}
\left(a_{11}-\lambda\right) c_{1}+a_{12} c_{2}+\cdots+a_{1 n} c_{n} \\
a_{21} c_{1}+\left(a_{22}-\lambda\right) c_{2}+\cdots+a_{2 n} c_{n} \\
-\cdots+\left(a_{n n}-\lambda\right) c_{n} \\
a_{n 1} c_{1}+a_{n 2} c_{2}+\cdots \cdots
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{1 n} \\
a_{21} & a_{22}-\lambda & a_{2 n} \\
a_{n 1} & a_{n 2} & -a_{n n-\lambda}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
i \\
c_{n}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \Rightarrow\left(A-\lambda I d_{n}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \rightarrow(A)
\end{aligned}
$$

$($ here, Id is the identity matrix
of size n. $y+$ enceforth, well
denote it simply by I..
since u is an eigenvector, u is hon-zero vector. Hence $\left(\begin{array}{c}c_{1} \\ c_{2} \\ c_{2} \\ c_{n}\end{array}\right)$ is not the zero Column vector. Therefore, (*) implies that $\left(\begin{array}{c}c_{1} \\ c_{2} \\ c_{n}\end{array}\right)$ is a non-trivial Solution of
the equation
(**) $\rightarrow(A-\lambda I) X=0$; where X is a Column vector variable" and 0 is the zero columillvector.
We know that $* *$ admits a
non-trivial Solution if and only if

$$
\operatorname{det}(A-\lambda I)=0 \quad(\text { i.e. }(A-\lambda I) \text { is } \text { Singular })
$$

Hence, wive proved that:
Theorem: (Finding eigenvalues):
λ is an eigenvalue of $\mid T$ if and only if
$\operatorname{det}(A-\lambda I)=0$, where A is the matrix of T w.r.t. Some basis.
well use this theorem to find eigenvalues of a linear map.

Example: Let's go back to our previous example. We consider $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ whose matrix w.r.t. $\left\{\binom{1}{0},\binom{0}{1} b\right.$ is $\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)=A$.

To find all the eigenvalues of T, we solve the equation.

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=0 \\
\Rightarrow & \left|\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right|=0 \\
\Rightarrow & \left|\begin{array}{cc}
2-\lambda & 3 \\
3 & 2-\lambda
\end{array}\right|=0 \\
\Rightarrow & (2-\lambda)^{2}-9=0 \Rightarrow \lambda^{2}-4 \lambda+4-9=0 \\
\Rightarrow & \lambda^{2}-4 \lambda-5=0 \Rightarrow(\lambda-5)(\lambda+1)=0 \\
\Rightarrow & \lambda=5,-1 .
\end{aligned}
$$

Hence, the eigenvalues of T are $\{5,-1\}$

To. find/an eiffenvectos/ of t consociated with the eigenvalue 5 , we solve the

Let $\binom{x}{y}$ be an eigenvector of T associated with the eigenvalue 5. Then,

$$
\left.\begin{array}{rl}
& T\binom{x}{y}=5\binom{x}{y} \\
\Rightarrow & \left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right)\binom{x}{y}=\binom{5 x}{5 y} \\
\Rightarrow & 2 x+3 y=5 x \\
3 x+2 y=5 y
\end{array}\right) .
$$

So, any eigenvector of T associated with the eigenvalue 5 is of the form

$$
x(1) \text {, where } x \in \mathbb{R} \text {. }
$$

In particular, we can choose (1) to be an eigenvector of T associated with the eigenvalue 5 .

Now let $\binom{p}{q}$ be an eigenvector of T associated with the eigenvalue -1.
Then, $T\binom{p}{q}=-1\binom{p}{q}$

$$
\begin{aligned}
& \Rightarrow\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right)\binom{p}{q}=\binom{-p}{-q} \\
& \Rightarrow 2 p+3 q=-p, 3 p+2 q=-q \\
& \Rightarrow 3 q=-3 p \\
& \Rightarrow q=-p \\
& \Rightarrow \text { Hence, }(p)=(p)=p\binom{p}{-1}
\end{aligned}
$$

Thus, any eigenvector of T associated with the eigenvalue -1 is of the form: $P\binom{1}{-1}$, where $P \in \mathbb{R}$.

In particular, we can choose $\left(\frac{1}{11}\right)$ to ae an eigenvector of T associated with the eigenvalue -1 .

Therefore, we ie found two distinct eigenvectors.

$$
\binom{1}{1} \quad a m d\binom{1}{-1}
$$

Since they are linearly independent they form a basis of \mathbb{R}^{2}.

Hence, there exists a basis of \mathbb{R}^{2} namely $\left\{\binom{1}{1},\binom{1}{-1}\right.$, Consisting 0 of eigenvectors of T. Therefore, T is diagonalizable.

Confession: The basis on the top of Pase 7 didn't Pop out of thin
air! I: had done these computations a (ready (but didnot tell you then)! But now you know how to arrive at a "good choice of basis".

We inst saw how to diagonalize a linear map (when po ssible). Since this is an extremely important tool let us record the method as a routine algorithm.

Diagonalizing a linear map:
Let A be the matrix of a linear $\operatorname{map} T: V \rightarrow V$ wert some basis β of V

1) To find eigenvalues of T :

Solve the equation
(3才) $\rightarrow \operatorname{det}(A-\lambda I)=0$, which is
a Polynomial of degree $n=\operatorname{dim} V$ in λ. List the roots of as $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. These are the eigenvalues of T_{0}
2) Finding the eigenvectors:

For each $\lambda_{i}, i=1, \cdots, n$ find the associated eigenvectors by solving the system of equations.

4*): $A x=\lambda_{i} x$.
The solutions of $A *$ are the eigenvectors of T associated with the eigenvalue λ_{1}.
3) Testing diagonalizability:

Having found all the eigenvalues of eigenvectors T, we need to check whether there is a basis of V consisting of eigenvectors of T. If there exists such a basis $\left\{u_{1}, u_{n}\right\}$, then the matrix of T w.r.t. $\left\{u_{1}, \ldots, u_{n}\right\}$ will be diagonal.
step (1) and step (2) above are rather straightforward. Since a basis of V is simply a linearly independent spanning set of V, step (3) amounts to checking whether there are enough linearly independent eigenvectors (of T) to span all of V.

The next theorem is the first step in analying the situation.

The. (Eigenvectors of distinct eigenvalues are linearly inder) Let u_{1}, \ldots, u_{k} be eigenvectors of T associated with eigenvalues $\lambda_{1}, \ldots, \lambda_{K}$ such that $\lambda_{i} \neq \lambda_{j}$ if $i \neq j$ (i.e. all $\lambda_{i} s$ are distinct):
Then $\left\{u_{1}, \ldots, u_{k}\right\}$ is a linearly independent set of vectors.

Proof: By assumption, we have that

$$
T\left(u_{i}\right)=\lambda_{i} u_{i}, \quad i=1, \ldots, k
$$

suppose that

$$
\begin{align*}
& c_{1} \ldots, c_{k} \text { such that } \\
& c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{n} u_{n}=0 \tag{1}
\end{align*}
$$

Applying T to both sides of (1), we set:

$$
\begin{aligned}
& T\left(c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{n} u_{n}\right)=T(0) \\
& \Rightarrow c_{1} \lambda_{1} u_{1}+c_{2} \lambda_{2} u_{2}+\cdots+c_{n} \lambda_{n} u_{n}=0 \\
& \longrightarrow(2)
\end{aligned}
$$

Now, $\lambda_{n} \times(1)-(2)$ yields:

$$
\begin{array}{r}
c_{1}\left(\lambda_{n}-\lambda_{1}\right) u+c_{2}\left(\lambda_{n}-\lambda_{2}\right)+\cdots+c_{n-1}\left(\lambda_{n}-\lambda_{n-1}\right) u_{n-1} \\
=0 \tag{3}
\end{array}
$$

We now use mathematical induction to complete the proof. Since every eigenvector u_{1} is non-zero, $\{u$,$\} is a linearly$ independent set. Let us suppose that The set $\left\{u_{k} \cdots u_{k-1}\right\}$ is linearly independent.
Then (3) implies that
$(4) \quad C_{1}\left(\lambda_{n}-\lambda_{1}\right)=C_{2}\left(\lambda_{n}-\lambda_{2}\right)=\cdots=C_{n-1}\left(\lambda_{n}-\lambda_{n-1}\right)=0$.
Since all $\lambda ; s$ are distinct, we have that,

$$
\lambda_{n}-\lambda_{1} \neq 0, \quad \lambda_{n}-\lambda_{2} \neq 0, \ldots \lambda_{n}-\lambda_{n} \|_{1} \neq 0 .
$$

Therefore, $c_{1}=c_{2}=\cdots=c_{n-1}=0$ (by) (4)
Plugging these in (1), we get:

$$
\begin{aligned}
c_{n} u_{n} & =0 \\
\Rightarrow C_{n} & =0 .\left\{\begin{array}{l}
\text { AS } u_{n} \text { is an eigenvector, } \\
\text { weave: } u_{n} \neq 0
\end{array}\right.
\end{aligned}
$$

Therefore, $c_{1}=c_{2}=\cdots=c_{n-1}=c_{n}=0$.

Thus, we 've proved that if $\left\{u_{1,}, u_{k-1}\right\}$ is a linearly independent set, then $\left\{u_{1}, u_{k}\right\}$ is also a linearly independent set. Hence by math. induction, we conclude that
$\left\{u_{1, \ldots}, u_{k}\right\}$ is a linearly independent set for any k, whenever they correspond to distinct eigenvalues.

IV
In light of the previous theorem, diagonalizability of T boils down to the existence of sufficiently many eigenvectors of T (so that they can span V). on T
A relatively mild hypothesis can now guarantee diagonalizability ${ }^{\text {G }}$ of T.
Thu. (n distinct eigenvalues \Rightarrow diagonalizable Let V be an n-dim. vector space and $T: V \rightarrow V$ be a linear map. If T has n distinct eigenvalues, then T is diagonalizable.

Proof: Let $\left\{\lambda_{1}, \lambda_{n}\right\}$ be n distinct eigenvalues of T.

Remark: Recall that the eigenvalues of T are the solutions of the degree n polynomial: $\operatorname{det}(A-\lambda I)=0$. A polynomial of degree n has at most n roots; in fact, exactly n roots in \mathbb{C}. The hypothesis of the theorem is that all these roots are distinct.

Furthermore, let $u_{i}(\neq 0)$ be an eigenvector of T associated with λ_{1}. Since all the $\lambda_{i} s$ are distinct, the previous theorem ascertains that the set of eigenvectors
$\left\{u_{1}, \ldots, u_{n}\right\}$ is linearly independent.
However as $\operatorname{dim}(v)=n$, any linearly independent set of n vectors is a basis of V. Therefore, $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of V consisting of eigenvectors of T.
\Rightarrow T is diagonalizable.

Examples:

1) In the previous example, where $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)$ wot the Standard basis $\left\{\binom{1}{0},\binom{0}{1}\right\}$, we found two distinct eigenvalues of T; namely $\{5,-1\}$ since $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$ the previous theorem implies that T is diagonalizable.
2) Now weill see that $T: V \rightarrow V$ can be diagonalizable even if it doesn't have n distinct eigenvalues.

Let. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by the matrix $A=\left(\begin{array}{ccc}2 & -2 & 14 \\ 0 & 3 & -7 \\ 0 & 0 & 2\end{array}\right)$
w.r.t. the standard basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right)^{0}$

To find the eigenvalues of $T_{\text {, we }}$ solve the equation:

$$
\operatorname{det}(A-\lambda I)=0
$$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
2-\lambda & -2 & A \\
0 & 3-\lambda & -7 \\
0 & 0 & 2-\lambda
\end{array}\right|=0 \\
& \Rightarrow(2-\lambda)(3-\lambda)(2-\lambda)=0 \\
& \Rightarrow \lambda=2,2,3 .
\end{aligned}
$$

Therefore, the eigenvalues of T are $\{2,3\}$. since T does not have 3 distinct eigenvalues (note that $\left.\operatorname{dim}\left(\mathbb{R}^{3}\right)=3\right)$, we cannot apply the previous theorem to directly conclude that T is diagonalizable. thence, we now proceed to find all the eigenvectors of T.
Eigenvectors associated with 2 :
Let $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ be an eigenvector of π associated with the eigenvalue 2 . Then,

$$
\begin{aligned}
& T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=2\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{c}
2 a-2 b+14 c \\
3 b-7 c \\
2 c
\end{array}\right)=\left(\begin{array}{c}
2 a \\
2 b \\
2 c
\end{array}\right) \\
& \Rightarrow 2 a-2 b+14 c=2 a, 3 b-7 c=2 b \\
& 2 c=2 c
\end{aligned}
$$

$$
\Rightarrow 2 b=14 c, \quad b=7 c
$$

$$
\Rightarrow b=7 c \rightarrow \text { This is the only }
$$ constraint

pence, any eigenvector of T associated with 2 is of the form:

$$
\left(\begin{array}{c}
a \\
7 c \\
c
\end{array}\right)=\left(\begin{array}{l}
a \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
7 c \\
c
\end{array}\right)=a\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c\left(\begin{array}{l}
0 \\
7 \\
1
\end{array}\right)
$$

where a, b are any real numbers.
So we observe that the space of all eigenvectors of T associated with 2 is spanned by two linearly vectors: $\quad\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 7 \\ 1\end{array}\right)$; the eigenspace of 2 is 2 -dimensional. In particular, $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 7 \\ 1\end{array}\right)\right\}$ is a linearly independent set of eigenvectors of T associated with 2 .

Eigenvectors of T associated with 3 :
Let $\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$ be an eigenvector of II associated with the eigenvalue 3 . Hence,

$$
T\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=3\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)
$$

$$
\Rightarrow\left(\begin{array}{c}
2 p-2 q+14 \gamma \\
3 q-7 r \\
2 r
\end{array}\right)^{\prime}=\left(\begin{array}{c}
3 p \\
3 q \\
3 r
\end{array}\right)
$$

$$
\begin{gathered}
2 p-2 r+14 r=3 p \\
3 r-7 r=3 q \\
2 r=3 r
\end{gathered}
$$

Thus, $2 r=3 r \Rightarrow r=0$
Putting this in $39-7 r=3 q$, we get t: $3 q=3 q$, which is a trivial condition.

Putting $r=0$ in $\quad 2 p-2 q+14 r=3 p$, we get: $\quad 2 P-2 q=3 p$

$$
\Rightarrow \quad P=-2 q
$$

So, any eigenvector of T associated with 3 is of the form:

$$
\left(\begin{array}{c}
-2 q \\
q \\
0
\end{array}\right)=q\left(\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right) \text {, where } q \in \mathbb{R}
$$

In this case, the eigenspace of T associated by 3 is 1 -dimensional, and it's spanned by $\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)$. so, there is only one linearly independent eisenvector $\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)$ of T associated with 3 .

We now consider the linearly independent set of eigenvectors

$$
B:=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
7 \\
1
\end{array}\right),\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)\right\}
$$

(We inst listed the linearly independent clearly, three linearly independent vectors in \mathbb{R}^{3}. form a basis.

$$
\begin{aligned}
& T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=2\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \\
& T\left(\begin{array}{l}
0 \\
7 \\
1
\end{array}\right)=2\left(\begin{array}{l}
0 \\
7 \\
1
\end{array}\right), \rightarrow \text { eigenvectors } \\
& T\left(\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right)=3\left(\begin{array}{l}
-2 \\
1 \\
0
\end{array}\right), 0 \rightarrow \text { this is an }
\end{aligned}
$$

the matrix of T w.r.t. β is given by

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

FAenle, T is diagonalizable even though it doesn't have 3 distinct eigenvalues.

A moment's reflection (or perhaps a few minutes') will convince You that this was possible because we found 3 linearly independent eigenvectors oof T;
i.e. $\operatorname{dim}\left(e_{i} g e n s p a c e ~ o f ~ T\right.$ associated with 2)
$+\operatorname{dim}($ eigenspace of T associated with 3$)$

$$
3=\operatorname{dim}\left(\mathbb{R}^{3}\right)
$$

3 Finally, let's look at a linear map that is not diogonalizable.
Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map given by $\left(\begin{array}{ccc}2 & 2 & 1 \\ 0 & 2 & -1\end{array}\right)$ wert
the standard basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$
The eigenvalues of T are Solutions of:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=0 \\
& \Rightarrow\left|\begin{array}{ccc}
2-\lambda & 2 & 1 \\
0 & 2-\lambda & -1 \\
0 & 0 & 3-\lambda
\end{array}\right|=0 \Rightarrow(2-\lambda)(2-\lambda)(3-\lambda) \\
& \Rightarrow \quad \lambda=0 \\
& \Rightarrow 2,3 .
\end{aligned}
$$

Hence, the eigenvalues of T are

$$
\{2,3\} .
$$

Eigenvectors of T associated with 2 :
Let $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ be an eigenvector of T associated with the eigenvalue 2 . Then

$$
\begin{aligned}
& T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=2\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \Rightarrow\left(\begin{array}{c}
2 a+2 b+c \\
2 b-c \\
3 c
\end{array}\right)=\left(\begin{array}{l}
2 a \\
2 b \\
2 c
\end{array}\right) \\
& \Rightarrow 2 a+2 b+c=2 a, 2 b-c=2 b, 3 c=2 c \\
& \Rightarrow 2 b+c=0, \quad c=0 \\
& \Rightarrow \quad b=0, c=0 .
\end{aligned}
$$

So, any eigenvector of T associated with 2 is of the form:

$$
\left(\begin{array}{c}
a \\
0 \\
0
\end{array}\right)=a\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), a \in \mathbb{R} .
$$

Thus, the eigenspace of T associated with the eigenvalue 2 is spanned by the single vector $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. thence, it's one-dimensional. In particular, a maximal linearly independent set of eigenvectors of T associated with 2 is

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}
$$

Eigenvectors of T associated with 3:
Let $\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$ be an eigenvector of T associated with the eigenvalue 3 .

$$
\begin{aligned}
& \text { Then, } T\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=3\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{c}
2 p+2 q+r \\
2 q-r \\
3 r
\end{array}\right)=\left(\begin{array}{c}
3 p \\
3 q \\
3 r
\end{array}\right) \\
& \Rightarrow 2 p+2 q+r=3 p, 2 q-r=3 q, 3 r=3 r \\
& \Rightarrow p=2 q+r, r=-r \\
& \Rightarrow p=-2 r+r \\
& \Rightarrow p=-r .
\end{aligned}
$$

Therefore, any et eigenvector of T associated with 3 is of the form:

$$
\left(\begin{array}{c}
-r \\
-r \\
r
\end{array}\right)=r\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) \text {, where } r \in \mathbb{R} \text {. }
$$

So, the eigenspace of T associated with 3 is one-dimensional and is spanned by $\left(\begin{array}{l}-1 \\ -1 \\ 1\end{array}\right)$. so, a basis of this eirenspace is $\left\{\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)\right\}$.

As a result, there are only two linearly independent eigenvectors of T. So we cannot find a basis oof \mathbb{R}^{3} Consisting of eigenvectors of T.

Thus, T is not diagonalizable.
Again, the reason why T is not diagonalizable can be summed up in the following inequality:
$\operatorname{dim}\binom{$ Eigenspace of T associated with the }{ eigenvalue. 2}

$$
\begin{aligned}
& 1 \operatorname{dim}\left(\frac{\text { Eigenspace of } T \text { associated }}{\text { the eigenvalue } 3}\right) \\
& =1+1=2<3=\operatorname{dim}\left(\mathbb{R}^{3}\right)
\end{aligned}
$$

We conclude our discussion on "whether T is diagonalizable" with the following theorem.

Theorem: Let v be a vector space with $\operatorname{dim}(v)=n$. Let $\left\{\lambda_{1}, \ldots, \lambda k\right\}$ be all the distinct eigenvalues of a linear map $T: V \rightarrow V$.
Let, $V_{i}:=\left\{u \in V: T(u)=\lambda_{i} u\right\}$ be the eigenspace of T corresponding to the eigenvalue λ_{i}, where $i=1, \ldots, K$.

Then, T is diagonalizable if and only if

$$
\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)+\cdots+\operatorname{dim}\left(V_{k}\right)=n
$$

Finally, let us investigate the relation between an arbitrary matrix representation of a linear map (w .rt some basis and its diagonal matrix representation (writ a basis of eigenvectors).

Let $T: V \rightarrow V$ be a linear map, $\beta^{\prime}=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be some basis of V and A be the matrix of T w.r.t. β !.

Furthermore, let $\beta^{3}=\left\{u_{1}, \ldots, u_{n}\right\}$ be a basis $\quad=o f V$ Consisting of eigenvectors of T;ie.

$$
T\left(u_{j}\right)=\lambda_{j} u_{j}, j_{j=1, \ldots n,}^{\lambda_{j} \in \mathbb{R} .}
$$

Since β^{\prime} is a basis, each u_{j} has a coordinate vector representation writ. β^{\prime}. Suppose that the coordinates of u_{j} w.r.t. the basis β^{\prime} be $\left(\begin{array}{l}b_{1 j} \\ b_{2 j} \\ b_{n j} \\ b_{n j}\end{array}\right)$.
Define $B:=\left\{\begin{array}{lllll}b_{11} & b_{12} & \cdots & b_{19} & \cdots \\ b_{21} & b_{22} & \cdots & b_{2 j} & \cdots \\ b_{2 n} \\ b_{n 1} & b_{n 2} & b_{n j} & \cdots & b_{n n}\end{array}\right.$
The j-th Column of B is the coordinate column vector of u_{j} wert. $B^{\prime \prime}$.

Finally, let

$$
D=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
\lambda_{2} & 0 \\
0 & \ddots & \\
0 & \lambda_{n}
\end{array}\right)
$$

Then a straightforward (but tedious) computation shows that

$$
\begin{aligned}
& A B=B D \\
\Leftrightarrow & B^{-1} A B=D
\end{aligned}
$$

$\frac{\text { Example: }}{\text { to }}$ We return (or re-return) . $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which is given by the matrix $A=\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)$ w.r.t. to standard bes is $\beta^{\prime}=\left\{\binom{1}{0},\binom{0}{1}\right\}$ of \mathbb{R}^{2}.

A basis of \mathbb{R}^{2} Consisting of eigenvectors of T is:

$$
\beta=\left\{\binom{1}{1},\binom{1}{-1}\right\}
$$

Then, $B=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right) \quad\left[\begin{array}{ll}B \text { represent elements } \\ \text { of } \beta \text { w.r.t. } & \beta^{\prime}\end{array}\right]$ Finally, $D=\left(\begin{array}{cc}5 & 0 \\ 0 & -1\end{array}\right),\{$

Recall that $\left(\begin{array}{l}1 \\ 1 \\ \text { associated eigenvector }\end{array}\right.$ associated with the (-1) is an eigenvector asso. with eigenvalue -1 .

Then we have:

$$
\begin{aligned}
& B^{-1} A B=D \\
& \text { i.e. }\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)^{-1} \cdot\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right):\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
&=\left(\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Ironies Product spaces
So far, we have been concerned with general vector spaces and linear maps on them, which generalize linear maps on \mathbb{R}^{n} (or multiplication by a matrix).

In these notes, we will focus on a special property/structure of \mathbb{R}^{n} that were familiar with. Recall that the $\operatorname{dot} /$ scalar product of vectors in \mathbb{R}^{2} or \mathbb{R}^{3} is defined as:

$$
\vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+-x_{3} y_{3},
$$

where $\vec{x}=x_{1} \vec{i}+x_{2} \vec{j}+x_{3} \vec{k}$

$$
\vec{y}=y_{1} \vec{i}+y_{2} \vec{j}+y_{3} \vec{k} .
$$

We also know that two vectors in \mathbb{R}^{2} or \mathbb{R}^{3} are perpendicular if and only if their dot product is Zero,
and the angle θ between two vectors \vec{x} and \vec{y} is given by:

$$
\theta=\cos ^{-1}\left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|\|\vec{y}\|}\right)
$$

where $\|\vec{x}\|=\sqrt{\vec{x} \cdot \vec{x}}$, and $\|\vec{y}\|=\sqrt{\vec{y} \cdot \vec{y}}$.
The fundamental importance of dot product in \mathbb{R}^{2} os \mathbb{R}^{3} stems from the above facts; indeed, the dot product construction allows us to talk about angles in \mathbb{R}^{2} or \mathbb{R}^{3}. So we can make sense of angles between vectors and orthogonali-ly of vectors in \mathbb{R}^{2} or $R^{3} u \operatorname{sing}$ dot product.

As we have seen so for in this course, our goal is to develop a general theory of the special properties off \mathbb{R}^{n}. our definition of vector spaces was in part motivated by the algebraic properties of \mathbb{R}^{n}. our next definition will follow the same principle, it will generalize the notion of dot products to a much broader class of vector spaces, so that we can talk about angles and orthogonality in a much more general setting (meaning, beyond \mathbb{R}^{n}).

Here is the definition of an inner product on a a space V (over \mathbb{R}).
Deft: An "inner product" is an function $\langle\rangle:, V * V \rightarrow \mathbb{R} \quad$ satisfying
i) $\langle u, u\rangle \geq 0$ and equal to 0 iff $u=0$,
ii) $\langle u, v\rangle=\langle v, u\rangle$,
iii) $\langle u+v, \omega\rangle=\langle u, \omega\rangle+\langle\vartheta, \omega\rangle$
iv) $\langle\alpha u, v\rangle=\alpha\langle u, v\rangle$, where $u, v, \omega \in V$, and $\alpha \in \mathbb{R}$

A vector space V with an inner product as defined above is called an "inner product space".

Examples:
a) On $V=\mathbb{R}^{n}$, the stander "dot" product

defines an inner product (ie. it satisfies the defining axioms of an inner product).
to Compute angles between vectors in \mathbb{R}^{n}, the following example should help.

Let $\vec{x}=(-2,1,3), \vec{y}=(0,1,-1) \in \mathbb{R}^{3}$
So, $\|\vec{x}\|=\sqrt{4+1^{2}+9}=\sqrt{14}$

$$
\begin{aligned}
& \|\vec{y}\|=\sqrt{0+1+1}=\sqrt{2} \\
& \langle\vec{x}, \vec{y}\rangle=(-2)(0)+(1)(1)+(3)(-1) \\
& =-2 .
\end{aligned}
$$

So,

$$
\begin{aligned}
& \theta=\cos ^{-1}\left(\frac{\langle\vec{x}, \vec{y}\rangle}{\|\vec{x}\|\|\vec{y}\|}\right)=\cos ^{-1}\left(\frac{-2}{\sqrt{2} \sqrt{14}}\right) \\
& \Rightarrow \theta=\cos ^{-1}\left(-\frac{\sqrt{2}}{14}\right) \cdot
\end{aligned}
$$

b) Here's a definition of inner
products on 'Some suitable' class of functions (at least integrable) on $[a, b]$:

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

i) $\langle f, f\rangle=\int_{a}^{b}(f(x))^{2} d x$

$$
\geq 0, \text { as }(f(x))^{2} \geq 0 \quad \forall x \in[a, b]
$$

Furthermore,

$$
\langle f, f\rangle=0 \Leftrightarrow \int_{a}^{b}(f(x))^{2} d x=0
$$

So, $\langle f, f\rangle=0 \Leftrightarrow f \equiv 0$.
ii) for any constant $\alpha \in \mathbb{R}$,

$$
\begin{aligned}
\langle\alpha f, g\rangle & =\int_{a}^{b}(\alpha f(x)) g(x) d x \\
\Rightarrow\langle\alpha f, g\rangle & =\alpha \int_{a}^{b} f(x) g(x) d x \\
\Rightarrow\langle\alpha f, g\rangle & =\alpha\langle f, g\rangle
\end{aligned}
$$

iii) $\langle f+g, h\rangle=\int_{a}^{b}(f(x)+g(x)) h(x) d x$

$$
\begin{aligned}
& \Rightarrow\langle f+g, h\rangle=\int_{a}^{b} f(x) h(x) d x+\int_{a}^{b} g(x) h(x) d x \\
& \Rightarrow\langle f+g, h\rangle=\langle f, h\rangle+\langle g, h\rangle \\
& \text { iv }\left\langle\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x\right. \\
& \Rightarrow\langle f, g\rangle=\int_{a}^{b} g(x) f(x) d x\left[\begin{array}{c}
\text { Multiplication of } \\
\text { real numbers is } \\
\text { commutative. }
\end{array}\right] \\
& \Rightarrow\langle f, g\rangle=\langle g, f\rangle .
\end{aligned}
$$

Therefore, the given ${ }_{r}^{\text {product }}\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$ Satisfies all the defining properties of inner products, and hence it's an inner product.

In particular, the vector space $^{\text {sp }}[a, b]$ of all continuous functions $f:[a, b] \rightarrow \mathbb{R}$ is on inner product space with respect to above inner product:

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

Angles in inner product spaces
Suppose p and 2 are two vectors in an inner product space.
We denote the inner product between p and q by $\langle p, q\rangle$, and the norms of p and q by $\|p\|=\sqrt{\langle p, p\rangle}$,

$$
\| q u=\sqrt{\langle q, q\rangle}
$$

Then, the angle θ between β and q is defined as:

$$
\theta=\cos ^{-1}\left(\frac{\langle p, q\rangle}{\|p\|\|q\|}\right)
$$

Let $f(x)=x^{4}, g(x)=x^{2}$ be elements of $C[-1$,$] . Will use the above$ "integral" inner product to compute the angle between f and g in $c[-1,1]$.

$$
\begin{aligned}
& f(x)=x^{4} /, \quad g(x)=x^{2}, \\
& \langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x \\
& =\int_{-1}^{-1} x^{6} d x=\left[\frac{x^{7}}{7}\right]_{-1}^{1} \\
& =\left(\frac{1}{7}+\frac{1}{7}\right)=\frac{2}{7} \text {. } \\
& \|f\|=\sqrt{\int_{-1}^{T} f(x) f(x)} d x=\sqrt{\int_{-1}^{1} x^{8} d x} \\
& =\sqrt{\left(\frac{x^{9}}{9}\right)_{-1}^{1}}=\sqrt{\frac{1}{9}+\frac{1}{9}}=\sqrt{\frac{2}{9}}=\frac{\sqrt{2}}{3} \text {. } \\
& \|g\|=\sqrt{\int_{-1}^{1} g(x) g(x) d x}=\sqrt{\int_{-1}^{1} x^{4} d x}=\sqrt{\left(\frac{x^{5}}{5}\right)_{-1}^{1}} \\
& =\sqrt{\frac{1}{5}+\frac{1}{5}}=\frac{\sqrt{2}}{\sqrt{5}} . \\
& \text { Hence, } \theta=\cos ^{-1}\left(\frac{\langle f, g\rangle}{\|f\|\|g\|}\right) \\
& \Rightarrow \theta=\cos ^{-1}\left(\frac{2 / 7}{\frac{\sqrt{2}}{3} \cdot \frac{\sqrt{2}}{\sqrt{5}}}\right) \\
& \Rightarrow \quad \theta=\cos ^{-1}\left(\frac{x}{7} \cdot \frac{3 \sqrt{5}}{x}\right) \\
& \Rightarrow \theta=\cos ^{-1}\left(\frac{3 \sqrt{5}}{7}\right) \text {. }
\end{aligned}
$$

Deft:
Two vectors u_{1}, u_{2} in an inner product space V is called orthogonal if they satisfy $\left\langle u_{1}, u_{2}\right\rangle=0$

Examples: a) The standard basis elements $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ of π^{3} are orthogonal to each other.
b) Let $C[-\pi, \pi]$ be the vector space of real-valued continuous functions od on $[-\pi, \pi]$ Then,

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sin x \cos x d x \\
= & \frac{1}{2} \int_{-\pi}^{\pi} \sin 2 x d x=0\left[\begin{array}{c}
\sin 2 x \text { is an } \\
\text { odd function }
\end{array}\right]
\end{aligned}
$$

Thus, with respect to the inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

the functions $\sin x$ and $\cos x$ are orthogonal to each other.
generalizations of
Let us now record, a couple of well-known results.

Canchy-sthwarz inequality 1
For $u_{1}, u_{n} \in \mathbb{R}$ and $\omega_{1}, \ldots, \omega_{n} \in \mathbb{R}$, the classical $C-S$ inequality states that:

$$
\begin{aligned}
& u_{1} \omega_{1}+u_{2} \omega_{2}+\cdots+\left.u_{n} \omega_{n}\right|^{2} \\
& \leq\left(\left|u_{1}\right|^{2}+\cdots+\left|u_{n}\right|^{2}\right) \cdot\left(\left|\omega_{1}\right|^{2}+\cdots+\left|\omega_{n}\right|^{2}\right)
\end{aligned}
$$

ill. $\langle\vec{u}, \vec{w}\rangle \leq\|\vec{u}\| / \vec{w}\|\vec{~}\|$
where, $\vec{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{2}$, and

$$
\vec{\omega}=\left(\omega_{1}, \cdots ; \omega_{n}\right) \in \mathbb{R}^{n} .
$$

An analogue of * holds in arbitrary inner product spaces.
Theorem ((anchy-Schwarz)!
Let V be an inner product space, and $u_{1}, u_{2} \in V$.
Then, $\quad\left|\left\langle u_{1}, u_{2}\right\rangle\right| \leq\left\|u_{1}\right\| \cdot\left\|u_{2}\right\|$.

The proof can be found in the textbook or in several other places on the "internet".
pythagorean theorem:
Let $\vec{x}=x_{1} \vec{i}+x_{2} \vec{j}, \vec{y}=y_{1} \vec{i}+y_{2} \vec{j}$
be two perpendicular vectors in \mathbb{R}^{2}.

Then $\vec{x}+\vec{y}$ represents the 'hypotenuse' as show in the figure. The classical pythagorean theorem states that

$$
(l(\vec{x}+\vec{y}))^{2}=(l(\vec{x}))^{2}+(l(\vec{y}))^{2}
$$

where $l()$ denotes the length of a vector. In other cords,

$$
\|\vec{x}+\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}
$$

if $\langle\vec{x}, \vec{y}\rangle=0$ in \mathbb{R}^{2}.
The following theorem generalizes **) to arbitrary inner product spaces

Theorem (Pythagoras).
Let V be a_{n} inner product space and u_{1}, u_{2} be orthogonal in V. Then,

$$
\left\|u_{1}+u_{2}\right\|^{2}=\left\|u_{1}\right\|^{2}+\left\|u_{2}\right\|^{2}
$$

proof $\left\|u_{1}+u_{2}\right\|^{2}$

$$
=\left\langle u_{1}+u_{2}, u_{1}+u_{2}\right\rangle(\text { by dedinitio. })
$$

$$
\begin{aligned}
\left(\begin{array}{rl}
\text { using } \\
\text { linearity } \\
\text { of }\langle,\rangle
\end{array}\right) & =\left\langle u_{1}, u_{1}\right\rangle+\left\langle u_{2}, u_{1}\right\rangle+\left\langle u_{1}, u_{2}\right\rangle \\
& +\left\langle u_{2}, u_{2}\right\rangle \\
& =\left\|u_{1}\right\|^{2}+0+0+\left\|u_{2}\right\|^{2}\left(\begin{array}{ll}
\text { As } u_{1} \text { and } \\
u_{2} \text { are }
\end{array}\right. \\
& \\
= & \left\|u_{1}\right\|^{2}+\left\|u_{2}\right\|^{2} .
\end{aligned}
$$

Note that the standard basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \cdots,\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ of \mathbb{R}^{2} Consists of n. orthogonal elements. Here's another example of a basis of orthogonal

To show that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is an orthogonal set, we need to check that

$$
\left\langle x_{1}, x_{2}\right\rangle=\left\langle x_{1}, x_{3}\right\rangle=\left\langle x_{2}, x_{3}\right\rangle=0
$$

Now,

$$
\begin{aligned}
&\left\langle x_{1}, x_{2}\right\rangle=1 \times 1+0 \times 0+1 \times(-1) \\
&=1-1=0 \\
&\left\langle x_{1}, x_{3}\right\rangle=1 \times 0+0 \times 2+0 \times 1=0 . \\
&\left\langle x_{2}, x_{3}\right\rangle=1 \times 0+0 \times 2+(-1) \times 0 \\
&=0 .
\end{aligned}
$$

Therefore, $\left\{x_{1}, x_{2}, x_{3}\right\}$ form an orthogonal set,

- i.e. Hieg're orthogonal to each other
Clearly, they farm a basis of \mathbb{R}^{3}.
The next theorem asserts that orthogonal vectors are always linearly independent.

Theorem:
An orthogonal set of vecturs $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in V$ is linearly independent.

Proof of theorem-
Let, $c_{1}, c_{2}, \ldots, c_{n}$ be constants $(\in \mathbb{R})$ Such that

$$
\begin{equation*}
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=0 \tag{1}
\end{equation*}
$$

In order to prove independence of the vectors $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, we need to show that $C_{i}=0$, for all $i=1, \ldots, n$

Taking inner product with the vector x_{i}, equation (1) yields:

$$
\begin{aligned}
&\left\langle c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}, x_{i}\right\rangle=\left\langle 0, x_{i}\right\rangle \\
& \Rightarrow\left\langle c_{1} x_{1}, x_{i}\right\rangle+\left\langle c_{2} x_{2}, x_{i}\right\rangle+\cdots+\left\langle c_{i}-x_{i}, x_{i}\right\rangle \\
&+\cdots+\left\langle c_{n} x_{n}, x_{i}\right\rangle=0
\end{aligned}
$$

(Inner product of x_{i} \& the 0 vector $=0$)

$$
\begin{aligned}
\Rightarrow c_{1}\left\langle x_{1}, x_{i}\right\rangle+ & c_{2}\left\langle x_{2}, x_{i}\right\rangle+\cdots+c_{i}\left\langle x_{i}, x_{i}\right\rangle \\
& +\cdots+c_{n}\left\langle x_{n}, x_{i}\right\rangle=0 \rightarrow \text { 2 }
\end{aligned}
$$

Now observe that $\left\langle x_{i}, x_{q}\right\rangle=\left\|x_{i}\right\|^{2} \neq 0$ and

$$
\left\langle x_{j}, x_{i}\right\rangle=0 \text { for } i \neq i
$$

(by definition of orthogonality).
Thus (2) reduces to:

$$
c_{i}\left\|x_{i}\right\|^{2}=0
$$

$\Rightarrow \quad C_{i}=0 \quad\left[\begin{array}{l}\text { since } x_{i} \text { belongs to } \\ \text { an orthogonal set of }\end{array}\right.$ vector, by definition $x_{i} \neq 0$.

$$
\text { so } \left.\left\|x_{i}\right\|^{2} \neq 0\right]
$$

Thus, we have that $C_{i}=0$.
But our choice of 'i' was arbitrary.
Therefore, $c_{i}=0$ for all $i=1,2, \ldots, n$.
$\Rightarrow\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad$ form a
linearly independent. Set of Vectors.

Theorem: Let $\operatorname{dim}(v)=n$, and $\left\{x_{1,} ; x_{n}\right\}$ be an orthogonal set of non-zectors in V. Then they form a basis of V, and for any $\alpha \in V$, wive:

$$
\alpha=\sum_{i=1}^{n} \frac{\left\langle\alpha, x_{i}\right\rangle}{\left\langle x_{i}, x_{i}\right\rangle} x_{i}
$$

Proof: We've already observed linear index P. endence of $\left\{x_{1}, x_{n}\right\}$. The additional hypothesis $\operatorname{dim}(v)=n \quad$ guarantees that it is a basis of V,
pence, $\operatorname{span}\left\{x_{1}, x_{n}\right\}=V$
For any $\alpha \in V$, there exists unique scalars $C_{1}, \ldots C_{n} \in \mathbb{R}$. Such that

$$
\begin{aligned}
& \alpha=C_{1} x_{1}+\cdots+C_{i} x_{i}+C_{n} x_{n} \\
& \Rightarrow\left\langle\alpha, x_{i}\right\rangle=\left\langle c_{1} x_{1}+\cdots+c_{i} x_{i}+\cdots+c_{n} x_{n}, x_{i}\right\rangle \\
& \Rightarrow\left\langle\alpha, x_{i}\right\rangle=C_{i}\left\langle x_{i}, x_{i}\right\rangle\left[\sin C l\left\langle x_{i}, x_{j}\right\rangle\right] \\
& =0: i f \quad i \neq j \\
& \Rightarrow c_{i}=\frac{\left\langle\alpha_{1} x_{i}\right\rangle}{\left\langle x_{i}, x_{i}\right\rangle}\left[x_{i} \neq 0 \Rightarrow\left\langle x_{i}, x_{i}\right\rangle \neq 0\right]
\end{aligned}
$$

So, $\alpha=\sum_{i=1}^{n} \frac{\left\langle\alpha, x_{i}\right\rangle}{\left\langle x_{i}, x_{i}\right\rangle} x_{i}$

Orthonormal set:
A set of vectors $\left\{x_{1}, \ldots x_{n}\right\}$ in V is called orthonormal if
i) $\left\langle x_{i}, x_{j}\right\rangle=0$. for if j;
and ii) $\quad\left\|x_{i}\right\|=1$, for $i=1, ., i n$.
Thus, an orthonormal set is an orthogonal set of unit vectors.

- For an orthonormal basis $\left\{x_{\ldots} x_{i n}\right\}$ of V (where $\operatorname{dim}(V)=n)$ the formula in the previous theorem reduces to:

$$
\begin{aligned}
\alpha & =\sum_{i=1}^{n}\left\langle\alpha_{,} x_{i}\right\rangle x_{i} \\
\Leftrightarrow \alpha & =\left\langle\alpha, x_{1}\right\rangle x_{1}+\cdots+\left\langle\alpha, x_{n}\right\rangle x_{n}
\end{aligned}
$$

Jos each $\alpha \in V$.

Well now show that the functions

$$
\left\{\frac{\sin (n x)}{\sqrt{\pi}}, \frac{\cos (n x)}{\sqrt{\pi}}, \frac{1}{2 \sqrt{\pi}}\right\}_{n=1}^{\infty} \operatorname{fosin}
$$

an orthonormal set in $C[-\pi, \pi]$ writ the inner product $\int_{-\pi}^{\pi} f(x) g(x) d x=\langle f, g\rangle$
This result is import an This result is important in " Studying Fourier series.

Let's first assume that

$$
\begin{aligned}
& m, n \in \mathbb{Z}, m \neq n \\
& \int_{-\pi}^{\pi} \sin (n x) \cos (m x) d x \\
& =\int_{-\pi}^{\pi} \frac{1}{2}[\sin (n+m) x+\sin (n-m) x] d x \\
& =\frac{1}{2}\left[-\frac{\cos (m+n) x}{(m+n)}-\frac{\cos (n-m) x}{(n-m)}\right]_{-\pi}^{\pi} \\
& =-\frac{1}{2}\left[\left(\frac{\cos (m+n) \pi}{(m+n)}+\frac{\cos (n-m) \pi}{(n-m)}\right)-\right. \\
& \left(\frac{\cos ((m+n)(-\pi))}{(m+n)}+\frac{\cos ((n-m)(-\pi))}{(n-m)}\right) \\
& =0 .\binom{\text { cosine is an even function }}{\text { so, } \cos ((m+n) \pi)=} \\
& \begin{array}{l}
\cos ((m+n) \pi)=\cos ((m+n)(-\pi)) \\
\cos ((n-m) \pi)=\cos ((n-m)(-\pi))
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sin n x \sin m x d x \\
& =\frac{1}{2} \int_{-\pi}^{\pi}[\cos (n-m) x-\cos (m+n) x] d x \\
& =\frac{1}{2}\left[\frac{\sin (n-m) x}{n-m}-\frac{\sin (n+m) x}{n+m}\right]_{-\pi}^{\pi} \\
& =\frac{1}{2}\left[\frac{\sin (n-m) \pi}{n-m}-\frac{\sin (n+m) \pi}{n+m}-\frac{\sin (n-m)(-\pi)}{n-m}\right] \\
& +\frac{\sin (n+m)(-\pi)}{n+m} \\
& =0 \quad[\sin (b \pi)=0 \text {, for any integer } b] \\
& \int_{-\pi}^{\pi} \cos n x \cos m x d x \\
& =\frac{1}{2} \int_{-\pi}^{\pi}[\cos (n+m) x+\cos (n-m) x] d x \\
& =\frac{1}{2}\left[\frac{\sin (n+m) x}{n+m}+\frac{\sin (n-m) x}{n-m}\right]_{-\pi}^{\pi}
\end{aligned}
$$

$=0 \quad[\sin (\beta \pi)=0$, for any integer $\beta]$.
Now let $m=n \in Z$.
Then,

$$
\int_{-\pi}^{\pi} \sin (n x) \cos (n x) d x
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{-\pi}^{\pi} \sin (2 n x) d x \\
& =\frac{1}{2}\left(-\frac{\cos (2 n x)}{2 n}\right)_{-\pi}^{\pi} \\
& =-\frac{1}{2}\left(\frac{\cos (2 n \pi)}{2 n}-\frac{\cos (-2 n \pi)}{2 n}\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
=0 \quad[\text { cosine is even } \Rightarrow & \cos (2 n \pi) \\
& =\cos (-2 n \pi)
\end{array}\right]
$$

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sin n x \sin m x d x \\
= & \int_{-\pi}^{\pi} \sin ^{2} n x d x=\frac{1}{2} \int_{-\pi}^{\pi}(1-\cos (2 n x)) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[x-\frac{\sin (2 n x)}{2 n}\right]_{-\pi}^{\pi} \\
& =\frac{1}{2}\left[\frac{\pi}{2 n}-\frac{\sin (2 n \pi)}{2 n}+\frac{\sin (-2 n \pi)}{2 n}\right] \\
& =\frac{2 \pi}{2}=\pi \quad \sin ^{\pi}(p \pi)=0, \text { for any } \\
& \int_{-\pi}^{\pi} \cos n x \cos m x d x=\int_{-\pi}^{\pi} \cos ^{2} n x d x \\
& =\frac{1}{2} \int_{-\pi}^{\pi}(1+\cos 2 n x) d x=\frac{1}{2}\left[x+\frac{\sin 2 n x}{2 n}\right] \\
& =\frac{2 \pi}{2}[\sin (p \pi)=0, \text { for any integer } p] \\
& =\pi
\end{aligned}
$$

Therefore, we've proved that:

$$
\int_{-\pi}^{\pi} \sin (n x) \cos (m x) d x=0, \quad \forall m, n \in \mathbb{Z}
$$

$\int_{-\pi}^{\pi} \sin ^{-\pi}(n x) \sin (m x) d x= \begin{cases}0, & \text { if } m \neq n, \\ \pi & \text {, if } m=n, \\ m & m \in Z,\end{cases}$

$$
\int_{-\pi}^{\pi} \cos (n x) \cos (n x) d x=\left\{\begin{array}{lll}
0, & \text { if } m \neq n \\
\pi, & \text { if } m=n, & m, n \in \mathbb{Z}
\end{array}\right.
$$

Working with the inner product $\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$, the results of the previous computations can be phrased as:

$$
\langle\sin (n x), \cos (m x)\rangle=0, \quad m, n \in Z
$$

$\Rightarrow \sin (n x)$ and $\cos (m x)$ are orthogonal for all $m, n \in \mathbb{Z}$.

$$
\begin{aligned}
& \langle\sin (n x), \sin (m x)\rangle= \begin{cases}0, & \text { if } n \neq m \\
\pi, & \text { if } n=m\end{cases} \\
& \langle\cos (n x), \cos (m x)\rangle= \begin{cases}0, & \text { if } n \neq m \\
\pi, & \text { if } n=m\end{cases}
\end{aligned}
$$

we therefore have,

$$
\begin{aligned}
& \left\langle\frac{\sin (n x)}{\sqrt{\pi}}, \frac{\sin (n x)}{\sqrt{\pi}}\right\rangle=\frac{\pi}{\pi}=1, \text { and } \\
& \left\langle\frac{\cos (n x)}{\sqrt{\pi}}, \frac{\cos (n x)}{\sqrt{\pi}}\right\rangle=\frac{\pi}{\pi}=1
\end{aligned}
$$

This proves that $\left\{\frac{\sin (n x)}{\sqrt{\pi}}, \frac{\cos (n x)}{\sqrt{\pi}}\right\}_{n=1}^{\infty}$ is an orthonormal set over $[-\pi, \pi]$, as zhey're unit vectors (norm 1), are orthogonal to each other.

$$
\begin{aligned}
& \text { Moreover, } \\
& \text { Moreover, }\left\langle\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{2 \pi}}\right\rangle \\
& =\int_{-\pi}^{\pi} \frac{d x}{2 \pi}=\frac{\pi+\pi}{2 \pi}=1,\left[\begin{array}{cc}
\text { so } \frac{1}{\sqrt{2 \pi}} & \text { has } \\
\text { norm } & 1
\end{array}\right] \\
& \left\langle\frac{1}{\sqrt{2 \pi}}, \frac{\sin (n x)}{\sqrt{\pi}}\right\rangle \\
& =\int_{-\pi}^{\pi} \frac{\sin (n x)}{\sqrt{2} \pi} d x=\frac{-1}{\sqrt{2} \pi}\left[\frac{\cos (n x)}{n}\right]_{-\pi}^{\pi} \\
& =-\frac{1}{\sqrt{2} \pi n}(\cos (n \pi)-\cos (-n \pi)) \\
& =0 .[\text { cosine is even } \Rightarrow \cos (n \pi)=\cos (-n \pi)] \\
& \left\langle\frac{1}{\sqrt{2 \pi}}, \frac{\cos (n x)}{\sqrt{\pi}}=\frac{1}{\pi \sqrt{2}} \int_{-\pi}^{\pi} \cos (n x) d x\right. \\
& =\frac{1}{\pi \sqrt{2}}\left(\frac{\sin (n x)}{n}\right)_{-\pi}^{\pi} \\
& =\frac{1}{\pi \sqrt{2}}\left(\frac{\sin (n \pi)}{n}-\frac{\sin (-n \pi)}{n}\right) \\
& =0 \text {. }[\sin (p \pi)=0 \text {, for any integer }
\end{aligned}
$$

Therefore, we Conclude that

$$
\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\sin (n x)}{\sqrt{\pi}}, \frac{\cos (n x)}{\sqrt{\pi}}\right\} \text { is an }
$$

orthonormal set of functions in $C[-\pi, \pi]$. (as they've norm 1, and are orthogonal to each other).

Gram -Schmidt orthogonalization
We have seen in a previous theorem that a vector can be conveniently represented with respect to an orthonormal basis. In other word's, the coordinates of a vector are particularly easy to compute with respect to an orthonormal basis. Fortunately, there is a way to turn any basis (or any linearly independent set of vectors) into an orthonormal basis (or an orthonormal) set of Vectors. $\frac{\text { Let }\left\{u_{1}, \ldots, u_{n}\right\} \text { be a linearly }}{\text { independent set of vectors, }}$
Define, $\alpha_{1}=\frac{\beta_{1}}{\| \beta_{1}}$, where $\beta_{1}=u_{1}$,

$$
\begin{array}{r}
\alpha_{2}=\frac{\beta_{2}}{\left\|\beta_{2}\right\|}, \text { where } \beta_{2}=u_{2}-\left\langle u_{2}, \alpha_{1}\right) \alpha_{1} \\
\alpha_{3}=\frac{\beta_{3}}{\left\|\beta_{3}\right\|} \text { where } \beta_{3}=u_{3}-\left\langle u_{3}, \alpha_{1}\right\rangle \alpha_{1} \\
-\left\langle u_{3}, \alpha_{2}\right\rangle \alpha_{2} \\
\alpha_{n}=\frac{\beta_{n}}{\left\|\beta_{n}\right\|}, \text { where } \beta_{n}=u_{n}-\sum_{i=1}^{n-1}\left\langle u_{n}, \alpha_{i}\right\rangle \alpha_{i}
\end{array}
$$

Theorem (Gram-Schmidt):
The set $\left.\alpha \alpha_{1}, \ldots, \alpha_{n}\right\}$ is orthonormal, and hence linear $2 y$ independent.

Proof: It's clear from the Construction (using the fact that $u_{k} \ldots u_{n}$ are linearly independent) that each α_{i} is a unit vector.

Instead of giving a formal algebraic proof of orthogonality of the vectors. let us convince ourselves geometrically that the vectors α_{i} are indeed orthogonal to each other.

Take u_{1} and u_{2}.

since $u_{1} \neq 0$ (as it's a part of a linearly independent set,,$\alpha_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}$ is a unit vector in the direction of u_{1}.

Now let's drop a perpendicular from u_{2} to α_{1}.

we know that

$$
\begin{aligned}
\left\langle u_{2}, \alpha_{1}\right\rangle & =\left\|u_{2}\right\|\left\|\alpha_{1}\right\| \cos \theta \\
\Rightarrow\left\|u_{2}\right\| \cos \theta & =\left\langle u_{2}, \alpha_{1}\right\rangle\left(\operatorname{as}\left\|\alpha_{1}\right\|=1\right)
\end{aligned}
$$

By our construction, weave

$$
\begin{aligned}
& |A C|=\left\|u_{2}\right\|, \\
& |A B|=|A C| \cos \theta=\left\|u_{2}\right\| \cos \theta
\end{aligned}
$$

So, $|A B|=\left\|u_{2}\right\| \cos \theta=\left\langle u_{2}, \alpha_{1}\right\rangle$
observe that the vector $\overrightarrow{A B}$ has magnitude $\left\langle u_{2}, \alpha_{1}\right\rangle$ and it's direction is given by the unit vector α_{1}.

Hence, $\overrightarrow{A B}=\left\langle u_{2}, \alpha_{1}\right\rangle \alpha_{1}$

By usual/standard Vector laws, we know that

$$
\begin{aligned}
& \overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C} \\
& \Rightarrow\left\langle u_{2}, \alpha_{1}\right\rangle \alpha_{1}+\overrightarrow{B C}=u_{2} \\
& \Rightarrow \overrightarrow{B C}=u_{2}-\left\langle u_{2}, \alpha_{1}\right\rangle \alpha_{1}
\end{aligned}
$$

Evidently, $\overrightarrow{B C} \perp \overrightarrow{A B}$.
Hence, $\overrightarrow{B C}=u_{2}-\left\langle u_{2}, \alpha_{1}\right\rangle \alpha_{1}$ is orthogonal to α_{1}.

That's precisely why we defined:

$$
\beta_{2}=u_{2}-\left\langle u_{2}, \alpha_{1}\right\rangle \alpha_{1}
$$

This takes care of orthogonality and we make it a unit vector by dividing it by $\left\|\beta_{2}\right\|$
So, $\alpha_{2}=\frac{\beta_{2}}{\left\|-\beta_{2}\right\|}$ is a unit vector that is Orthogonal to the unit vector α_{1}.

And the rest is a straight-forward generalization
off the previous argument.
This completes the geometric proof of the theorem.

Problem (application of Gram-Schmidt) The_vectors $(1,1,1),(1, \overline{2}, 1)$ Spar a planeppin tr 3 .
Use the Gram-schmidt process to find an orthonormal basis of
\mathbb{R}^{3} in which the first two vectors form an orthonormal basis for P.

Solution: clearly, P is 2 -dimensional. Let us find an orthonormal basis for P first (by orthonormalizining the given vectors).
Set $u_{1}=(1,1,1), u_{2}=(1,2,1)$.
Following Gram-schmidt weave:

$$
\beta_{1}=u_{1}=(1,1,1), \text { and } \alpha_{1}=\frac{\beta_{1}}{\left\|\beta_{1}\right\|}
$$

$$
\Rightarrow \alpha_{1}=\frac{(1,1,1)}{{\sqrt{1^{2}+1^{2}+1^{2}}}^{2}}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
$$

So,

$$
\begin{aligned}
& \beta_{2}=u_{2}-\left\langle u_{2}, \alpha_{1}\right\rangle \alpha_{1} \\
&=(1,2,1)-\left\langle(1,2,1),\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\right\rangle \\
&\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

$$
=(1,2,1)-\left(\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}\right)\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
$$

$$
=(1,2,1)-\frac{4}{\sqrt{3}}\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
$$

$$
=(1,2,1)-\left(\frac{4}{3}, \frac{8}{3}, \frac{4}{3}\right)
$$

$$
\begin{aligned}
=\left(-\frac{1}{3}, \frac{2}{3},-\frac{1}{3}\right), \text { so, }\left\|\beta_{2}\right\| & =\sqrt{\left(\frac{-1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}+\left(\frac{-1}{3}\right)^{2}} \\
& =\sqrt{6} / 3
\end{aligned}
$$

Finally, $\alpha_{2}=\beta_{2} /\left\|\beta_{2}\right\|$

$$
=\left(-\frac{1}{3}, 2 / 3,-\frac{1}{3}\right)
$$

$$
\begin{aligned}
& =\frac{3}{\sqrt{6}}\left(-\frac{1}{3}, \frac{2}{3},-\frac{1}{3}\right) \\
& =\left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right)
\end{aligned}
$$

Therefore, an orthonormal basis for P is given by:

$$
\alpha_{1}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \alpha_{2}=\left(\frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right) \theta
$$

Remark: OLR Construction of α_{1} and α_{2} guarantees that both α_{1} and α_{2} are linear combinations of u_{1} and u_{2}, $\operatorname{Hence}, \alpha_{1}, \alpha_{2} \in P$. Since $\left\{\alpha_{1}, \alpha_{2}\right\}$ is a linearly independent set and $\operatorname{dim}(\beta)=2$, we conclude that $\left\{\alpha_{1}, \alpha_{2}\right\}$ is an orthonormal bars is for p.

Now we need to extend $\left\{\alpha_{1}, \alpha_{2}\right\}$ to a basis of \mathbb{R}^{3} (in an orthonormal manner)

To this end, we first need to choose some vector $u_{3} \in \mathbb{R}^{3}$ such that
$\left\{\alpha_{1}, \alpha_{2}, U_{3}\right\}$ is a basis of \mathbb{R}^{3} (not necessarily orthonormal). But this is equivalent to choosing u_{3} outside
$\operatorname{sen}\left\{\alpha_{1}, \alpha_{2}\right\}$.
We claim that $\left.(1,0,0) \notin \operatorname{span} \alpha \alpha_{1}, \alpha_{2} 1\right)=0$
Indeed if $(1,0,0) \in \operatorname{span}\left\{\alpha_{1}, \alpha_{2} \lambda\right.$,
Then (by a previous theorem) we would have:

$$
\begin{aligned}
(1,0,0) & =\left\langle(1,0,0), \alpha_{1}\right\rangle \alpha_{1}+\left\langle(1,0,0), \alpha_{2}\right\rangle \alpha_{2} \\
\text { or }(1,0,0) & =\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)+\left(-\frac{1}{\sqrt{6}}\right)\left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right)
\end{aligned}
$$

or $(1,0,0)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)+\left(\frac{1}{6},-\frac{2}{6}, \frac{1}{6}\right)$

$$
\text { or }(1,0,0)=\left(\frac{1}{2}, 0, \frac{1}{2}\right) 1_{6}^{1}
$$

This contradiction shows that

$$
(1,0,0) \notin \operatorname{span}\left\{\alpha_{1}, \alpha_{2}\right)
$$

Hence, $\left\{\alpha_{1}, \alpha_{2},(1,0,0)\right\}$ is a basis of \mathbb{R}^{3}.
since we already have that $\left\langle\alpha_{1}, \alpha_{2}\right\rangle=0$, in order to turn this basis into an orthonormal basis of \mathbb{R}^{3}, we only need to Consider:

$$
\begin{aligned}
\beta_{3} & : u_{3}-\left\langle u_{3}, \alpha_{1}\right\rangle \alpha_{1}-\left\langle u_{3}, \alpha_{2}\right\rangle \alpha_{2} \\
& =(1,0,0)-\left(\frac{1}{2}, 0, \frac{1}{2}\right) \\
& =\left(\frac{1}{2}, 0,-\frac{1}{2}\right)
\end{aligned}
$$

so, $\left\|\beta_{3}\right\|=\sqrt{\left(\frac{1}{2}\right)^{2}+0^{2}+\left(\frac{-1}{2}\right)^{2}}=\frac{1}{\sqrt{2}}$

$$
s_{0}, \alpha_{3}=\frac{\beta_{3}}{\left\|\beta_{3}\right\|}=\sqrt{2}\left(\frac{1}{2}, 0, \frac{-1}{2}\right)
$$

$$
\Rightarrow \alpha_{3}=\left(\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right)
$$

Therefore, the requritrec basis

$$
\left\{\begin{array}{c}
-\alpha_{1}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \alpha_{2}=\left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right), \\
\left.\alpha_{3}=\left(\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right)\right\} \text { is }
\end{array}\right.
$$

orthonormal and its first two vectors span P.

We consider differential equations of the form

$$
\begin{equation*}
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0 . \tag{*}
\end{equation*}
$$

An ad hoc method of solving $\#$ is to try an exponential solution

$$
y=e^{r x}
$$

With this choice of y, reduces to:

$$
\begin{aligned}
& a r^{2} e^{r x}+b r e^{r x}+c e^{r x}=0 \\
& \Rightarrow\left(a r^{2}+b r+c\right) e^{r x}=0 \\
& \Rightarrow\left.a r^{2}+b r+c=0 \text { (as } e^{r x} \neq 0 \text {, for all } x\right) \\
& \rightarrow \text { (1) }
\end{aligned}
$$

Thus, if $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, then $y=e^{r x}$ is a solution of $*$. However, this ad hoc doesnot tell us whether we managed to find all solutions of $*$. These lecture notes will be devoted to finding the most general solution of $*$.

Weill use our knowledge of linear algebra to attack this problem. To connect "Solving the diff. en. \circledast "to "linear algebra". we need to first choose the right

Vector space. Since we are going to differentiate functions, a safe choice is :
$V:=C^{\infty}(\mathbb{R})=\left\{\begin{array}{l}f: \mathbb{R} \rightarrow \mathbb{R}: f \text { is infinitely }\end{array}\right.$ differentiabled

We denote the linear map $\frac{d}{d x}: V \rightarrow V$ by D.

Then, $\frac{d^{2}}{d x^{2}}: V \rightarrow V$ is the two-fold composition of the operation $D\left(\right.$ i.e. $\left.D \circ D=\frac{d}{d x}\left(\frac{d}{d x}\right)=\frac{d^{2}}{d x^{2}}\right)$. We denote $\frac{d^{2}}{d x^{2}}: V \rightarrow V$ by $D^{2}(=D O D)$.
In general D^{n} stands for $\frac{D \circ D \cdot \cdots \cdot D}{n-f_{0} / d}=\frac{d^{n}}{d x^{n}}$. With these terminology solving * is equivalent to solving the equation

$$
\left(a D^{2}+b D+c I\right)(y)=0 \rightarrow(x+x
$$

where $I: V \rightarrow V$ is the identity linear map; ie. $I(f)=f$.
Let S be the space of all solutions of (*) or (** (zhey're equivalent). observe that $a D^{2}+b D+C I: V \rightarrow V$ is a linear map.
setting $T:=\left(a D^{2}+b D+c I\right)$, it follows that

$$
S=\text { null space of } T=\text { null }(T) \text {. }
$$

It is immediate (since null (T) is a subspace of V) that S is closed under linear combinations. We are interested in finding a basis for. S, which will give us a general solution to ($*$.
Abuse of notation: In the sequel, we will denote the identity map $I: V \rightarrow V$ by 1. So,e.g, ($\left.D^{2}+I\right)$ will be written as $\left(D^{2}+1\right), \cdots$ and $\left(D^{2}-3 I\right)$ will written as $\left(D^{2}-3\right)$ and so on. Factoring" differential operator (not literally): Consider the linear map $\left(D^{2}-1\right): V \rightarrow V$. Note that

$$
\begin{aligned}
&(D+1) \cdot(D-1)(f) \\
&=(D+1)(D f-f) \quad \begin{array}{l}
\text { We parent multiplying' } \\
\text { (D+1) and }(D-1), \\
=D(D f-f)+I(D f-f) \\
\text { were composing } \\
\text { them }
\end{array} \\
&=D f-D f+D f-f= D^{2} f-f \\
&=\left(D^{2}-1\right)(f)
\end{aligned}
$$

Thus, $(D+1) \cdot(D-1)(f)=\left(D^{2}-1\right)(f)$,
for all $f \in V$.
Thus justifies the equality of linear map:

$$
\left(D^{2}-1\right)=(D+1) \cdot(D-1)
$$

well use this technique to find general solutions of (*).

Recall that (*) was equivalent to **):

$$
\left(a D^{2}+b D+c\right)(y)=0
$$

Dividing (**) by a, we can assume that (**) is of the form:

$$
\left(D^{2}+P D+2\right)(y)=0
$$

our plan is to "factorize" [Ill stop|lpatting quotation marks from now on, this was the last reminder that factoring indicattes composition, and not usual multiplication in this context] the linear map

$$
\left(D^{2}+P D+2\right)
$$

But this is the same as factoring the polynomial $\left(x^{2}+p x+q\right)$. We know that if r_{1}, r_{2} are solutions of the quadratic equation $x^{2}+p x+q=0$,
then,

$$
\begin{aligned}
& x^{2}+p x+q \equiv\left(x-r_{1}\right)\left(x-r_{2}\right) . \\
& {\left[\begin{array}{l}
\text { this is an identity it } \\
\text { holds for all } x
\end{array}\right]}
\end{aligned}
$$

One possible dilemma is that not all real quadratic equations have real roots! But we are brave enough to venture into the world of complex numbers. In fact, the use of complex numbers is unavoidable although we are dealing with differential equations (or quadratic equations) with real coefficients.
Theorem(Fundamental theorem of
algebra-special case $)$
Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a degree n real Polynomial; ie, $a_{1}, \ldots a_{n} \in \mathbb{R}$. Then there exist complex numbers $\lambda_{1} \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
P(x)=a_{n}\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right)
$$

In other words, $P(x)$ can be completely factorized over \mathbb{C}. However, the $\lambda_{i} s$ are not necessarily distinct.

Example: The Polynomial $\left(x^{2}+1\right)$ factors as $(x+i)(x-i)$ over \mathbb{C}. It's not possible to factorize $\left(x^{2}+1\right)$ over \mathbb{R}. So the passage from \mathbb{R} to \mathbb{C} is completely natural.

Now we return to the topic of solving

$$
\left(D^{2}+P D+2\right)(y)=0
$$

Step-I: solve the quadratic equation

$$
x^{2}+p x+q=0
$$

Suppose that the roots are r_{1}, r_{2}^{1}.
Then/ $\quad x^{2}+p x+2=\left(x-r_{1}\right)\left(x-r_{2}\right)$.
Therefore, wive a corresponding factorization of differential operators:

$$
\left(D^{2}+P D+q\right)=\left(D-r_{1}\right):\left(D-r_{2} \|\right)
$$

Step-I: Write $\left(D^{2}+P D+r\right)(y)=0$ as

$$
\left(\left(D-r_{1}\right) \cdot\left(D-r_{2}\right)(y)=0 . \rightarrow(2)\right.
$$

Let us set $\left(D-r_{2}\right)(y)=u . \rightarrow B$

Then (2) reduces to:

$$
\begin{aligned}
& \left(D-r_{1}\right)(u)=0 \\
& \Rightarrow \frac{d u}{d x}=r, u \Rightarrow \int \frac{d u}{u}=\int r, d x \\
& \Rightarrow \ln u=r_{1} x+c_{1} \text {, (note that adding } \\
& \Rightarrow u=e^{c_{1}} e^{r_{1} x} \quad \text { (ensures that }\left(r_{1} x+c_{1}\right) \\
& \Rightarrow u=A e^{r_{1} x} \\
& \text { (setting } A=e^{c_{i}} \text {) } \\
& \text { integral =anti-derivative } \\
& \text { of } r_{1} \text {. }
\end{aligned}
$$

Now, plugging $u=A e^{r_{1} x}$ in
(3), we get:

$$
\begin{aligned}
& \left(D-r_{2}\right)(y)=A e^{r_{1} x} \\
& \Rightarrow \quad \frac{d y}{d x}-r_{2} y=A e^{r_{1} x} \\
& \Rightarrow e^{-r_{2} x} \frac{d y}{d x}-r_{2} e^{-r_{2} x} y=A e^{r_{1} x} \cdot e^{-r_{2} x} \\
& \begin{array}{r}
\left(e^{-r_{2} x} \text { is the integrating }\right) \\
\text { factor }
\end{array} \\
& \Rightarrow \frac{d}{d x}\left(y e^{-r_{2} x}\right)=A e^{\left(r_{1}-r_{2}\right) x} \\
& \Rightarrow \int d\left(y e^{-r_{2} x}\right)=\int A e^{\left(r_{1}-r_{2}\right) x} d x
\end{aligned}
$$

$$
\Rightarrow y e^{-r_{2} x}=\left\{\begin{array}{l}
\frac{A e^{\left(r_{1}-r_{2}\right) x}}{r_{1}-r_{2}}+C_{2} \text { when } \\
A x+C_{2}, \text { when } \\
A r_{1}=r_{2}
\end{array}\right.
$$

(once ageing/ adding the constant C_{2}^{1} general integral of $A e^{\left(r_{1}-r_{2}\right)}$.

$$
\Rightarrow y=\left\{\begin{array}{l}
\frac{A}{r_{1}-r_{2}} e^{r_{1} x}+C_{2} e^{r_{2} x}, \text { if } r_{1} \neq r_{2} \\
A x e^{r_{2} x}+c_{2} e^{r_{2} x}, i f r \|_{1}=r_{2}
\end{array}\right.
$$

$$
\Rightarrow y=\left\{\begin{array}{l}
\tilde{A} e^{r_{1} x}+\tilde{B} e^{r_{2} x}, i f r_{1} \neq r_{2} \\
\tilde{A} x e^{r_{2} x}+\widetilde{B} e^{r_{2} x}, i f r_{1}=r_{2}
\end{array}\right.
$$

(here, \widetilde{A}, \vec{B} are arbitrary constants.)
We've now found the most general solution of the equation

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+9 y
\end{aligned}=0
$$

It twins out that the spare of Solutions: \int of $\left(D^{2}+P D+q\right)(y)=0$

$$
\begin{aligned}
& \text { is: }\left\{\operatorname{span}\left\{e^{r_{1} x}, e^{r_{2} x}\right\}, \text { if } r_{1} \neq r_{2}\right. \\
& D=\left\{\operatorname{sean}\left\{e^{r x}, x e^{r_{x}}\right\}, r:=r_{1}=r_{2}\right.
\end{aligned}
$$

What about $\operatorname{dim}(S)$?
Well, it seems that S is 2 -dime sional, a fact that will follow if we could prove that the sets $\left\{e^{r_{1} x}, e^{r_{2} \times}\right\}$ (where $r_{1} \neq r_{2}$) and $\left\{e^{r x}, x e^{r x}\right\}$ are linearly independent. It's rather simple to prove these facts directly, but we want to device a method that can be generalized to higher order diff. equs; meaning we are seeking a method of proving linear independence of any finite collection of
Smooth functions of $\left.f_{1}, f_{2}, \ldots, f_{n}\right\}$.

This leads us to the discussion of Wrouskians.

Let $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be a linearly dependent set of smooth functions. (smooth means infinitely differentiable) Consider the matrix:

$$
\left(\begin{array}{cccc}
f_{1}(x) f_{2}(x) & \cdots & \cdots & f_{n}(x) \\
f_{1}^{\prime}(x) \quad f_{2}^{\prime}(x) & \cdots & \cdots & f_{n}^{\prime}(x) \\
: & \cdots & & f_{n}^{(n-1)}(x)
\end{array}\right)
$$

$\left[f_{i}^{(k)}\right.$ denotes the k-th derivative of $\left.f_{i}\right]$
Since $\left\{f_{1}, \ldots f_{n}\right\}$ is linearly dependent, there exist constants $\left\{a_{1}, \ldots a_{n}\right\}$ with

$$
\left(a_{1}, \ldots, a_{n}\right) \neq(0, \ldots, 0)\left[\begin{array}{l}
\text { meaning not all } \tag{4}\\
\text { ais are } 0
\end{array}\right]
$$

Such that $a_{1} f_{1}(x)+\cdots+a_{n} f_{n}^{(x)}=\frac{0}{\text { for all } x \in \mathbb{R}}$

Differentiating (4) $(n-1)$-times, we get:

$$
\begin{aligned}
& a_{1} f_{1}(x)+\quad-\quad+a_{n} f_{n}(x)=0 \\
& a_{1} f_{1}^{\prime}(x)+\cdots+a_{n} f_{L}^{\prime}(x)=0 \\
& a_{1} f_{1}^{(n-1)}+\cdots+a_{n} f_{n}^{(n-1)}=0 \int^{(x)} \\
& \left.\Rightarrow \left\lvert\, \begin{array}{lll}
f_{1}(x) & f_{2}(x) & \cdots \\
f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots \\
f_{n}(x) \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)} & (x) \cdots f_{n}^{(n-1)}(x)
\end{array}\right.\right)\left|\begin{array}{l}
a_{1} \\
a_{2} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right|=0
\end{aligned}
$$

for all $x \in \mathbb{R}$.
Now, for any $x \in \mathbb{R}$, the above system of linear equations admit a non-trivial solution $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \neq(0,0,-\cdots, 0)$
Hence, $\left.\quad \operatorname{det}\left(\begin{array}{lll}f_{1}(x) f_{2}(x) & \cdots & f_{n}(x) \\ - & - & \\ f_{1}^{(n-1)}(x) f_{2}^{(n-1)}(x) & \cdots & f_{n}^{(n-1)}(x)\end{array}\right)=01\right]$
for every $x \in \mathbb{R}$.

We define:

$$
\begin{aligned}
& W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x) \\
& =\operatorname{det}\binom{f_{1}(x) \cdots \cdots f_{n}(x)}{f_{1}^{(n-1)}(x) \cdots f_{n}^{(n-1)}(x)}
\end{aligned}
$$

The above argument proves that :
Theorem: If $\left\{f_{1}, \ldots, f_{2}\right\}$ is a linear /y dependent ${ }_{r}^{\text {set }}$ of smooth functions,
then $W\left(f_{11}, f_{n}\right)(x)=0$, for all $x \in \mathbb{R}$. Equivalent /y if the function $W\left(f_{1}, \ldots, f_{n}\right)(x)$ is not identically zero, then the functions $\left\{f_{1}, \ldots, f_{n}\right\}$ is linearly independent.

We now use this theorem to show that the functions $\left\{e^{r_{1} x}, e^{r_{2} \times}\right\}$ (where $r_{1} \neq r_{2}$) and $\left\{e^{r x}, x e^{r x}\right\}$ are linearly independent over R.

A simple computation shows that

$$
\begin{aligned}
& W\left(e^{r_{1}, x} e^{r_{2} x}\right)(x)=\left|\begin{array}{ll}
e^{r_{1} x} & e^{r_{2} x} \\
r_{1} e^{r_{1} x} & r_{2} e^{r_{2}}
\end{array}\right| \\
&=\left(r_{2}-r_{1}\right) e^{\left(r_{1}+r_{2}\right) x} \\
&\binom{\text { rote that } \left.r_{2}-r_{1} \neq 0\right)}{e^{\left(r_{2}-r_{1}\right) x} \neq 0} \neq 0, \text { for all } x \in \mathbb{R}
\end{aligned}
$$

Thus, $W\left(e^{r_{1} x}, e^{r_{2} x}\right)(x)$ is not identically zero (in fact, never zero) and hence $\left\{e^{r_{1} x}, e^{r_{2} x}\right\}$ is a linearly independent set.

I leave it to you show (by a simitar computation) that $W\left(e^{r x}, x \cdot e^{x}\right)(x)$ is not identically zero and hence $\left\{e^{r x}, x e^{r x}\right\}$ is a linearly independent setThis proves that for any linear and order diff egg. (with constant coeff.)

$$
\left(D^{2}+P D+9\right)(y)=0
$$

the Solution space S admits a
basis $\left\{e^{r_{1},}, e^{r_{2} x}\right\}\left\{\begin{array}{l}\text { when } r_{1}, r_{2} \text { are two } \\ \text { distinct roots of } \\ x^{2}+p x+q=0\end{array}\right]$
or $\left\{e^{r-x}, x e^{r-x} \int_{-}\left[\begin{array}{l}\text { when } r \text { is the unique } \\ \frac{\text { root of }}{x^{2}+p x+q=0}\end{array}\right]\right.$
In either case, $\operatorname{dim}(S)=2$
$=$ order of the diff.eqn.

We have now completed ow s analysis of solutions of and order linear diff equs. with constant coefficients.

Let us summarize our observation. For the diff equation $\left.\left(D^{2}+P D+q\right)(y)=0\right)$ let the roots of the quadratic eqn.

$$
\begin{aligned}
& x^{2}+p x+q=0 \quad b e \\
& \left\{r_{1} r_{2}\right\}
\end{aligned}
$$

Case-I: $\quad\left(r_{1}, r_{2} \in \mathbb{R}, r_{1} \neq r_{2}\right)$.
The general Solution in this case is:

$$
y=A e^{r_{1} x}+B e^{r_{2} x} .
$$

$\frac{\text { case-II: }\left(r_{1}, r_{2} \in R_{1}, r_{1}=r_{2}\right)}{\text { The general solution is: }}$
The general solution is:

$$
y=A e^{r_{1} x}+B x e^{r_{1} x} \text {. }
$$

Case-脌: $\left(r_{1}, r_{2}\right.$ are complex conjugate)
Let $r_{1}=\alpha+i \beta, r_{2}=\alpha-i \beta$, where

$$
\alpha, \beta \in \mathbb{R} .
$$

The general solution in this case is:

$$
\begin{aligned}
y & =A e^{g_{1} x}+B e^{r_{2} x} \\
& =A e^{(\alpha+i \beta) x}+B e^{(\alpha-i \beta) x} \\
& =A e^{\alpha x}(\cos \beta x+i \sin \beta x)+B e^{\alpha x}(\cos \beta x-i \sin \beta x) \\
& =e^{\alpha x} \cos \beta x(A+B)+e^{\alpha x} \sin \beta x(i A-i B) \\
& =\widetilde{A} e^{\alpha x} \cos \beta x+\widetilde{B} e^{\alpha x} \sin \beta x \\
& =e^{\alpha x}(\widetilde{A} \cos (\beta x)+\widetilde{B} \sin (\beta x))
\end{aligned}
$$

Finally if we have an initial-value problem:

$$
\begin{gathered}
\left\{\left(D^{2}+P D+q\right)(y)=0\right. \\
y^{\prime}\left(\alpha_{1}\right)=\beta_{1}, y\left(\alpha_{1}\right)=\beta_{2} \\
\text { ar }^{2} \\
\left(D^{2}+P D+q\right)(y)=0 \\
y\left(\alpha_{1}\right)=\beta_{1} \quad y\left(\alpha_{2}\right)=\beta_{2}
\end{gathered}
$$

(or Some other Condition), then well can use these conditions to find tale constants and get a particular solution.

Of course, all that we did so far, can be generalized to solve an nth order linear diff. equ. with constant coefficients. Since the generalization is straightforward, well skip the details.

A bit moreonwronskians.
Recall that a set of smooth (or sufficiently diff.) functions is linearly independent (over $\mathbb{R})$ if their wronskian $W\left(f_{1}, \cdots f_{n}\right)(x)$ is not identically zero on \mathbb{R}.

A natural question arises: if $w\left(f_{1}, \cdots, f_{n}(x)\right.$ is identically zero on \mathbb{R}, does, it follow that $\left\{f_{1, \ldots} t_{n}\right\}$ is a linearly dependent set?

The answer is, unfortunately, no!
In a homework Problem, you'll prove that the functions
$\left\{x^{2}, x|x|\right\}$ have vanishing Wronskian on \mathbb{R}, but they are linearly indepem dent.

A usual approach in mathematics is to hope for the best, but not to give up if the best is too good to hold!

Now, we have that:

$$
\left\{\begin{array}{c}
\text { Wronkian } \\
\text { vanishing } \\
\text { identically }
\end{array} \left\lvert\, \stackrel{\text { implies }}{\frac{\text { doesnot }}{\text { recessosity }}} \underset{\begin{array}{c}
\text { imply }
\end{array}}{\sum}\left\{\begin{array}{l}
\text { Linear } \\
\text { dependence }
\end{array}\right\}\right.\right.
$$

can we come up with a condition (Ω)
Such that:

The answer is Yes!
For two functions f_{1}, f_{2}, the condition (Ω) is Particularly Simple.

Theorem:
differentiable
Let f_{1}, f_{2} be real, functions such that $f_{1}(x) \neq 0$, for all $x \in \mathbb{R}$. (i.e. f_{1} docsnot Vanish at any point).

If $W\left(f_{1}, f_{2}\right)(x)=0$, for all $x \in \mathbb{R}$ then $\left\{f_{1}, f_{2}\right\}$ are linearly dependent.
Proof: The condition

$$
\begin{aligned}
& \quad w\left(f_{1}, f_{2}\right)(x)=0 \quad \text { means } \\
& \operatorname{det} \left\lvert\, \begin{array}{cc}
f_{1}(x) & f_{2}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) \mid=0 \text {, for all } \\
\Rightarrow \quad f_{1}(x) f_{2}^{\prime}(x)-f_{2}(x) f_{1}^{\prime}(x)=0
\end{array}\right.
\end{aligned}
$$

$$
\text { for all } x \in \mathbb{R}
$$

$$
\begin{aligned}
\Rightarrow \frac{f_{1}(x) f_{2}^{\prime}(x)-f_{2}(x) f_{1}^{\prime}(x)}{\left(f_{1}(x)\right)^{2}} & =0, \\
& f o r ~ a l l
\end{aligned}
$$

$$
x \in \mathbb{R}
$$

Dividing by $\left(f_{1}(x)\right)^{2}$ makes sense because $f_{1}(-x) \neq 0$, for all $x \in \mathbb{R})$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x}\left(\frac{f_{2}(x)}{f_{1}(x)}\right)=0, \int_{\text {for all } x \in \mathbb{R}} \text { of differentiation } \\
& \Rightarrow \frac{f_{2}(x)}{f_{1}(x)}=c, \text { for some } C \in \mathbb{R} \\
& \Rightarrow f_{2}(x)=C f_{1}(x) .
\end{aligned}
$$

This shows that $\left\{f_{1}(x), f_{2}(x) \|\right\}$ is a linearly dependent set of functions.
Remark: In the case of two functions $\left\{f_{1,} f_{2}\right\}$, extra condition (Ω) is that $f_{1}(x) \neq 0$, for all $x \in \mathbb{R}$.

The general answer to the question is given in the following theorem.
Theorem: Let $\left\{f_{1}(x), f_{2}(x) \ldots, f_{n}(x)\right\}$ be (n-1)times differentiable functions. suppose that:

Laplace transforms

For a function $f:[0,+\infty) \rightarrow \mathbb{R}$ satisfying some suitable growth Condition, the Laplace transform of, denoted by $\mathscr{L}[f]$ is another function

$$
\mathscr{L}[f](s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Since this is an improper integral, we must impose some 'slow growth' Condition on f to griarantee convergence of the integral.
The most basic example:
Let, $f:[0,+\infty) \rightarrow t^{R}$

$$
f(t)=e^{t}
$$

Then $\mathscr{L}[f](s)=\int_{0}^{\infty} e^{-s t} f(t) d t$

$$
\begin{aligned}
& \quad=\int_{0}^{\infty} e^{(a-s) t} d t \\
& =\lim _{T \rightarrow+\infty} \int_{0}^{T} e^{(a-s) t} d t \\
& =\int_{T \rightarrow+\infty}\left[\frac{e^{(a-s) t}}{(a-s)}\right]_{0}^{T} \text {, if } s \neq a
\end{aligned}
$$

$$
\begin{aligned}
& \int_{T \rightarrow+\infty}\left[\lim _{T}[t]_{0}^{T}\right. \\
& \text { ifs } a=5 \\
& =\left\{\begin{array}{l}
T \rightarrow+\infty \\
\lim _{T \rightarrow+\infty}\left[\frac{e^{(a-s) T}-1}{a-s}(T)\right.
\end{array}\right] \text {, if } S \neq a
\end{aligned}
$$

Now, the limits in the above improper exist only if $s>a$.
Therefore, $\mathscr{L}[f](s)$ is defined when $s>a$, and

$$
\mathcal{L}[f](s)=\frac{1}{s-a}<\text { for } s>a
$$

Well now see that under suitable conditions, computing the Laplace transform of $f^{(n)}$ is rather simple; in fact, well give an explicit formula for $\mathcal{L}[f(n)]$.

First let, $n=1$.
Now, $\mathcal{L}\left[f^{\prime}\right](s)=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t$
Using integration by parts, weave:

$$
\begin{aligned}
& \int e^{-s t} f^{\prime}(t) d t \\
& =e^{-s t} \int f^{\prime}(t) d t-\int\left(\frac{d}{d t}\left(e^{-s t}\right)\right)\left(\int f^{\prime}(t) d t\right) d t \\
& =e^{-s t} f(t)+s \int e^{-S t} f(t) d t .
\end{aligned}
$$

Therefore; $\mathcal{L}\left[f^{\prime}\right](s)=\lim _{T \rightarrow+\infty} \int_{0}^{T} e^{-s t} f^{\prime}(t) d t$

$$
\begin{aligned}
& =\lim _{T \rightarrow+\infty}\left(\left(e^{-S t} f(t)\right)_{0}^{\top}+S \int_{0}^{T} e^{-S t} f(t) d t\right) \\
& =\lim _{T \rightarrow+\infty}\left(\left.\frac{f(T)}{e^{S T}}-\frac{f(0)}{e^{0}}+S \int_{0}^{T} e^{-S t} \right\rvert\, f(t) d t\right)
\end{aligned}
$$

If we assume that $\mathscr{L}[f](s)$ exists; i.e. $\lim _{T \rightarrow+\infty} \int_{0}^{T} e^{-s t} f(t) d t$ is convergent
and f satisfying the "tame growth"

$$
\text { Condition: } \lim _{T \rightarrow+\infty} \frac{\theta^{(}(T)}{e^{S T}}=0
$$

(meaning that f grows sub-exponentiallyf
then $\mathscr{L}\left[f^{\prime}\right](s)=s \mathscr{L}[f](s)-f(0) \rightarrow *$
$U \sin g$ (*) on $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ we sett:

$$
\begin{aligned}
& \mathscr{L}\left[f^{\prime \prime}\right](s)=s \mathscr{L}\left[f^{\prime}\right](s)-f^{\prime}(0) \\
\Rightarrow & \mathscr{L}\left[f^{\prime \prime}\right](s)=s(s \mathscr{L}[f](s)-f(0))-f^{\prime}(0) \\
\Rightarrow & \mathscr{L}\left[f^{\prime \prime}\right](s)=s^{2} \mathscr{L}[f](s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

of course, we need to assume here that i) $\mathscr{L}[f](s)$ exists,

An inductive argument now shows that

$$
\begin{aligned}
\mathscr{L}\left[f^{(n)}\right](s)= & s^{n} \mathscr{L}[f](s)-s^{n-1} f(0) \\
& \cdots f^{(n-1)}(0)
\end{aligned}
$$

This gives ar formula for finding $\mathscr{L}[f(n)]$ directly from $\mathscr{L}[f]$.

It'll also be useful to find a formula for the integral of a function f in terms of $\mathscr{L}[f]$.
to do so, set

$$
y:=\int_{0}^{t} f(t) d t
$$

Applying (*) on g, weive:

$$
\begin{aligned}
& \mathscr{L}\left[g^{\prime}\right](S)=S \mathscr{L}[\mathcal{g}](S)-g(0) \\
& \Rightarrow \mathscr{L}[f](s)=s \mathscr{L}\left[\int_{0}^{t} f(u) d u\right](s)-\int_{0}^{0} f(u) d u \\
& \text { Fundamental tum. } \\
& \text { of Calculus: } g^{\prime}=f \\
& \left.\left.\Rightarrow \mathscr{L} \int_{0}^{t} f(u) d L\right]=\frac{1}{s} \mathscr{L}[f](s)\right] \rightarrow \underset{x+}{o d}
\end{aligned}
$$

Formulas * and ** can be used to compute various other laplace transforms. Let's compute $\mathcal{L}](s)[f]$, where

$$
\begin{aligned}
& f(t)=t . \\
& \mathscr{L}[f](s)=\int_{0}^{+\infty} e^{-s t} f(t) d t, \quad S>0 \\
& =\int_{0}^{\infty} t e^{-5 t} d t \\
& =\lim _{T \rightarrow+\infty} \int_{0}^{T}\left(t e^{-5 t}\right) d t \\
& =\lim _{t \rightarrow+\infty}\left(\frac{t e^{-s t}}{(-s)}+\frac{1}{s} \int e^{-s t} d t\right)_{\partial} \\
& =\lim _{T \rightarrow+\infty}\left(\frac{-t}{s} e^{-s t}-\frac{1}{s^{2}} e^{-s t}\right)^{T} \\
& =\lim _{T \rightarrow+\infty}\left(\left(\frac{-T}{S e^{S T}}-\frac{1}{S^{2} e^{S T}}\right)-\left(-0-\frac{11}{S^{2}} e^{0}\right)\right)
\end{aligned}
$$

Applying ** on this, we set:

$$
\begin{aligned}
& \mathscr{L}\left[\int_{0}^{t} u d u\right]=\frac{1}{s} \mathscr{L}[t](s) \\
& \Rightarrow \mathscr{L}\left[\frac{t^{2}}{2}\right]=\frac{1}{s^{3}} \\
& \Rightarrow \mathscr{L}\left[t^{2}\right](s)=\frac{2}{s^{3}}
\end{aligned}
$$

Inductively weve:

$$
\mathscr{L}\left[t^{n}\right](s)=\frac{n!}{s^{n+1}}, s>0
$$

A fundamental property of Laplace transforms that follows directly from the definition is that:

$$
\mathscr{L}[a f+b g] \equiv a \mathcal{L}[f]+b \mathscr{L}[z]
$$

where $a, b \in \mathbb{R}$.
So, \mathcal{L} is a linear operator.

Now let: $f(t)=t e^{a t}$
So, $f^{\prime}(t)=a t e^{a t}+e^{a t}$

$$
\begin{aligned}
& \Rightarrow f^{\prime}(t)=a f(t)+e^{a t} \\
& \Rightarrow \mathscr{L}\left[f^{\prime}\right](s)=a \mathcal{L}[f](s)+\mathcal{L}\left[e^{a t}\right](\text { s })\left[\begin{array}{c}
\text { linear- } \\
\text { ity }
\end{array}\right]
\end{aligned}
$$

$\left(\begin{array}{l}(*)\end{array} \Rightarrow s \mathcal{L}[f](s)-f(0)=a \mathcal{L}[f)(s)+\frac{11}{s+a}+\right.$

$$
\begin{aligned}
& \Rightarrow(s-a) \mathscr{L}[f)(s)=\frac{1}{s-a}(f(0)=0) \\
& \left.\Rightarrow \mathscr{L}[f](s)=\frac{1}{(s-a)^{2}}, \text { coven } s>a\right) \\
&
\end{aligned}
$$

Using the above trick repeatedly: we set:

$$
\mathscr{L}\left[t^{n} e^{-a t}\right](s)=\frac{n!}{(s-a)^{n+1}} \int^{n} \operatorname{fos}^{n=0,1,2, \ldots} s>a
$$

In order to find $\mathscr{L}[\sin a t]$, well use a "complex" trick.

For $a \in \mathbb{R}$, we 'va:

$$
\begin{aligned}
& e^{\text {eat }}=\cos a t+\text { isinat } \\
& e^{-i a t}=\cos a t-i \sin a t .
\end{aligned}
$$

so, $\cos (a t)=\frac{e^{i a t}+e^{-i a t}}{2}$,

$$
\sin (a t)=\frac{e^{i a t}-e^{-i a t}}{2 i}
$$

By linearity of \mathscr{L}, we 're:

$$
\begin{aligned}
&=\frac{1}{2}\left(\frac{S-i a)(S+i}{S}\right. \\
& \mathcal{L}[\cos (a t)](S)=\frac{S}{S^{2}+a^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathscr{L}[\cos (a t)](s)=\frac{1}{2} \mathscr{L}\left[e^{i a t}\right](s)+\frac{1}{2} \mathscr{L}\left[e^{-i a t}\right](s) \\
& \quad=\frac{1}{2} \frac{1}{(s-i a)}+\frac{1}{2} \frac{1}{(s+i a)} \\
& =\frac{1}{2}\left(\frac{s+i \not a+s-i b}{(s-i a)(s+i a)}\right)
\end{aligned}
$$

Similarly, $\mathscr{L}[$ sinat $](s)$

$$
\begin{aligned}
& =\frac{1}{2 i}\left(y\left[e^{i a t}\right](s)-y\left[e^{-i a t}\right](s)\right) \\
& =\frac{1}{2 i}\left(\frac{1}{S-i a}-\frac{1}{s+i a}\right) \\
& =\frac{1}{2 i} \frac{2 i a}{\left(s^{2}+a^{2}\right)}=\frac{a}{s^{2}+a^{2}}
\end{aligned}
$$

So,

$$
\mathscr{L}[\sin a t](s)=\frac{a}{s^{2}+a^{2}}
$$

Finally, if

$$
f(z)=t \sin a t
$$

then,

$$
\begin{array}{rl||}
& f^{\prime}(t)=a t \cos a t+\sin a t{ }^{4} \\
\Rightarrow & \mathscr{L}\left[f^{\prime}\right](s)= \\
\Rightarrow & f^{\prime \prime}(t)=a \cos a t-a^{2} t \sin a t+a \cos a t \\
\Rightarrow & f^{\prime \prime}(t)=2 a \cos a t-a^{2} f(t) \\
\Rightarrow & \mathscr{L}\left[f^{\prime \prime}\right](s)=2 a \mathscr{L}[\cos a t](s)-a^{2} \\
(\operatorname{lin}[f]](s) \\
\Rightarrow & \{\mathscr{L})
\end{array}
$$

$$
\begin{aligned}
\Rightarrow & s^{2} \mathscr{L}[f)(s)-s f(0)-f^{\prime}(0)= \\
& \frac{2 a s}{s^{2}+a^{2}} \\
& -a^{2} \mathscr{L}[f](s) \\
\Rightarrow & \left(s^{2}+a^{2}\right) \mathscr{L}[f](s)-0-0=\frac{2 a S}{s^{2}+a^{2}} \\
\Rightarrow & \mathscr{L}[f](s)=\frac{2 a \cdot s}{\left(s^{2}+a^{2}\right)^{2}}
\end{aligned}
$$

Similarly wéve:

$$
\mathscr{L}[t \cos a t](s)=\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}
$$

Inverse Laplace transform:
If $\mathscr{L}[f]=g$, then we say that

$$
\mathcal{L}^{-1}[g]=f \text {, and } f \text { is }
$$

Called the inverse Laplace transform of g. For instance,

$$
\mathscr{L}^{-1}\left[\frac{1}{s^{2}}\right]=t .
$$

Now wire in a position to apply Laplace transforms to solve linear. differential equation.

Example: We want to solve

$$
\begin{array}{cc}
y^{\prime \prime}+y=e^{-t}+1, & y(0)=-1 \\
y^{\prime}(0)=1
\end{array}
$$

Assuming that the solution $y(t)$ Satis fies all the required growth Conditions, we 're:

$$
\begin{aligned}
& \mathscr{L}\left[y^{\prime \prime}+y\right](s)=\mathscr{L}\left[e^{-t}+1\right](s) \\
& \Rightarrow \mathscr{L}\left[y^{\prime \prime}\right)(s)+\mathscr{L}[y](s)=\mathscr{L}\left[e^{-t}\right](s)+\mathscr{L}[1](s) \\
& \Rightarrow s^{2} \mathscr{L}[y](s)-s y(0)-\mathscr{L}^{\prime}(0)+\mathscr{L}[y](s) \\
&=\frac{1}{s-(-1)}+\frac{1}{s} \\
& \Rightarrow\left(s^{2}+1\right) \mathscr{L}[y](s)+s-1=\frac{1}{s+1}+\frac{1}{s} \\
& \Rightarrow\left(s^{2}+1\right) \mathscr{L}[y](s)=\frac{1}{s+1}+\frac{1}{s}+1-1
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \mathscr{L}[y](s)=\frac{1}{(s+1)\left(s^{2}+1\right)}+\frac{1}{s\left(s^{2}+1\right)}+\frac{1}{s^{2}+1}-\frac{s}{s^{2}+1} \\
\Rightarrow & y(t)=\mathcal{L}^{-1}\left[\frac{1}{(s+1)\left(s^{2}+1\right)}\right](t)+\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+1\right)}\right)(t) \\
& +\mathcal{L}^{-1}\left[\frac{1}{s^{2}+1}\right](t)-\mathscr{L}^{-1}\left[\frac{s}{s^{2}+1}\right)(t)
\end{aligned}
$$

Now, $\mathcal{L}^{-1}\left[\frac{1}{s^{2}+1}\right](t)=\sin t<$

$$
\mathscr{L}^{-1}\left[\frac{s}{s^{2}+1}\right](t)=\cos t
$$

In order to find the other two inverse Laplace transforms, we want to use the method of partial fractions.

$$
\begin{aligned}
& \text { Let, } \frac{1}{(S+1)\left(S^{2}+1\right)}=\frac{A}{S+1}+\frac{B S+C}{S^{2}+1} \\
&=\frac{-A S^{2}+A+B S^{2}+B S+C S+C}{(S+1)\left(S^{2}+1\right)} \\
& \Rightarrow \frac{1}{(S+1)\left(S^{2}+1\right)}=\frac{S^{2}(A+B)+(B+C) S+(A+C)}{(S+1)\left(S^{2}+1\right)}
\end{aligned}
$$

Hence, $\quad A_{t}+B=0 \Rightarrow B=-A$.

$$
\begin{aligned}
& B+C=0 \Rightarrow C=-B=A \\
& A+C=1 \Rightarrow 2 A=1 \Rightarrow A=\frac{1}{2}+C=\frac{1}{2}, B=-\frac{1}{2}
\end{aligned}
$$

Hence, $\mathcal{L}^{-1}\left[\frac{1}{(s+1)\left(s^{2}+1\right)}\right](t)$

$$
\begin{aligned}
& =\frac{1}{2} \mathcal{Z}^{-1}\left[\frac{1}{(s+1)}\right](t)+\frac{1}{2} \mathcal{L}^{-1}\left[\frac{1}{s^{2}+1}\right](t) \\
& -\frac{1}{2} \mathcal{L}^{-1}\left[\frac{s}{s^{2}+1}\right](t) \\
& =\left(\frac{1}{2} e^{-t}+\frac{1}{2} \sin t-\frac{1}{2} \cos t\right)
\end{aligned}
$$

Finally let

$$
\begin{aligned}
& \text { inally, let } \frac{1}{S\left(S^{2}+1\right)}=\frac{A^{\prime}}{S}+\frac{B^{\prime} S+C^{\prime}}{S^{2}+1} \\
& \Rightarrow \frac{1}{S\left(S^{2}+1\right)}=\frac{A^{\prime} S^{2}+A^{\prime}+B^{\prime} S^{2}+C^{\prime} S+1}{S\left(S^{2}+1\right)} \\
& \text { So, } A^{\prime}+B^{\prime}=0 \Rightarrow B^{\prime}=-A^{\prime} \\
& C^{\prime}=0, A^{\prime}=1,50 B^{\prime}=-1 .
\end{aligned}
$$

There fore,

$$
\begin{gathered}
{\left[\mathcal{L}^{1}\left[\frac{1}{s\left(s^{2}+1\right)}\right](t)=\mathscr{L}^{+} \cdot\left[\frac{1}{s}\right](t)-\mathcal{L}^{11}\left[\frac{s}{s^{2}+1}\right](t)\right.} \\
=(1-\cos t)
\end{gathered}
$$

Hence, the solution of the initial value problem is:

$$
\begin{aligned}
y(t)= & \left(\frac{1}{2} e^{-t}+\frac{1}{2} \sin t-\frac{1}{2} \cos t\right)+(1-\cos t) \\
& +\sin t-\cos t \\
\Rightarrow y(t)= & \frac{1}{2} e^{-t}+\frac{3}{2} \sin t-\frac{5}{2} \cos t+1
\end{aligned}
$$

Remark: Note that all the Laplace transforms that wive computed so far are rational functions (i.e. ratio of two polynomials). Moreover, each of them are of the form

$$
\frac{p(s)}{q(s)} \text { where } \operatorname{deg}(p)<\operatorname{deg}(q) \text {. }
$$

Therefore, The functions that arose. as Laplace. transforms tend to l
zero as $s \rightarrow+\infty$. In other words, functions that arose as Laplace transforms decay to 0 as $s \rightarrow+\infty$.

Meaning of Laplace transform:
In order to explain the meaning the
of Laplace transform of a function it will be useful to analyze the inverse Laplace transform.

If the Laplace transform of fl l exists and

$$
\mathscr{L}[f]=F, \text { then }
$$

$(*) \rightarrow f(t)=\mathcal{L}^{-1}[F](t)=\frac{1}{2 \pi i} \lim _{T \rightarrow+\infty} \int_{\gamma-i T}^{\partial+i T} e^{s t} f(f) d s$
where $[\gamma-i T, \gamma+i T]$ lies in the domain of definition of F. The above formula, which gives an explicit way of computing
f from $\mathscr{L}[f]$ (ide. a function from its Laplace transform) is Called the Bromwich integral. Now recall the Fourier series of a 2π-periodic function \mathcal{F}

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

where $a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x ; n \geq 0$

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x .
$$

Under suitable Conditions, the Fourier series of f converges to f allowing us to view $f(x)$ as a
"Sum." of simpler 2T-pesiodic functions $\sin (n x)$ and $\cos (n x)$.
The coefficients a_{n}, b_{n} can be thought of as weights corresponding to these "Simpler building block function's" $(\sin (n x)$ and $\cos (n x))$ telling
the importance of $\sin (n x) / \cos (\ln x)$ in the decomposition of f. In In other words, a_{n} 's and bn's measure to what extent the function $f(x)$ "looks like" $\cos (n x)$ and $\sin (i n x)$.

The philosophy behind the definition of Laplace transforms is quite similar. Instead of comparing the function with trigon omeltric functions, Laplace transform coulipares f with exponential functions est.
The other difference is that we want to express f as an integral of various $e^{\text {st }}$ not as an infinite sum (in this sense, the Laplace transform is a continuous decomposition as opposed to the Fourier transform, which is a discrete decomposition).

The Browwich integral formula (* asserts that a function f can be written as a weighted continuous sum of the functions $e^{S T}$ with associated weight $F(s)=\dot{L}[f](s)=\int_{0}^{\infty} e^{-s t} f(t) d t$.

Hence; $\mathcal{L}[f](s)$ measures the extent to which $f(t)$ resembles the function $e^{s t}$, for any given s. \therefore By the Brovewich integral formula, f is equal to:

$$
(\text { Constant } 1)\binom{\text { importance }}{\text { of } \frac{e^{s t} \text { in the }}{\text { function } f(t)}} \times\left(\begin{array}{c}
\text { building block } \\
\text { function } \\
e^{\text {st }}
\end{array}\right)
$$

Therefore, f can be decomposed in terms of exponential functions $e^{\text {st }}$ such that $\mathcal{L}[f](s)$ is the weight associated to $e^{\text {St. }}$.

To conclude, let us mention a sufficient condition for existence of the Laplace transform of f

Theorem: If $f:[0,+\infty) \rightarrow \mathbb{R}$ is Continuous (or piecewise continuous) and if there exist $T, C, T \geq 0$ such that

$$
|f(t)| \leq M e^{c t}, \text { for all } t \geq T \text {, }
$$

then $L[f]$ exists. Moreover, we Have an estimate:

$$
|\mathscr{L}[f](s)| \leq \frac{T 1}{S-C}, \text { for } s \rightarrow c
$$

The proof is straightforward, the given "Sub-exponential growth" condition assures convergence of the improper integral. integral involved in the defition of Laplace transform.

However, there's a bonus; itlalso follows from the above estimate that.

$$
\lim _{s \rightarrow+\infty} \mathscr{L}[f](s)=0
$$

This means that the higher the value of S, the lesser the weight of in the decomposition of $f(t)$. This is intuitively clear; if f has sub-exponential growth, then f barely looks like" $e^{\text {st }}$ when s. is vest large.

Convolutions and
More techniques to find inverse
Laplace transforms
In the previous set of lecture notes, we saw how to compute Laplace transforms: of polynomials, exponential functions and simple trigonometric functions We also used the technique of partial fractions to compute inverse. laplace transforms of complicated rational functions. A combination of these methods along with a to formula for $\mathcal{L}\left[f^{(n)}\right)$ (Laplace transform of derivatives) allowed as to solve initial-value problems.

In these notes, weill discuss a couple of more powerful teehnignes of computing inverse Laplace trans forms.

Theorem:

$$
\frac{d}{d s}(\mathscr{L}[f](s))=-\mathscr{L}[t f(t)](s)
$$

Proof: Recall that

$$
\begin{aligned}
\text { Call that } & \mathscr{L}[f](s)
\end{aligned}=\int_{0}^{\infty} e^{-S t} f(t) d t
$$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d s}(\mathscr{L}[f](s))=-\int_{0}^{\infty} e^{-s t} \cdot(t f(t)) d \\
& \left.\Rightarrow \frac{d}{d s}(\mathscr{L}[f](s))=-\mathscr{L}[t f(t)](s)\right]
\end{aligned}
$$

As application recall that

$$
\begin{aligned}
& \mathscr{L}\left[e^{a t}\right](s)=\frac{1}{5-a} \\
\Rightarrow & \frac{d}{d s}\left(\frac{1}{S-a}\right)=-\mathscr{L}\left[t e^{a t}\right](s) \\
\Rightarrow & \mathcal{L}\left[t e^{a t}\right] \frac{1}{(s) a} \frac{1}{(S-a)^{2}} .
\end{aligned}
$$

Repeating this argument, we get:

$$
\begin{array}{r}
\left.\mathscr{L}\left[t^{n} e^{a-t}\right](s)=\frac{n!}{(s-a)^{n+1},} \quad n=0,1\right] \\
s>a
\end{array}
$$

Similarly, if $f(t)=$ Sinat, then

$$
\begin{align*}
& \text { then } \mathscr{L}[f](s)=\frac{a}{s^{2}+a^{2}} \\
& \Rightarrow \frac{d}{d s}\left(\frac{a}{s^{2}+a^{2}}\right)=-\mathscr{L}[t \sin a t)(s) \tag{s}\\
& \Rightarrow \mathscr{L}[t \sin a t](s)=-\left(\frac{-a \cdot(2 s)}{\left(s^{2}+a^{2}\right)^{2}}\right) \\
& \Rightarrow \mathscr{L}[t \sin a t](s)=\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}
\end{align*}
$$

Putting $f(t)=\cos (a t)$ we get:

$$
\mathscr{L}[t \cos a t](t)=\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}
$$

our next goal is to answer the following question:
(If $\mathcal{L}[f](s)=F(s)$ and $\mathscr{L}[g](s)=G(s)$, ow at is $\mathscr{L}^{-1}[F G]{ }_{0}^{2}$

To answer this question, well have to define another strange object, whose meaning will be discussed later.

If f and g are integrable functions, we define their convolution $f * g \|$ as a function:

$$
(f * g)(t)=\int_{0}^{t} f(u) g(t-u) d u
$$

We have the following theorem:
Theorem: If fig are integrable and if $\mathcal{L}(f), \mathcal{L}[g]$ exist, then

$$
\begin{aligned}
& \text { i) } f * g=g * f, \\
& \text {-i } \quad \mathscr{L}[f * g](s)=\mathscr{L}[f](s) \cdot \mathscr{L}[g \|(s)
\end{aligned}
$$

Therefore, if $\mathscr{L}[f]=F$ and $\mathscr{L}[2]=G$, then

$$
\mathcal{L}^{-1}[F G]=f * g
$$

Computations:
(1) Let, $f(t)=t, g(t)=\cos t, \quad t \geq 0$.

$$
\begin{aligned}
& (f * g)(t)=\int_{0}^{t} f(u) \partial(t-u) d u \\
= & \int_{0}^{t} u \cos (t-u) d u \\
= & {\left[-u \sin (t-u)+\int \sin (t-u) d u\right.} \\
= & {[-u \sin (t-u)+\cos (t-u)] t } \\
= & (-t \sin (t-t)+\cos (t-t))-(-0 \sin (t-0) \\
= & 1-(\cos t)=1-\cos t .
\end{aligned}
$$

Now, $\mathscr{L}[t](s)=\frac{1}{s^{2}}, \mathscr{L}[\cos t](s)=\frac{s}{s^{2}+1}$

So, $\mathscr{L}^{-1}\left[\frac{1}{s^{2}} \cdot \frac{s}{s^{2}+1}\right](t)=(f * 2)(t)$

$$
\Rightarrow x^{-1}\left[\frac{1}{s\left(s^{2}+1\right)}\right](t)-(1-\cos t)
$$

The could Prove the above formula using partial fractions too
(2) Now we want to find $\mathscr{L}^{-1}\left[\frac{e^{-2 s}}{S\left(s^{2}+q\right)}\right]$

Recall that $\mathscr{L}[\sin 2 z](s)=\frac{2}{s^{2}+4}$.
USing the formula

$$
\mathscr{L}\left[\int_{0}^{t} f(u) d u\right](s)=\frac{1}{s} \mathscr{L}[f](s)
$$

with $f(t)=\frac{\sin 2 t}{2}$, we'get:

$$
\begin{aligned}
& \mathscr{L}\left[\int_{0}^{t} \frac{\sin 2 u}{2} d u\right](s)=\frac{1}{s} \cdot \mathscr{L} \cdot\left[\frac{\sin 2 t}{2}\right](S) \\
\Rightarrow & \mathcal{L}\left[\left(\frac{-\cos 2 u}{4}\right)_{0}^{t}\right](S)=\frac{1}{s} \cdot \frac{1}{s^{2}+4}
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow \mathscr{L}\left[\frac{-\cos 2 t}{4}+\frac{1}{4}\right](s)=\frac{1}{s\left(s^{2}+4\right)} \\
& \Rightarrow \mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+4\right)}\right](t)=\frac{1-\cos 2 t}{8} \\
& \Rightarrow \mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+4\right)}\right](t)=\frac{1}{2} \sin ^{2}(t) \rightarrow \tag{4}
\end{align*}
$$

We now use another formula that's easy to prove:
(B) $\rightarrow \mathscr{L}[f(t-a)](s)=\mathscr{L}[f](s) \cdot e^{-a s}$. (aso)
Therefore, by (A) and (B), we've:

$$
\begin{aligned}
& \mathcal{L}\left[\frac{1}{2} \sin ^{2}(t-2)\right](s) \\
& =\frac{e^{-2 s}}{s\left(s^{2}+4\right)} \\
\Rightarrow & \mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s\left(s^{2}+4\right)}\right](t)=\frac{1}{2} \sin ^{2}(t-2)
\end{aligned}
$$

(3) we want to solve the initial value problem:

$$
y^{\prime}-y=\int_{0}^{t} y(u) d u, y(0)=1
$$

Let $y(t)$ be the solution; ie.

$$
\begin{aligned}
& y^{\prime}(t)-y(t)=\int_{0}^{t} y(u) d u \\
& \Rightarrow \mathscr{L}\left[y^{\prime}\right](s)-\mathcal{L}[y](s)=\mathscr{L}\left[\int_{0}^{t} \sqrt{0}(u) d u \|\right] \\
& \Rightarrow \quad s \mathscr{L}[y](s)-y(0)-\mathcal{L}[y](s)=\frac{1}{s} \mathscr{L}[y](s) \\
& \Rightarrow\left(s-1-\frac{1}{s}\right) \mathcal{L}[y](s)=y(0) \\
& \Rightarrow \frac{s^{2}-s-1}{s} \mathcal{L}[y](s)=1 \\
& \Rightarrow \dot{L}[y](S)=\frac{S}{S^{2}-S-1}=\frac{S}{\left(S-\left(\frac{1+\sqrt{5}}{2}\right)\left(S-\left(\frac{1-\sqrt{5}}{2}\right)\right)\right.}
\end{aligned}
$$

Let $\frac{S}{\left(S-\left(\frac{1+\sqrt{5}}{2}\right)\left(S-\frac{(1-\sqrt{5}}{2}\right)\right)}=\frac{A}{\left(S-\left(\frac{1+\sqrt{5}}{2}\right)\right)}+\frac{B}{\left(S-\left(\frac{1-\sqrt{5}}{2}\right)\right)}$

$$
\Rightarrow S=A S+B S-A\left(\frac{1-\sqrt{5}}{2}\right)-B\left(\frac{1+\sqrt{5}}{2}\right)
$$

$$
\begin{aligned}
& \Rightarrow / A+B=1 \\
& \Rightarrow A\left(\frac{1-\sqrt{5}}{2}\right)+B\left(\frac{1+\sqrt{5}}{2}\right)=0 \\
& \Rightarrow B(\sqrt{5}+1)=A(\sqrt{5}-1), \quad B=1-A \\
& \Rightarrow \quad B=A(\sqrt{5}-1) \quad, \quad B=1-A \\
& \Rightarrow B=A \frac{(\sqrt{5}-1)^{2}}{4}, \quad B=1-A \\
& \Rightarrow 1-A=A\left(\frac{6-2 \sqrt{5}}{8}\right), B=1-A \\
& \Rightarrow 1-A=A\left(\frac{3-\sqrt{5}}{2}\right), \quad B=1-A \\
& \Rightarrow 2-2 A=3 A-\sqrt{5} A, \quad B=1-A \\
& \Rightarrow 2=5 A-\sqrt{5 A} \quad B=1-A \\
& \Rightarrow 2=A \sqrt{5}(\sqrt{5}-1) \quad ; \quad B=1-A \\
& \Rightarrow A=\frac{2}{\sqrt{5}(\sqrt{5}-1)} \quad, \quad B=1-A \\
& \Rightarrow A=\frac{2(\sqrt{5}+1) \sqrt{5}}{4.5}, \quad B=1-A
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow A=\frac{\sqrt{5}(\sqrt{5}+1)}{10}, B=1-A \\
\Rightarrow A=\frac{1}{2}+\frac{\sqrt{5}}{10}, & B=1-\frac{1}{2}-\frac{\sqrt{5}}{10} \\
\Rightarrow A=\left(\frac{1}{2}+\frac{\sqrt{5}}{10}\right), & B=\left(\frac{1}{2}-\frac{\sqrt{5}}{10}\right)
\end{array}
$$

Thus, $\mathcal{L}[y(t)](s)=\left(\frac{1}{2}+\frac{\sqrt{5}}{10}\right) \cdot \frac{1}{\left(S-\left(\frac{1+\sqrt{5}}{2}\right)\right)}$

$$
+\left(\frac{1}{2}-\frac{\sqrt{5}}{10}\right) \cdot\left(\frac{1}{s-\left(\frac{1-\sqrt{5}}{2}\right)}\right)
$$

$$
\begin{aligned}
\Rightarrow & \mathscr{L}[y(t)](s)= \\
& \left(\frac{1}{2}+\frac{\sqrt{5}}{10}\right) \mathscr{L}\left[e^{\left(\frac{1+\sqrt{5}}{2}\right) t}\right](s) \\
& +\left(\frac{1}{2}-\frac{\sqrt{5}}{10}\right) \mathscr{L}\left[e^{\frac{(1-\sqrt{5})}{2} t}\right](5)
\end{aligned}
$$

$$
\Rightarrow Y(t)=\left(\frac{1}{2}+\frac{\sqrt{5}}{10}\right) e^{\left(\frac{1+\sqrt{5}}{2}\right) t}
$$

$$
+\left(\frac{1}{2}-\frac{\sqrt{5}}{10}\right) e^{\left(\frac{1-\sqrt{5}}{2}\right) t}
$$

What does convolution. (or convolving two functions) mean?

Let us first define convolution for two integrable real functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ (note that $f i g$ are defined on all of \mathbb{R}, not inst on $[0,+\infty)$.

Then, $(f * g)(t)=\int_{-\infty}^{\infty} f(t-u) g(u) d d$

In what follows, we will see that convolving a function f with a suitably chosen "peaking" sequence of functions If $($ as $\delta \rightarrow 0)$
Yields a smooth approximation of f.ll suppose the f is a fairly irregular (R.8. Non differentiable) function and we want to do "Calculus" with f. clearly non-differentiability of f is a maior obstruction to performing differential calculus on f. so our goal is to replace f by a differentiable function f such that:
i) f_{δ} and f are very close (so we don't change f too much), and
ii) f_{d} is differentiable.

One way of constructing such a function f_{f} is to apply a moving average formula. For $f>0$ small enough, we define:

$$
\frac{f_{\delta}(t)=\frac{1}{2 \delta} \int^{t+\delta} f(u) d u}{t-\delta}
$$

Intuitively we are considering the average value of f locally near t. since f_{f} is defined as an integral,
the fundamental theorem of Calculus proves that f_{δ} is differentiable and

$$
\left(f_{\delta}\right)^{\prime}(t)=\frac{f(t+\delta)-f(t-\delta)}{2 \delta}
$$

Moreover, if we assume that f is continuous at t, then for any presassigned $\varepsilon>0$, there exists a $\delta>0$ such that

$$
|f(t)-f(u)|<\varepsilon \text {, whenever }|t-u|<\tilde{f}
$$

Thus, $\left|f_{f}(t)-f(t)\right|$

$$
=\left|\frac{1}{2 \delta} \int_{t-\delta}^{t+\delta} f(u) d u-\frac{1}{2 d f} \int_{t-\delta}^{t+\delta} f(t) d u\right|
$$

$$
\begin{aligned}
& =\left.\frac{1}{2 f}\right|_{t-\delta} ^{t+\delta}(f(u)-f(t) d u \mid \\
& \leq \frac{1}{2 \delta} \int_{t-\delta}^{t+\delta}|f(u)-f(t)| d u \\
& \leq \frac{1}{2 \delta} \int_{t-\delta}^{t+\delta} \varepsilon d u \quad[\text { whereof } \delta<\delta] \\
& =\Sigma .
\end{aligned}
$$

Thus, whenever $0<\delta<\widehat{\delta}$ we. have that:

$$
\left|f_{f}(t)-f(t)\right|<\varepsilon
$$

This means that $\lim f_{f}(t)=f(t)$,

$$
\delta \rightarrow 0
$$

In other words, wive showed that ow r moving average formula produces a smooth approximation

$$
f_{\delta} \text { of } f .\left[\begin{array}{l}
\text { Heres smooth means } \\
\text { differentiable. }
\end{array}\right]
$$

Let us define the function:

$$
\begin{aligned}
& q_{\delta}: \mathbb{R} \rightarrow \mathbb{R} \\
& q_{\delta}(u)= \begin{cases}\frac{1}{2 \delta} & \text {, if }-\delta \leq u \leq \delta \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

for any $\delta>0$.
The crucid observation is that f_{f} can be written as the convolution of f with Q_{δ} :

$$
\left.\begin{array}{l}
\left(f * \varphi_{\delta}\right)(t)=\int_{-\infty}^{\infty} f(t-u) \varphi_{\delta}(u) d u \\
=\int_{-\delta}^{\delta} \frac{1}{2 \delta} f(t-u) d u \\
=\frac{1}{2 \delta} \int_{-\delta}^{\delta} f(t-u) d u \\
\text { since } \varphi_{\delta} \equiv 0 \\
\text { outside of } \\
{[-\delta, \delta]}
\end{array}\right]
$$

Substituting $t-u=x$, we get:

$$
\begin{aligned}
\left(f * \varphi_{\delta}\right)(t) & =\frac{1}{2 \delta}(-) \int_{t+\delta}^{t-\delta} f(x) d x \\
& \left.=\frac{1}{2 \delta} \int_{t-\delta}^{t+\delta} f(x) d x=f_{\delta}(t)\right)
\end{aligned}
$$

Thus, $f * \varphi_{\delta}=f_{f}$; i.e.

Convolving f with the functions A_{f} Yields a smooth approximation of f (essentially by blurring or taking a $l o \mathrm{cal}$ average of f at each point).
The functions $\left\{C_{\delta} \delta_{\delta \geqslant 0}\right.$ are also interesting in their own right. Here are the graphs of the functions Af for some values of f :

Evidently, as $\delta \rightarrow 0$, the function $Q \delta$ is non-zero only on a very tiny interval $[-\delta, \delta]$ and the value of I_{f} there is veg y large $\left(=\frac{1}{2 \delta}\right)$.

Thus, $\left\{q_{s}\right\}_{\delta>0}$ can be thought 10 as a peaking sequence of function's increasingly Supported on smaller intervals.

As: $\delta \rightarrow 0$ c were.

$$
\lim _{\delta \rightarrow 0} \varphi_{f}(t)=\left\{\begin{array}{c}
+\infty, \quad \text { if } t=0 \\
0 \text {, otherwise }
\end{array}\right.
$$

This "function" is called the Dithac delta function, except its not a function mathematically.

If such a "Dirac delta" function existed in a precise mathematical sense, it would have satisfied:

$$
\text { f* }(\text { Diracidelta })=f \text {;ire. }
$$

the "Dirac delta" function is a hypothetical identity element with respect to the convolution operation. Since it doesnot exist mathematically, we have to be happy with the "..."approximate identity" $\left\{\varphi_{f}{ }^{\prime}\right.$ which satisfy:

$$
f * \varphi_{\delta} \xrightarrow{\delta \rightarrow 0} f
$$

To conclude, let us mention that in practice, there is a better choice for the functions $\left\{\varphi_{f f}\right.$. We can choose $\left\{l_{f}\right\}$ to $b e$ an infinitely differentiable sequence of functions with the same peaking property:

$$
q f(x)=\left\{\begin{array}{c}
\frac{1}{\delta^{n}} e^{-1 /\left(1-\frac{|x|^{2}}{\delta^{2}}\right)},|x|<\delta \\
0, \quad|x| \geq \delta
\end{array}\right.
$$

one can check that each Of is infinitely differentiable. Their graphs look like:

$\binom{$ Support of Q_{δ} shrinks to 0 as }{ and $Q_{\delta}(0) \rightarrow+\infty$ as $(0) \rightarrow 0}$ These functions are called bump functions They also satisfy:

$$
\lim _{\delta \rightarrow 0}\left(f * \varphi_{\delta}\right)(t)=f(t), \quad \forall t \in \mathbb{R}
$$

Moreover, as Q_{f} is infinitely diff, it follows that each $\left(f * \varphi_{\delta}\right)$ is also infinitely differentiable.

Hence with these choices of \{ff we obtain an infinitely differentiable approximation of f via convolution.

Metric spaces and convergence of sequences/series

Deffi: (metric) nonempty
Let x be a^{\prime} set. A function

$$
d: X \times X \rightarrow \mathbb{R}^{+} \cup\{0\} \text { is called }
$$ a metric on x if d satisfies the following three conditions:

i) $d(a ; b) \geq 0$, and $d(a, b)=0$ if and only if $a=b$;
(ii) $d(a, b)=d(b, a) \quad$ (symmetry);
iii) $d(a, b) \leqslant d(a, c)+d(c, b)$
(triangle inequality).

$$
\forall a, b, c \in X \text {. }
$$

Intuitively, we think of d as a "distance" function between points of x.

Diffinlimetric space)
A non-empty set x endowed with a metric d is called a metric space.

Examples:
i) Let $x=\mathbb{R}$ or \mathbb{C}. we define
$d(a, b)=|a-b|$, where $1 \cdot 1$ is the usual absolute value. Then (x, α) is a metric space.
ii) Let $x=\mathbb{R}^{n}$ or c^{n}. We define

$$
\begin{aligned}
& d\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \cdots, b_{n}\right)\right) \\
& =\left(\sum_{i=1}^{n}\left|a_{i}-b_{i}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

Then (x, d) is a metric space (here the triangle equality follows from the classical (anchy-schworz inequality).

In what follows, we will see an - in important connection between inner products and. metrics.

Let V be a vector space with the inner product $<\cdot>$.

Recall that the norm of an element $u \in V \quad$ is defined as:

$$
\|u\|=\sqrt{\langle u, u\rangle}
$$

Now, V naturally becomes a metric space with respect to function $d: V \times V \rightarrow \mathbb{R}^{+} \cup\{0\}$ defined as:

$$
\begin{aligned}
d\left(u_{1}, u_{2}\right) & =\sqrt{u_{1}-u_{2} \|} \\
& =\sqrt{\left\langle u_{1}-u_{2}, u_{1}-u_{2}\right\rangle}
\end{aligned}
$$

$\left(\begin{array}{l}\text { It's easy to show that } d \text { satisfies } \\ \text { the defining properties of a }\end{array}\right.$ metric

Thus, every inner product space is a metric space.

For us, the most important example would be:

$$
V=M_{n}(\mathbb{R})
$$

We define an inner product on V :

$$
\langle A, B\rangle=\operatorname{tracc}\left(A^{*} B\right), A, B \in V .
$$

(Here, trace (A) of a matrix A denotes the sum of its diagonal entries

Again, it is straight-forwaid to check that this is an inner product.

Now, with respect to this inner product, we have

$$
\begin{aligned}
\|A\|^{2} & =t r\left(A^{*} A\right) \\
& =\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2} \text { where } A=\left(a_{i j)^{2}}\right)_{i, i=1}^{2}
\end{aligned}
$$

Therefore, V becomes a metric SPace with the metric:

$$
\begin{aligned}
d(A, B) & =\|A-B\| \\
& =\sqrt{\sum_{i, j=1}^{n}\left|Q_{i j}-b_{i j}\right|^{2}}
\end{aligned}
$$

where $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in V$.
The fact that d is a metric follows from the definition of II: Il and the fact that.

$$
\|A+B\| \leq\|A\|+\|B\|, \text { for a } \| A, B \in \mathcal{H}_{n}(\mathbb{R})
$$

A metric space is the ideal setting to talk about convergence of sequences and series.

In a general metric space (x, d), were the following definition:
Defr. (Convergence of sequences)
Let $\left\{x_{k}\right\}_{k}$ be a sequence in a metric space (x, d). We say that $\left\{x_{n}\right\}_{n}$ is. Convergent if there exists an element $x \in X$ such that

$$
d\left(x_{k}, x\right) \rightarrow 0 \text { as } k \rightarrow \infty
$$

(Think about it as the distance) of x_{k} from x going to 0 . In the metric space $\left(V=M_{n}(\mathbb{R}), d\right)$ with the metric defined above, convergence of a sequence of matrices $\left\{A_{1-1}\right\}_{k}$ to a matrix A means:

$$
d\left(A_{k}, A\right) \rightarrow 0
$$

(*) The precise definition is as follows: for any $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$. Such that

$$
d^{\prime}\left(x_{k}, x\right)<\varepsilon, \forall k \geq n_{0}
$$

i.e. $\left\|A_{k}-A\right\| \rightarrow 0$ as $k \rightarrow \infty$
ie. $\sum_{i, j=1}^{n}\left|a_{k}^{i, j}-a^{i, j}\right|^{2} \rightarrow 0$ as $k \rightarrow \infty$
i.e. $\left|a_{k}^{i j}-a^{i j j}\right| \rightarrow 0$ as $k \rightarrow \infty$, for $i, j=1,-1$ n
i.e. $\lim _{k \rightarrow \infty} a_{k}^{i, j}=a^{i, j}$, for all $i, j=1, \ldots n$.

Therefore, in $\left(\pi_{n}(R), d\right)$, a sequence of matrices $\left\{A_{k}\right\}_{k}$ converges to A if each entry of A_{k} converges to the corresponding entry of A.

Since $\operatorname{Tn}(l i k)$ is a vector space, we can talk about sums of matrices. Thus, it makes sense to talk about convergence of infinite sums too.
Detm (Convergence of Series):
i) In $\left(M_{n}(k), d\right), i$ a series $\sum_{k=1}^{\infty} A_{k}$ is convergent iff the sequence of

Partial sums $\left\{S_{k j}\right.$ where $S_{k}=A_{1}+\cdots+A_{k}$, is Convergent:
ii) A series $\sum_{k=1}^{\infty} A_{k}$ is called absolutely convergent if the series of real numbers $\sum_{K=1}^{\infty}\left\|A_{K}\right\|$ Converses

We need another important definition. Defy (Cauchy sequencers):

In a metric space (x, d), a sequence $\left\{x_{k j} d\right.$ is called cauchy. if

$$
d\left(x_{i}, x_{j}\right) \rightarrow 0 \text { as } i, j \rightarrow \infty
$$

ie. for every $\varepsilon>0$, there exists an $n_{0} \in \mathbb{N}$ such that

$$
d\left(x_{i}, x_{j}\right)<\varepsilon+\forall \quad i>j \geq n_{0}
$$

A Fundamental theorem:
Every Cauchy sequence of real numbers is convergent. conversely every convergent sequence is canctay.

Remark: Here, it's important to consider the set of real numbers. For instance, (Q, d) (where $d(x, y)=|x-y|)$ does not satisfy above
the theorem. In Particular, there are cauchy sequences of rational numbers that converge to irrationals; ie. outside of Q. Similarly, the open interval $(0,1)$ with the same absolute value metric does not satisfy the theorem either: the sequence $\left\{\frac{1}{n}\right\}$ is a cauchy sequence in $(0,1)$, but the limit point 0 lies outside of $(0,1)$.

Intuitively, the terms of a cauchy sequence eventually get very close to each other. But they may or may not get arbitrary close to a limit point; ie. the sequence may not converge.

Lemma: ∞
Let $\sum_{k=1}^{\infty} A_{k}$ be an absolutely Convergent series in $M_{n}(R)$. Then the sequence of partial Sums $\left\{S_{K}\right\}$, cohere $S_{K}=A_{1}+\cdots+A_{K}$, is a Cauchy sequence in $T X_{n}(R)$.
Proof: By assumption, the series $\sum_{k=1}\left\|A_{k}\right\|$ is convergent. Fix an $\sum>0$. X860, since $\sum_{k=1}^{\infty}\left\|A_{k}\right\|$ is conversenen, the sequence of partial sums of this series is convergent. More precisely, the sequence $\left\{\widetilde{S_{K}}\right\}$, where

$$
{\underset{S}{S}}^{S_{k}}\left\|A_{1}\right\|+\cdots+\left\|A_{k}\right\| \text { is convergent. }
$$

Since every convergent sequence is Cauchy, we have that $\left\{\widetilde{S}_{K}\right\}$ is a cauchy sequence. Thus, there exists an $n_{0} \in \mathbb{N}$ such

This means that:

$$
\begin{array}{r}
\\
\Rightarrow \left\lvert\, \begin{array}{r}
\left(\left\|A_{1}\right\|+\cdots+\left\|A_{j}\right\|+\left\|A_{j+1}\right\|+\cdots+\left\|A_{i}\right\|\right) \\
\\
-\left(\left\|A_{1}\right\|+\cdots+\left\|A_{j}\right\| \|\right) \mid<\varepsilon \\
\Rightarrow \quad \forall i j \geq \tilde{S}_{j} \mid<n_{0}
\end{array}\right. \\
\Rightarrow\left\|A_{j+1}\right\|+\cdots+\left\|A_{i}\right\|<\varepsilon, \forall i>j \| \geq n_{0}
\end{array}
$$

But then,

$$
\begin{aligned}
& \text { then, } d\left(S_{i}, S_{j}\right) \\
& =\left\|\left(A_{1}+\cdots+A_{j}+A_{j+1}+\cdots+A_{i}\right)-\left(A_{1}+\cdots+A_{j}\right)\right\| \\
& =\left\|A_{j+1}+\cdots+A_{i}\right\| \\
& \leq\left\|A_{j+1}\right\|+\cdots+\left\|A_{i}\right\|<\varepsilon, \forall i>j \geq n_{0} \\
& \\
& \quad\left\{S_{k j} \text { is a } \quad \forall \quad\right. \text { by }
\end{aligned}
$$

Thus, $\left\{S_{k}\right\}$ is a Cauchy sequence in $\operatorname{Mr}_{n}(\mathbb{R})$...

We continue with the terminology of the previous lemma.
The definition of the metric d on Mn (\mathbb{R}) implies that for a cauchy sequence $\left\{S_{k}\right\}$ in $\operatorname{Hr}_{n}(\mathbb{K})$, the (i, j)-the entries of $\left\langle S_{K}\right\rangle$ form a Cauchy sequence in \mathbb{R}. Since every cauchy sequence of real numbers has a limit, weave proved that:
Lemma: If the series $\sum_{K=1}^{\infty} A_{K}$ in $M_{n}(\mathbb{R})$ is absolutely convergent, then $\sum_{k=1}^{\sum} A_{k}$ is convergent.

In section 2.1 of the
book "Lie groups, Lie algebras, and representations by Brian C.Hall these analytic results are used to prove the existence of matrix exponential.
14. The connectedness of $\operatorname{SL}(n ; \mathbb{R})$. Using the polar decomposition of $\operatorname{SL}(n ; \mathbb{R})$ (Proposition 1.16) and the connectedness of $\mathrm{SO}(n)$ (Exercise 13), show that $\mathrm{SL}(n ; \mathbb{R})$ is connected.
Hint: Recall that if P is a real, symmetric matrix, then there exists a real, orthogonal matrix R_{1} such that $P=R_{1} D R_{1}^{-1}$, where D is diagonal.
15. The connectedness of $\mathrm{GL}(n ; \mathbb{R})^{+}$. Using the connectedness of $\operatorname{SL}(n ; \mathbb{R})$ (Exercise 14) show that $\mathrm{GL}(n ; \mathbb{R})^{+}$is connected.
16. If R is an element of $\mathrm{SO}(3)$, show that R must have an eigenvector with eigenvalue 1.
Hint: Since SO(3) $\subset \mathrm{SU}(3)$, every (real or complex) eigenvalue of R must have absolute value 1 .
17. Show that the set of translations is a normal subgroup of the Euclidean group $\mathbf{E}(n)$. Show that the quotient group $\mathbf{E}(n) /$ (translations) is isomorphic to $\mathrm{O}(n)$. (Assume Proposition 1.5.)
18. Let a be an irrational real number. Show that the set of numbers of the form $e^{2 \pi i n a}, n \in \mathbb{Z}$, is dense in S^{1}. (See Problem 1.)
19. Show that every continuous homomorphism Φ from \mathbb{R} to S^{1} is of the form $\Phi(x)=e^{i a x}$ for some $a \in \mathbb{R}$. (This shows in particular that every such homomorphism is smooth.)
20. Suppose $G \subset G \mathrm{GL}\left(n_{1} ; \mathbb{C}\right)$ and $H \subset \mathrm{GL}\left(n_{2} ; \mathbb{C}\right)$ are matrix Lie groups and that $\Phi: G \rightarrow H$ is a Lie group homomorphism. Then, the image of G under Φ is a subgroup of H and thus of $\mathrm{GL}\left(n_{2} ; \mathbb{C}\right)$. Is the image of G under Φ necessarily a matrix Lie group? Prove or give a counter-example.
21. Suppose P is a real, positive, symmetric matrix with determinant one. Show that there is a unique real, positive, symmetric matrix Q whose square is P.
Hint: The existence of Q was discussed in Section 1.7. To prove uniqueness, consider two real, positive, symmetric square roots Q_{1} and Q_{2} of P and show that the eigenspaces of both Q_{1} and Q_{2} coincide with the eigenspaces of P.

Lie Algebras and the Exponential Mapping

2.1 The Matrix Exponential

The exponential of a matrix plays a crucial role in the theory of Lie groups The exponential enters into the definition of the Lie algebra of a matrix Lie group (Section 2.5) and is the mechanism for passing information from the Lie algebra to the Lie group. Since many computations are done much more easily at the level of the Lie algebra, the exponential is indispensable in studying (matrix) Lie groups.

Let X be an $n \times n$ real or complex matrix. We wish to define the exponential of X, denoted e^{X} or $\exp X$, by the usual power series

$$
\begin{equation*}
e^{X}=\sum_{m=0}^{\infty} \frac{X^{m}}{m!} \tag{2.1}
\end{equation*}
$$

We will follow the convention of using letters such as X and Y for the variable in the matrix exponential.
Proposition 2.1. For any $n \times n$ real or complex matrix X, the series (2.1) converges. The matrix exponential e^{X} is a continuous function of X.

Before proving this, let us review some elementary analysis. Recall that the norm of a vector $x=\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{C}^{n} is defined to be

$$
\|x\|=\sqrt{\langle x, x\rangle}=\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right)^{1 / 2} .
$$

We now define the norm of a matrix by thinking of the space $M_{n}(\mathbb{C})$ of all $n \times n$ matrices as $\mathbb{C}^{n^{2}}$. This means that we define

$$
\begin{equation*}
\|X\|=\left(\sum_{k, l=1}^{n}\left|X_{k l}\right|^{2}\right)^{1 / 2} \tag{2.2}
\end{equation*}
$$

This norm satisfies the inequalities

$$
\begin{gather*}
\|X+Y\| \leq\|X\|+\|Y\| \tag{2.3}\\
\|X Y\| \leq\|X\|\|Y\| \tag{2.4}
\end{gather*}
$$

for all $X, Y \in M_{n}(\mathbb{C})$. The first of these inequalities is the triangle inequality and is a standard result from elementary analysis. The second of these inequalities follows from the Schwarz inequality (Exercise 1). If X_{m} is a sequence of matrices, then it is easy to see that X_{m} converges to a matrix X in the sense of Definition 1.3 if and only if $\left\|X_{m}-X\right\| \rightarrow 0$ as $m \rightarrow \infty$.

The norm (2.2) is called the Hilbert-Schmidt norm. There is another commonly used norm on the space of matrices, called the operator norm, whose definition is not relevant to us. It is easily shown that convergence in the Hilbert-Schmidt norm is equivalent to convergence in the operator norm. (This is true because we work with linear operators on the finite-dimensional space \mathbb{C}^{n}.) Furthermore, the operator norm also satisfies (2.3) and (2.4). Thus, it matters little whether we use the operator norm or the Hilbert-Schmidt norm.

A sequence X_{m} of matrices is said to be a Cauchy sequence if

$$
\left\|X_{m}-X_{l}\right\| \rightarrow 0
$$

as $m, l \rightarrow \infty$. Thinking of the space $M_{n}(\mathbb{C})$ of matrices as $\mathbb{C}^{n^{2}}$ and using a standard result from analysis, we have the following.

Proposition 2.2. If X_{m} is a Cauchy sequence in $M_{n}(\mathbb{C})$, then there exists a unique matrix X such that X_{m} converges to X.

That is, every Cauchy sequence in $M_{n}(\mathbb{C})$ converges.
Now, consider an infinite series whose terms are matrices:

$$
\begin{equation*}
X_{0}+X_{1}+X_{2}+\cdots \tag{2.5}
\end{equation*}
$$

If

$$
\sum_{m=0}^{\infty}\left\|X_{m}\right\|<\infty
$$

then the series (2.5) is said to converge absolutely. If a series converges absolutely, then it is not hard to show that the partial sums of the series form a Cauchy sequence, and, hence, by Proposition 2.2 , the series converges. That is, any series which converges absolutely also converges. (The converse is not true; a series of matrices can converge without converging absolutely.)

We now turn to the proof of Proposition 2.1.
Proof. In light of (2.4), we see that

$$
\left\|X^{m}\right\| \leq\|X\|^{m}
$$

and, hence,

$$
\sum_{m=0}^{\infty}\left\|\frac{X^{m}}{m!}\right\| \leq \sum_{m=0}^{\infty} \frac{\|X\|^{m}}{m!}=e^{\|X\|}<\infty
$$

Thus, the series (2.1) converges absolutely, and so it converges.
To show continuity, note that since X^{m} is a continuous function of X, the partial sums of (2.1) are continuous. However, it is easy to see that (2.1) converges uniformly on each set of the form $\{\|X\| \leq R\}$, and so the sum is, again, continuous

We now list some elementary properties of the matrix exponential.
Proposition 2.3. Let X and Y be arbitrary $n \times n$ matrices. Then, we have the following:

1. $e^{0}=I$.
2. $e^{0}=1$.
3. $\left(e^{X}\right)^{*}=e^{X^{*}}$.
4. e^{X} is invertible and $\left(e^{X}\right)^{-1}=e^{-X}$.
5. $e^{(\alpha+\beta) X}=e^{\alpha X} e^{\beta X}$ for all α and β in \mathbb{C}.
6. If $X Y=Y X$, then $e^{X+Y}=e^{X} e^{Y}=e^{Y} e^{X}$.
7. If C is invertible, then $e^{C X C^{-1}}=C e^{X} C^{-1}$.
8. $\left\|e^{X}\right\| \leq e^{\|X\|}$.

It is not true in general that $e^{X+Y}=e^{X} e^{Y}$, although, by Point 4 , it is true if X and Y commute. This is a crucial point, which we will consider in detail later. (See the Lie product formula in Section 2.4 and the Baker-CampbellHausdorff formula in Chapter 3.)
Proof. Point 1 is obvious and Point 2 follows from taking term-by-term adjoints of the series for e^{X}. Points 3 and 4 are special cases of Point 5 . To verify Point 5 , we simply multiply the power series term by term. (It is left to the reader to verify that this is legal.) Thus,

$$
e^{X} e^{Y}=\left(I+X+\frac{X^{2}}{2!}+\cdots\right)\left(I+Y+\frac{Y^{2}}{2!}+\cdots\right)
$$

Multiplying this out and collecting terms where the power of X plus the power of Y equals m, we get

$$
\begin{equation*}
e^{X} e^{Y}=\sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{X^{k}}{k!} \frac{Y^{m-k}}{(m-k)!}=\sum_{m=0}^{\infty} \frac{1}{m!} \sum_{k=0}^{m} \frac{m!}{k!(m-k)!} X^{k} Y^{m-k} \tag{2.6}
\end{equation*}
$$

Now, because (and only because) X and Y commute,

$$
(X+Y)^{m}=\sum_{k=0}^{m} \frac{m!}{k!(m-k)!} X^{k} Y^{m-k}
$$

and, thus, (2.6) becomes

$$
e^{X} e^{Y}=\sum_{m=0}^{\infty} \frac{1}{m!}(X+Y)^{m}=e^{X+Y}
$$

To prove Point 6 , simply note that

$$
\left(C X C^{-1}\right)^{m}=C X^{m} C^{-1}
$$

and, thus, the two sides of Point 6 are equal term by term
Point 7 is evident from the proof of Proposition 2.1.
Proposition 2.4. Let X be a $n \times n$ complex matrix. Then, $e^{t X}$ is a smooth curve in $M_{n}(\mathbb{C})$ and

$$
\frac{d}{d t} e^{t X}=X e^{t X}=e^{t X} X
$$

In particular,

$$
\left.\frac{d}{d t} e^{t X}\right|_{t=0}=X
$$

Proof. Differentiate the power series for $e^{t X}$ term by term..(This is permitted because, for each i and $j,\left(e^{t X}\right)_{i j}$ is given by a convergent power series in t, and it is a standard theorem that one can differentiate power series term by term.)

2.2 Computing the Exponential of a Matrix

We consider here methods for exponentiating general matrices. A special method for exponentiating 2×2 matrices is described in Exercises 6 and 7.

2.2.1 Case 1: X is diagonalizable

Suppose that X is an $n \times n$ real or complex matrix and that X is diagonalizable over \mathbb{C}; that is, there exists an invertible complex matrix C such that $X=$ $C D C^{-1}$, with

$$
D=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right)
$$

It is easily verified that e^{D} is the diagonal matrix with eigenvalues $e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}$, and so in light of Proposition 2.3, we have

$$
e^{X}=C\left(\begin{array}{ccc}
e^{\lambda_{1}} & & 0 \\
& \ddots & \\
0 & & e^{\lambda_{n}}
\end{array}\right) C^{-1}
$$

Thus, if we can explicitly diagonalize X, we can explicitly compute e^{X}. Note that if X is real, then although C may be complex and the λ_{k} 's may be complex, e^{X} must come out to be real, since each term in the series (2.1) is real.

For example, take

$$
X=\left(\begin{array}{cc}
0 & -a \\
a & 0
\end{array}\right)
$$

Then, the eigenvectors of X are $\binom{1}{i}$ and $\binom{i}{1}$, with eigenvalues $-i a$ and $i a$, respectively. Thus, the invertible matrix

$$
C=\left(\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right)
$$

maps the basis vectors $\binom{1}{0}$ and $\binom{0}{1}$ to the eigenvectors of X, and so (check) $C^{-1} X C$ is a diagonal matrix D. Thus, $X=C D C^{-1}$ and

$$
\begin{align*}
e^{X} & =\left(\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-i a} & 0 \\
0 & e^{i a}
\end{array}\right)\left(\begin{array}{cc}
1 / 2 & -i / 2 \\
-i / 2 & 1 / 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos a-\sin a \\
\sin a & \cos a
\end{array}\right) . \tag{2.7}
\end{align*}
$$

Note that explicitly if X (and hence a) is real, then e^{X} is real. See Exercise 6 for an alternative method of calculation.

2.2.2 Case 2: X is nilpotent

An $n \times n$ matrix X is said to be nilpotent if $X^{m}=0$ for some positive integer m. Of course, if $X^{m}=0$, then $X^{l}=0$ for all $l>m$. In this case, the series (2.1), which defines e^{X}, terminates after the first m terms, and so can be computed explicitly.

For example, let us compute e^{X}, where

$$
X=\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)
$$

Note that

$$
X^{2}=\left(\begin{array}{ccc}
0 & 0 & a c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and that $X^{3}=0$. Thus,

$$
e^{X}=\left(\begin{array}{llc}
1 a b+\frac{1}{2} a c \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

2.2.3 Case 3: X arbitrary

A general matrix X may be neither nilpotent nor diagonalizable. However, by Theorem B.6, every matrix X can be written (uniquely) in the form $X=$ $S+N$, with S diagonalizable, N nilpotent, and $S N=N S$. Then, since N and S commute,

$$
e^{X}=e^{S+N}=e^{S} e^{N}
$$

and e^{S} and e^{N} can be computed as in the two previous subsections.
For example, take

$$
X=\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)
$$

Then,

$$
X=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)+\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)
$$

The two terms clearly commute (since the first one is a multiple of the identity), and, so,

$$
e^{X}=\left(\begin{array}{cc}
e^{a} & 0 \\
0 & e^{a}
\end{array}\right)\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
e^{a} & e^{a} b \\
0 & e^{a}
\end{array}\right)
$$

2.3 The Matrix Logarithm

We wish to define a matrix logarithm, which should be an inverse function (to the extent possible) to the matrix exponential. Let us recall the situation for the logarithm of complex numbers, in order to see what is reasonable to expect in the matrix case. Since e^{z} is never zero, only nonzero numbers can have a logarithm. Every nonzero complex number can be written as e^{z} for some z, but the z is not unique. There is no continuous way to define the logarithm on the set of all nonzero complex numbers. The situation for matrices is similar. For any $X \in M_{n}(\mathbb{C}), e^{X}$ is invertible; therefore, only invertible matrices can possibly have a logarithm. We will see (Theorem 2.9) that every invertible matrix can be written as e^{X}, for some $X \in M_{n}(\mathbb{C})$. However, the X is not unique and there is no continuous way to define the matrix logarithm on the set of all invertible matrices.

The simplest way to define the matrix logarithm is by a power series. We recall how this works in the complex case.

Lemma 2.5. The function

$$
\begin{equation*}
\log z=\sum_{m=1}^{\infty}(-1)^{m+1} \frac{(z-1)^{m}}{m} \tag{2.8}
\end{equation*}
$$

is defined and analytic in a circle of radius 1 about $z=1$.
For all z with $|z-1|<1$,

$$
e^{\log z}=z
$$

For all u with $|u|<\log 2,\left|e^{u}-1\right|<1$ and

$$
\log e^{u}=u
$$

Proof. The usual logarithm for real, positive numbers satisfies

$$
\frac{d}{d x} \log (1-x)=\frac{-1}{1-x}=-\left(1+x+x^{2}+\cdots\right)
$$

for $|x|<1$. Integrating term by term and noting that $\log 1=0$ gives

$$
\log (1-x)=-\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\right)
$$

Taking $z=1-x$ (so that $x=1-z$), we have

$$
\begin{aligned}
\log z & =-\left((1-z)+\frac{(1-z)^{2}}{2}+\frac{(1-z)^{3}}{3}+\cdots\right) \\
& =\sum_{m=1}^{\infty}(-1)^{m+1} \frac{(z-1)^{m}}{m}
\end{aligned}
$$

This series has radius of convergence 1 and defines a complex analytic function on the set $\{|z-1|<1\}$, which coincides with the usual logarithm for real z in the interval $(0,2)$. Now, $\exp (\log z)=z$ for $z \in(0,2)$, and by analyticity, this identity continues to hold on the whole set $\{|z-1|<1\}$. (That is to say, the functions $z \rightarrow \exp (\log z)$ and $z \rightarrow z$ are both complex analytic functions and they agree on the interval $(0,2)$; therefore they must agree on the whole disk $\{|z-1|<1\}$.)

On the other hand, if $|u|<\log 2$, then

$$
\left|e^{u}-1\right|=\left|u+\frac{u^{2}}{2!}+\cdots\right| \leq|u|+\frac{|u|^{2}}{2!}+\cdots=e^{|u|}-1<1 .
$$

Thus, $\log (\exp u)$ makes sense for all such u. Since $\log (\exp u)=u$ for real u with $|u|<\log 2$, it follows by analyticity that $\log (\exp u)=u$ for all complex numbers with $|u|<\log 2$.

Definition 2.6. For any $n \times n$ matrix A, define $\log A$ by

$$
\begin{equation*}
\log A=\sum_{m=1}^{\infty}(-1)^{m+1} \frac{(A-I)^{m}}{m} \tag{2.9}
\end{equation*}
$$

whenever the series converges.
Since the complex-valued series (2.8) has radius of convergence 1 and since $\left\|(A-I)^{m}\right\| \leq\|A-I\|^{m}$, the matrix-valued series (2.9) will converge

Jordan Canonical form, nilpotent-diagonalizable decomposition, and computation of matrix exponential

In last week's lecture notes, we have seen the definition of matrix exponential:

$$
e^{A}=\sum_{k=0}^{\infty} \frac{A^{K}}{K!}, A \in M_{n}(\mathbb{C})
$$

We will now discuss effective methods of computing e^{A}.

Case-I:A is diagonalizable:
Let A be a diagonalizable matrix. Then there exists an invertible matrix $p \in M_{n}(\mathbb{T})$ such that
$P^{-1} A P=D$, where D is a diagonal matrix.
Then $e^{A}=e^{P D P^{-1}}=p e^{D} p^{-1}$.
clearly, if the eigenvalues of A are $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ (not necessarily distinct), then we have:

$$
D=\left(\begin{array}{lll}
\lambda_{1} & & 0 \\
& 0 & \\
& 0 & \lambda_{n}
\end{array}\right)
$$

Then, it is easy to compute that

$$
D^{k}=\left(\begin{array}{ccc}
\lambda_{1}^{k} & & 0 \\
& \ddots & \lambda_{n}^{k}
\end{array}\right), \text { for all } k \geq 0
$$

Hence, e^{D}

$$
\begin{aligned}
& =e^{D} \frac{D^{k}}{k!}=\left(\begin{array}{ccc}
\sum_{k=0}^{\infty} \frac{\lambda_{1}^{k}}{k!} & & 0 \\
& \ddots & \sum_{k=0}^{\infty} \frac{\lambda_{n}^{k}}{k!} \\
0 & \\
=\left(\begin{array}{lll}
e^{\lambda_{1}} & \ddots & 0 \\
& \ddots & \rho^{\lambda_{n}}
\end{array}\right)
\end{array}\right)
\end{aligned}
$$

Finally,

$$
e^{A}=p\left(\begin{array}{ll}
e^{\lambda_{1}} & \tag{3}\\
& 0 \\
0 & e^{\lambda_{n}}
\end{array}\right)
$$

Since P is the matrix of linearly independent eigenvectors of A (arranged in the correct order), P is explicitly computable.
Hence, (1) gives a formula for Computing e^{A}, when A is diagonalizable

Example:
Let $A=\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)$
The eigenvalues of A are 5 and -1 , and $A\binom{1}{1}=5\binom{1}{1}, A\binom{1}{-1}=-1\binom{1}{-1}$.
$\left[\begin{array}{c}\text { Compare pages 17-20 of the lecture } \\ \text { notes on liger }\end{array}\right.$ notes on eigenvalues/eigenvectors.
setting $P=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$, we
see that

$$
\begin{aligned}
& P A P^{-1}=\left(\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right) \\
& \text { i.e. } A=P^{-1}\left(\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right) P
\end{aligned}
$$

So,

$$
\begin{aligned}
e^{A} & =p^{-1}\left(\begin{array}{cc}
e^{5} & 0 \\
0 & e^{-1}
\end{array}\right) p \\
& =\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)^{-1}\left(\begin{array}{cc}
e^{5} & 0 \\
0 & e^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{-1}{2}
\end{array}\right)\left(\begin{array}{cc}
e^{5} & e^{5} \\
e^{-1} & -e^{-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{e^{5}+e^{-1}}{2} & \frac{e^{5}-e^{-1}}{2} \\
\frac{e^{5}-e^{-1}}{2} & \frac{e^{5}+e^{-1}}{2}
\end{array}\right)
\end{aligned}
$$

©

Case- II: Nilpotent matrices
A matrix A is called nitpotent if there exists some $k \in \mathbb{N}$ such that

$$
A^{k}=0
$$

For a rilpotent matrix A, we have:

$$
\begin{aligned}
& \text { For a rilpotent matrix } \\
& e^{A}=\sum_{j=0}^{\infty} \frac{A^{j}}{j!}=\sum_{j=0}^{k-1} \frac{A^{j}}{j} \\
& \text { terms are }
\end{aligned}
$$

as. the subsequence terms are all 0 .
so, e^{A} is simply a finite sum.

Example:

$$
A=\left(\begin{array}{ccc}
5 & -3 & 2 \\
15 & -9 & 6 \\
10 & -6 & 4
\end{array}\right)
$$

A simple computation shows that

$$
A^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) . \quad \begin{array}{r}
\text { so, } e^{A} \\
= \\
I+A=\left(\begin{array}{ccc}
6 & -3 & 2 \\
15 & -8 & 6 \\
10 & -6 & 5
\end{array}\right) ~ . ~
\end{array}
$$

We now come to the general case. An arbitrary n is neither diagonaliz. able, nor nilpotent. However, one can write any matrix A as:

$$
A=D+N \text {, where } D \text { is }
$$

diagonalizable, N is nilpotent, and

$$
D N=N D
$$

This is called the $N-D$ decor. position of A.

Then, e^{A}

$$
\begin{aligned}
& =e^{D+N} \\
& =e^{D} \cdot e^{N} \cdot(\sin \cdot D N=N D)
\end{aligned}
$$

As we already know how to compute e^{D} and e^{N}, we can easily compute e^{A}.

In the rest of the lecture notes, (7) well see how to compute the N-D decomposition of a matrix A.

The general theorem p that guarantees the existence of such a decorposition follows from the existence of the Jordan Canonical form of a matrix A. Discussing the general theory of Jordan canonical forms is beyond the scope of this course, so we only focus on compute-: tions. To make life easier, we will only consider 2×2 and 3×3 matrices.

Example: e^{A} of a non-diazonalizable

$$
\frac{\text { Let } \quad A=2}{2 \times 2} \quad A
$$

The characteristic equation of A is:

$$
\begin{aligned}
& \operatorname{det}(\lambda I-A)=0 \\
\Rightarrow & \operatorname{det}\left(\begin{array}{cc}
\lambda-\frac{5}{2} & \frac{1}{2} \\
-\frac{1}{2} & \lambda-\frac{3}{2}
\end{array}\right)=0 \\
\Rightarrow & \lambda^{2}-4 \lambda+4=0 \Rightarrow(\lambda-2)^{2}=0
\end{aligned}
$$

So, 2 is the only eigenvalue of A.
Let $\binom{a}{b}$ be an eigenvector corresponding to 2 .

Then $\quad A\binom{a}{b}=2\binom{a}{b}$

$$
\begin{aligned}
& A(b)=2(b) \\
& \Rightarrow\left(\begin{array}{l}
\left.\frac{5 a}{2}-\frac{b}{2}\right)=\binom{2 a}{\frac{a}{2}+\frac{3 b}{2}}
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow \quad a=b
$$

Hence, the eigenspace of 2 is:

$$
\left\{\binom{a}{a}: a \in \mathbb{C}\right\}=\operatorname{span}\left\{\binom{1}{1}\right\}
$$

Therefore, A has a unique 1-dimensional eigenspace ;ie. only one linearly independent eigenvector. It follows that A is not diazonalizable.
we set $V_{1}=\binom{1}{1}$, and seek
a vector V_{2} Such that

$$
\begin{aligned}
& (A-2 I) V_{2}=V_{1} \cdot\left[\begin{array}{l}
\text { For such a } V_{2}, \\
\text { well have } \\
\frac{(A-2 I)^{2} V_{2}}{(A-2}=0 . \\
s_{0}, V_{2} \text { is Called a }
\end{array}\right. \\
& \text { For such a } V_{2} \text {, } \\
& \text { well have } \\
& \frac{(A-2 I)^{2} V_{2}=0}{S_{0}, V_{2} \text { is Called } a}
\end{aligned}
$$

If $V_{2}=\binom{c}{d}$, then,
generalized eigenvector.
$\Rightarrow c-d=2 \rightarrow$ Unique condition on C and d

Let's choose $c=2, d=0$ Then, $V_{2}=\binom{2}{0}$.
Wefripe By construction, we have

$$
\left.\begin{array}{c}
A V_{1}=2 V_{1} \\
A V_{2}=V_{1}+2 V_{2}
\end{array}\right\}
$$

Setting $P=\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)=\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right)$, we get:

$$
\begin{aligned}
A P & =P\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right) \\
\Rightarrow \quad A & =P\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right) P^{-1}
\end{aligned}
$$

$$
\Rightarrow A=\underbrace{p\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)}_{\text {diasonalizable }} p^{-1}+\underbrace{P}_{\text {nilpotent. }}+\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}) p^{-1}
$$

clearly,

$$
\begin{aligned}
& e^{\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)}=\left(\begin{array}{ll}
e^{2} & 0 \\
0 & e^{2}
\end{array}\right), \\
& e^{\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =p\left(\begin{array}{ll}
e^{2} & 0 \\
0 & e^{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) p^{-1} \\
& =p\left(\begin{array}{ll}
e^{2} & e^{2} \\
0 & e^{2}
\end{array}\right) p^{-1},
\end{aligned}
$$

where, $P=\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right)$.

Example: exponential of a 3×3
non-diagonalizable matrix

Let

$$
A=\left(\begin{array}{rrr}
2 & 2 & 3 \\
1 & 3 & 3 \\
-1 & -2 & -2
\end{array}\right)
$$

The eigenvalues of A are roots of:

$$
\begin{aligned}
& \operatorname{det}(\lambda I-A)=0 \\
\Leftrightarrow & x^{3}-3 x^{2}+3 x-1=0 \\
\Leftrightarrow & (x-1)^{3}=0
\end{aligned}
$$

Hence, 1 is the unique eigenvalue of A.
Let $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ be an eigenvector of A corresponding to the eigenvalue 1. Then $A\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=1\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$

$$
\begin{aligned}
& \Rightarrow\left(\begin{array}{c}
2 a+2 b+3 c \\
a+3 b+3 c \\
-a-2 b-2 c
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& \Rightarrow a+2 b+3 c=0 \rightarrow \text { unique condition }
\end{aligned}
$$

So, eigenspace of A corresponding to 1

$$
=\left\{\left(\begin{array}{c}
-2 b-3 c \\
b \\
c
\end{array}\right) ; \quad b, c \in \mathbb{R}\right\}
$$

clearly, this eisenspace has dimension 2 and hence, A is not diagonalizable (we only get 2 linearly independent) eigenvectors, but diagonalizability would require 3 .
In order to express A in its Jordan Canonical form $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ we need vectors V_{1}, v_{2}, V_{3} such that

$$
\begin{gathered}
(A-I) V_{1}=0,(A-I) V_{2}=0 \\
(A-I) V_{3}=V_{2}
\end{gathered}
$$

In particular V_{2} must belong to $\operatorname{ker}(A-I) \cap \operatorname{Image}(A-I)$.

Now, Image $(A-I)$

$$
\begin{aligned}
& =\operatorname{Image}\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3 \\
-1 & -2 & -3
\end{array}\right) \\
& =\left\{\left(\begin{array}{l}
p+2 q+3 r \\
p+2 q+3 r \\
-(p+2 q+3 r
\end{array}\right): p, q, s \in k\right\} \\
& =\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)\right\}
\end{aligned}
$$

Also, $(A-I)\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right)=\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3\end{array}\right)\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
So, $\operatorname{ker}(A-I) \cap \operatorname{Image}(A-I)=\operatorname{span}\left\{\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)\right)$
We choose $v_{2}=\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right)$.
Then, V_{3} has to be chosen such that

$$
(A-I) V_{3}=V_{2}
$$

If $\quad V_{3}=\left(\begin{array}{l}p \\ q \\ n\end{array}\right)$, then we have:

$$
\begin{aligned}
& \Rightarrow \quad(p+2 q+3 r)\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \\
& \Rightarrow \quad p+2 q+3 r=1
\end{aligned}
$$

Let $q=r=0, p=1$.
so we set $v_{3}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
Finally, $v, \in \operatorname{ker}(A-I)$

$$
\Rightarrow V_{1}=\left(\begin{array}{c}
-2 b-3 c \\
b \\
c
\end{array}\right), \text { for some } b, c \in \mathbb{R}
$$

Let, $c=0, b=1,\left\{\begin{array}{l}\text { this choice is } \\ \text { guided by owns goal: } \\ V_{1}, v_{2}, v_{3} \text { have to }\end{array}\right.$
So, $V_{1}=\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)\left(\begin{array}{ccc}V_{1}, V_{2}, & V_{3} & \text { have to } \\ b e & \text { linearly indep. }\end{array}\right)$
Thus, with respect to the basis

$$
\begin{aligned}
& \left\{V_{1}=\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right), V_{2}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right), V_{3}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\} \text { weave: } \\
& A V_{1}=V_{1}, A V_{2}=V_{2}, A V_{3}=V_{2}+V_{3} \text {. }
\end{aligned}
$$

setting

$$
P=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)=\left(\begin{array}{rrr}
-2 & 1 & 1 \\
1 & 1 & 0 \\
0 & -1 & 0
\end{array}\right)
$$

$$
A P=P\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\Rightarrow A=P\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) P^{-1}
$$

So,

$$
\begin{aligned}
e^{A} & =p \exp \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) p^{-1} \\
& =p \exp \left(\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\right) p^{-1} \\
& =p \exp \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \exp \left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) p^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =P\left(\begin{array}{lll}
e & 0 & 0 \\
0 & e & 0 \\
0 & 0 & e
\end{array}\right)\left(I+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\right) p^{-1} \\
& =P\left(\begin{array}{lll}
e & 0 & 0 \\
0 & e & 0 \\
0 & 0 & e
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) p^{-1} \\
& =P\left(\begin{array}{lll}
e & 0 & 0 \\
0 & e & e \\
0 & 0 & e
\end{array}\right) p^{-1} \\
& \text { where }
\end{aligned}
$$

5.7 Nonhomogeneous Linear Systems

In Section 3.5 we exhibited two techniques for finding a single particular solution of a single nonhomogeneous n th-order linear differential equation-the method of undetermined coefficients and the method of variation of parameters. Each of these may be generalized to nonhomogeneous linear systems. In a linear system modeling a physical situation, nonhomogeneous terms typically correspond to external influences, such as the inflow of liquid to a cascade of brine tanks or an external force acting on a mass-and-spring system.

Given the nonhomogeneous first-order linear system

$$
\begin{equation*}
>\quad \mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{f}(t) \tag{1}
\end{equation*}
$$

where \mathbf{A} is an $n \times n$ constant matrix and the "nonhomogeneous term" $\mathbf{f}(t)$ is a given continuous vector-valued function, we know from Theorem 4 of Section 5.1 that a general solution of Eq. (1) has the form

$$
\begin{equation*}
>\quad \mathbf{x}(t)=\mathbf{x}_{c}(t)+\mathbf{x}_{p}(t) \tag{2}
\end{equation*}
$$

where

- $\mathbf{x}_{c}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)$ is a general solution of the associated homogeneous system $\mathbf{x}^{\prime}=\mathbf{A x}$, and
- $\mathbf{x}_{p}(t)$ is a single particular solution of the original nonhomogeneous system in (1).

Preceding sections have dealt with $\mathbf{x}_{c}(t)$, so our task now is to find $\mathbf{x}_{p}(t)$.

Undetermined Coefficients

First we suppose that the nonhomogeneous term $\mathbf{f}(t)$ in (1) is a linear combination (with constant vector coefficients) of products of polynomials, exponential functions, and sines and cosines. Then the method of undetermined coefficients for systems is essentially the same as for a single linear differential equation. We make an intelligent guess as to the general form of a particular solution \mathbf{x}_{p}, then attempt to determine the coefficients in \mathbf{x}_{p} by substitution in Eq. (1). Moreover, the choice of this general form is essentially the same as in the case of a single equation (discussed in Section 3.5); we modify it only by using undetermined vector coefficients rather than undetermined scalars. We will therefore confine the present discussion to illustrative examples.
Example 1 Find a particular solution of the nonhomogeneous system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
3 & 2 \tag{3}\\
7 & 5
\end{array}\right] \mathbf{x}+\left[\begin{array}{r}
3 \\
2 t
\end{array}\right]
$$

Solution The nonhomogeneous term $\mathbf{f}=\left[\begin{array}{ll}3 & 2 t\end{array}\right]^{T}$ is linear, so it is reasonable to select a linear trial particular solution of the form

$$
\mathbf{x}_{p}(t)=\mathbf{a} t+\mathbf{b}=\left[\begin{array}{l}
a_{1} \tag{4}\\
a_{2}
\end{array}\right] t+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

Upon substitution of $\mathbf{x}=\mathbf{x}_{p}$ in Eq. (3), we get

$$
\begin{aligned}
{\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
3 & 2 \\
7 & 5
\end{array}\right]\left[\begin{array}{l}
a_{1} t+b_{1} \\
a_{2} t+b_{2}
\end{array}\right]+\left[\begin{array}{r}
3 \\
2 t
\end{array}\right] \\
& =\left[\begin{array}{c}
3 a_{1}+2 a_{2} \\
7 a_{1}+5 a_{2}+2
\end{array}\right] t+\left[\begin{array}{c}
3 b_{1}+2 b_{2}+3 \\
7 b_{1}+5 b_{2}
\end{array}\right] .
\end{aligned}
$$

We equate the coefficients of t and the constant terms (in both x_{1} - and x_{2}-compon-ents) and thereby obtain the equations

$$
\begin{align*}
3 a_{1}+2 a_{2} & =0, \\
7 a_{1}+5 a_{2}+2 & =0, \\
3 b_{1}+2 b_{2}+3 & =a_{1}, \tag{5}\\
7 b_{1}+5 b_{2} & =a_{2} .
\end{align*}
$$

We solve the first two equations in (5) for $a_{1}=4$ and $a_{2}=-6$. With these values we can then solve the last two equations in (5) for $b_{1}=17$ and $b_{2}=-25$. Substitution of these coefficients in Eq. (4) gives the particular solution $\mathbf{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$ of (3) described in scalar form by

$$
\begin{aligned}
& x_{1}(t)=4 t+17, \\
& x_{2}(t)=-6 t-25 .
\end{aligned}
$$

FIGURE 5.7.1. The three brine tanks of Example 2.

Figure 5.7.1 shows the system of three brine tanks investigated in Example 2 of Section 5.2. The volumes of the three tanks are $V_{1}=20, V_{2}=40$, and $V_{3}=50$ (gal), and the common flow rate is $r=10(\mathrm{gal} / \mathrm{min})$. Suppose that all three tanks contain fresh water initially, but that the inflow to tank 1 is brine containing 2 pounds of salt per gallon, so that 20 pounds of salt flow into tank 1 per minute. Referring to Eq. (18) in Section 5.2, we see that the vector $\mathbf{x}(t)=\left[\begin{array}{lll}x_{1}(t) & x_{2}(t) & x_{3}(t)\end{array}\right]^{T}$ of amounts of salt (in pounds) in the three tanks at time t satisfies the nonhomogeneous initial value problem

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{ccc}
-0.5 & 0 & 0 \tag{6}\\
0.5 & -0.25 & 0 \\
0 & 0.25 & -0.2
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
20 \\
0 \\
0
\end{array}\right], \quad \mathbf{x}(0)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

The nonhomogeneous term $\mathbf{f}=\left[\begin{array}{ccc}20 & 0 & 0\end{array}\right]^{T}$ here corresponds to the $20 \mathrm{lb} / \mathrm{min}$ inflow of salt to tank 1, with no (external) inflow of salt into tanks 2 and 3.

Because the nonhomogeneous term is constant, we naturally select a constant trial function $\mathbf{x}_{p}=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]^{T}$, for which $\mathbf{x}_{p}^{\prime} \equiv \mathbf{0}$. Then substitution of $\mathbf{x}=\mathbf{x}_{p}$ in (6) yields the system

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{ccc}
-0.5 & 0 & 0 \\
0.5 & -0.25 & 0 \\
0 & 0.25 & -0.2
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\left[\begin{array}{r}
20 \\
0 \\
0
\end{array}\right]
$$

that we readily solve for $a_{1}=40, a_{2}=80$, and $a_{3}=100$ in turn. Thus our particular solution is $\mathbf{x}_{p}(t)=\left[\begin{array}{lll}40 & 80 & 100\end{array}\right]^{T}$.

In Example 2 of Section 5.2 we found the general solution

$$
\mathbf{x}_{c}(t)=c_{1}\left[\begin{array}{r}
3 \\
-6 \\
5
\end{array}\right] e^{-t / 2}+c_{2}\left[\begin{array}{r}
0 \\
1 \\
-5
\end{array}\right] e^{-t / 4}+c_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{-t / 5}
$$

of the associated homogeneous system, so a general solution $\mathbf{x}=\mathbf{x}_{c}+\mathbf{x}_{p}$ of the nonhomogeneous system in (6) is given by

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{r}
3 \tag{7}\\
-6 \\
5
\end{array}\right] e^{-t / 2}+c_{2}\left[\begin{array}{r}
0 \\
1 \\
-5
\end{array}\right] e^{-t / 4}+c_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{-t / 5}+\left[\begin{array}{r}
40 \\
80 \\
100
\end{array}\right] .
$$

When we apply the zero initial conditions in (6), we get the scalar equations

$$
\begin{aligned}
& 3 c_{1} \quad+40=0, \\
& -6 c_{1}+c_{2}+80=0, \\
& 5 c_{1}-5 c_{2}+c_{3}+100=0
\end{aligned}
$$

FIGURE 5.7.2. Solution curves for the amount of salt defined in (8).
that are readily solved for $c_{1}=-\frac{40}{3}, c_{2}=-160$, and $c_{3}=-\frac{2500}{3}$. Substituting these coefficients in Eq. (7), we find that the amounts of salt in the three tanks at time t are given by

$$
\begin{align*}
& x_{1}(t)=40-40 e^{-t / 2} \\
& x_{2}(t)=80+80 e^{-t / 2}-160 e^{-t / 4} \tag{8}\\
& x_{3}(t)=100+\frac{100}{3}\left(-2 e^{-t / 2}+24 e^{-t / 4}-25 e^{-t / 5}\right)
\end{align*}
$$

As illustrated in Fig. 5.7.2, we see the salt in each of the three tanks approaching, as $t \rightarrow+\infty$, a uniform density of $2 \mathrm{lb} / \mathrm{gal}$-the same as the salt density in the inflow to tank 1 .

In the case of duplicate expressions in the complementary function and the nonhomogeneous terms, there is one difference between the method of undetermined coefficients for systems and for single equations (Rule 2 in Section 3.5). For a system, the usual first choice for a trial solution must be multiplied not only by the smallest integral power of t that will eliminate duplication, but also by all lower (nonnegative integral) powers of t as well, and all the resulting terms must be included in the trial solution.
Example 3 Consider the nonhomogeneous system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
4 & 2 \tag{9}\\
3 & -1
\end{array}\right] \mathbf{x}-\left[\begin{array}{r}
15 \\
4
\end{array}\right] t e^{-2 t}
$$

In Example 1 of Section 5.2 we found the solution

$$
\mathbf{x}_{c}(t)=c_{1}\left[\begin{array}{r}
1 \tag{10}\\
-3
\end{array}\right] e^{-2 t}+c_{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{5 t}
$$

of the associated homogeneous system. A preliminary trial solution $\mathbf{x}_{p}(t)=\mathbf{a} t e^{-2 t}+\mathbf{b} e^{-2 t}$ exhibits duplication with the complementary function in (10). We would therefore select

$$
\mathbf{x}_{p}(t)=\mathbf{a} t^{2} e^{-2 t}+\mathbf{b} t e^{-2 t}+\mathbf{c} e^{-2 t}
$$

as our trial solution, and we would then have six scalar coefficients to determine. It is simpler to use the method of variation of parameters, our next topic.

Variation of Parameters

Recall from Section 3.5 that the method of variation of parameters may be applied to a linear differential equation with variable coefficients and is not restricted to nonhomogeneous terms involving only polynomials, exponentials, and sinusoidal functions. The method of variation of parameters for systems enjoys the same flexibility and has a concise matrix formulation that is convenient for both practical and theoretical purposes.

We want to find a particular solution \mathbf{x}_{p} of the nonhomogeneous linear system

$$
\begin{equation*}
>\quad \mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t) \tag{11}
\end{equation*}
$$

given that we have already found a general solution

$$
\begin{equation*}
>\quad \mathbf{x}_{c}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t) \tag{12}
\end{equation*}
$$

of the associated homogeneous system

$$
\begin{equation*}
>\quad \mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x} \tag{13}
\end{equation*}
$$

We first use the fundamental matrix $\boldsymbol{\Phi}(t)$ with column vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ to rewrite the complementary function in (12) as

$$
\begin{equation*}
\mathbf{x}_{c}(t)=\boldsymbol{\Phi}(t) \mathbf{c} \tag{14}
\end{equation*}
$$

where \mathbf{c} denotes the column vector whose entries are the coefficients $c_{1}, c_{2}, \ldots, c_{n}$. Our idea is to replace the vector "parameter" \mathbf{c} with a variable vector $\mathbf{u}(t)$. Thus we seek a particular solution of the form
$>\quad \mathbf{x}_{p}(t)=\boldsymbol{\Phi}(t) \mathbf{u}(t)$.
We must determine $\mathbf{u}(t)$ so that \mathbf{x}_{p} does, indeed, satisfy Eq. (11).
The derivative of $\mathbf{x}_{p}(t)$ is (by the product rule)

$$
\begin{equation*}
\mathbf{x}_{p}^{\prime}(t)=\boldsymbol{\Phi}^{\prime}(t) \mathbf{u}(t)+\boldsymbol{\Phi}(t) \mathbf{u}^{\prime}(t) . \tag{16}
\end{equation*}
$$

Hence substitution of Eqs. (15) and (16) in (11) yields

$$
\begin{equation*}
\boldsymbol{\Phi}^{\prime}(t) \mathbf{u}(t)+\boldsymbol{\Phi}(t) \mathbf{u}^{\prime}(t)=\mathbf{P}(t) \boldsymbol{\Phi}(t) \mathbf{u}(t)+\mathbf{f}(t) . \tag{17}
\end{equation*}
$$

But

$$
\begin{equation*}
\boldsymbol{\Phi}^{\prime}(t)=\mathbf{P}(t) \boldsymbol{\Phi}(t) \tag{18}
\end{equation*}
$$

because each column vector of $\boldsymbol{\Phi}(t)$ satisfies Eq. (13). Therefore, Eq. (17) reduces to

$$
\begin{equation*}
\boldsymbol{\Phi}(t) \mathbf{u}^{\prime}(t)=\mathbf{f}(t) \tag{19}
\end{equation*}
$$

Thus it suffices to choose $\mathbf{u}(t)$ so that

$$
\begin{equation*}
\mathbf{u}^{\prime}(t)=\boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) \tag{20}
\end{equation*}
$$

that is, so that

$$
\begin{equation*}
\mathbf{u}(t)=\int \boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) d t \tag{21}
\end{equation*}
$$

Upon substitution of (21) in (15), we finally obtain the desired particular solution, as stated in the following theorem.

THEOREM 1 Variation of Parameters

If $\boldsymbol{\Phi}(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on some interval where $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous, then a particular solution of the nonhomogeneous system

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

is given by

$$
\begin{equation*}
\mathbf{x}_{p}(t)=\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) d t \tag{22}
\end{equation*}
$$

This is the variation of parameters formula for first-order linear systems. If we add this particular solution and the complementary function in (14), we get the general solution

$$
\begin{equation*}
\mathbf{x}(t)=\boldsymbol{\Phi}(t) \mathbf{c}+\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) d t \tag{23}
\end{equation*}
$$

of the nonhomogeneous system in (11).
The choice of the constant of integration in Eq. (22) is immaterial, for we need only a single particular solution. In solving initial value problems it often is convenient to choose the constant of integration so that $\mathbf{x}_{p}(a)=\mathbf{0}$, and thus integrate from a to t :

$$
\begin{equation*}
\mathbf{x}_{p}(t)=\boldsymbol{\Phi}(t) \int_{a}^{t} \boldsymbol{\Phi}(s)^{-1} \mathbf{f}(s) d s \tag{24}
\end{equation*}
$$

If we add the particular solution of the nonhomogeneous problem

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t), \quad \mathbf{x}(a)=\mathbf{0}
$$

in (24) to the solution $\mathbf{x}_{c}(t)=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}(a)^{-1} \mathbf{x}_{a}$ of the associated homogeneous problem $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}, \mathbf{x}(a)=\mathbf{x}_{a}$, we get the solution

$$
\begin{equation*}
\mathbf{x}(t)=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}(a)^{-1} \mathbf{x}_{a}+\boldsymbol{\Phi}(t) \int_{a}^{t} \boldsymbol{\Phi}(s)^{-1} \mathbf{f}(s) d s \tag{25}
\end{equation*}
$$

of the nonhomogeneous initial value problem

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t), \quad \mathbf{x}(a)=\mathbf{x}_{a} \tag{26}
\end{equation*}
$$

Equations (22) and (25) hold for any fundamental matrix $\boldsymbol{\Phi}(t)$ of the homogeneous system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$. In the constant-coefficient case $\mathbf{P}(t) \equiv \mathbf{A}$ we can use for $\boldsymbol{\Phi}(t)$ the exponential matrix $e^{\mathbf{A} t}$-that is, the particular fundamental matrix such that $\boldsymbol{\Phi}(0)=\mathbf{I}$. Then, because $\left(e^{\mathbf{A} t}\right)^{-1}=e^{-\mathbf{A} t}$, substitution of $\boldsymbol{\Phi}(t)=e^{\mathbf{A} t}$ in (22) yields the particular solution

$$
\begin{equation*}
\mathbf{x}_{p}(t)=e^{\mathbf{A} t} \int e^{-\mathbf{A} t} \mathbf{f}(t) d t \tag{27}
\end{equation*}
$$

of the nonhomogeneous system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)$. Similarly, substitution of $\boldsymbol{\Phi}(t)=$ $e^{\mathbf{A} t}$ in Eq. (25) with $a=0$ yields the solution

$$
\begin{equation*}
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}+e^{\mathbf{A} t} \int_{0}^{t} e^{-\mathbf{A} t} \mathbf{f}(t) d t \tag{28}
\end{equation*}
$$

of the initial value problem
$>\quad \mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0}$.
Remark If we retain t as the independent variable but use s for the variable of integration, then the solutions in (27) and (28) can be rewritten in the forms

$$
\mathbf{x}_{p}(t)=\int e^{-\mathbf{A}(s-t)} \mathbf{f}(s) d s \quad \text { and } \quad \mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}+\int_{0}^{t} e^{-\mathbf{A}(s-t)} \mathbf{f}(s) d s
$$

Example 4 Solve the initial value problem

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
4 & 2 \tag{30}\\
3 & -1
\end{array}\right] \mathbf{x}-\left[\begin{array}{r}
15 \\
4
\end{array}\right] t e^{-2 t}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
7 \\
3
\end{array}\right] .
$$

Solution
The solution of the associated homogeneous system is displayed in Eq. (10). It gives the fundamental matrix

$$
\boldsymbol{\Phi}(t)=\left[\begin{array}{rr}
e^{-2 t} & 2 e^{5 t} \\
-3 e^{-2 t} & e^{5 t}
\end{array}\right] \quad \text { with } \quad \boldsymbol{\Phi}(0)^{-1}=\frac{1}{7}\left[\begin{array}{rr}
1 & -2 \\
3 & 1
\end{array}\right] .
$$

It follows by Eq. (28) in Section 5.6 that the matrix exponential for the coefficient matrix \mathbf{A} in (30) is

$$
\begin{aligned}
e^{\mathbf{A} t}=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}(0)^{-1} & =\left[\begin{array}{rr}
e^{-2 t} & 2 e^{5 t} \\
-3 e^{-2 t} & e^{5 t}
\end{array}\right] \cdot \frac{1}{7}\left[\begin{array}{rr}
1 & -2 \\
3 & 1
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{rr}
e^{-2 t}+6 e^{5 t} & -2 e^{-2 t}+2 e^{5 t} \\
-3 e^{-2 t}+3 e^{5 t} & 6 e^{-2 t}+e^{5 t}
\end{array}\right] .
\end{aligned}
$$

Then the variation of parameters formula in Eq. (28) gives

$$
\begin{aligned}
e^{-\mathbf{A} t} \mathbf{x}(t) & =\mathbf{x}_{0}+\int_{0}^{t} e^{-\mathbf{A} s} \mathbf{f}(s) d s \\
& =\left[\begin{array}{l}
7 \\
3
\end{array}\right]+\int_{0}^{t} \frac{1}{7}\left[\begin{array}{rr}
e^{2 s}+6 e^{-5 s} & -2 e^{2 s}+2 e^{-5 s} \\
-3 e^{2 s}+3 e^{-5 s} & 6 e^{2 s}+e^{-5 s}
\end{array}\right]\left[\begin{array}{c}
-15 s e^{-2 s} \\
-4 s e^{-2 s}
\end{array}\right] d s \\
& =\left[\begin{array}{l}
7 \\
3
\end{array}\right]+\int_{0}^{t}\left[\begin{array}{c}
-s-14 s e^{-7 s} \\
3 s-7 s e^{-7 s}
\end{array}\right] d s \\
& =\left[\begin{array}{l}
7 \\
3
\end{array}\right]+\frac{1}{14}\left[\begin{array}{c}
-4-7 t^{2}+4 e^{-7 t}+28 t e^{-7 t} \\
-2+21 t^{2}+2 e^{-7 t}+14 t e^{-7 t}
\end{array}\right] .
\end{aligned}
$$

Therefore,

$$
e^{-\mathbf{A} t} \mathbf{x}(t)=\frac{1}{14}\left[\begin{array}{c}
94-7 t^{2}+4 e^{-7 t}+28 t e^{-7 t} \\
40+21 t^{2}+2 e^{-7 t}+14 t e^{-7 t}
\end{array}\right] .
$$

Upon multiplication of the right-hand side here by $e^{\mathbf{A} t}$, we find that the solution of the initial value problem in (30) is given by

$$
\begin{aligned}
\mathbf{x}(t) & =\frac{1}{7}\left[\begin{array}{cc}
e^{-2 t}+6 e^{5 t} & -2 e^{-2 t}+2 e^{5 t} \\
-3 e^{-2 t}+3 e^{5 t} & 6 e^{-2 t}+e^{5 t}
\end{array}\right] \cdot \frac{1}{14}\left[\begin{array}{c}
94-7 t^{2}+4 e^{-7 t}+28 t e^{-7 t} \\
40+21 t^{2}+2 e^{-7 t}+14 t e^{-7 t}
\end{array}\right] \\
& =\frac{1}{14}\left[\begin{array}{r}
\left(6+28 t-7 t^{2}\right) e^{-2 t}+92 e^{5 t} \\
\left(-4+14 t+21 t^{2}\right) e^{-2 t}+46 e^{5 t}
\end{array}\right] .
\end{aligned}
$$

In conclusion, let us investigate how the variation of parameters formula in (22) "reconciles" with the variation of parameters formula in Theorem 1 of Section 3.5 for the second-order linear differential equation

$$
\begin{equation*}
y^{\prime \prime}+P y^{\prime}+Q y=f(t) \tag{31}
\end{equation*}
$$

If we write $y=x_{1}, y^{\prime}=x_{1}^{\prime}=x_{2}, y^{\prime \prime}=x_{1}^{\prime \prime}=x_{2}^{\prime}$, then the single equation in (31) is equivalent to the linear system $x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=-Q x_{1}-P x_{2}+f(t)$, that is,

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t) \tag{32}
\end{equation*}
$$

where

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
y \\
y^{\prime}
\end{array}\right], \quad \mathbf{P}(t)=\left[\begin{array}{rr}
0 & 1 \\
-Q & -P
\end{array}\right], \quad \text { and } \quad \mathbf{f}(t)=\left[\begin{array}{c}
0 \\
f(t)
\end{array}\right] .
$$

Now two linearly independent solutions y_{1} and y_{2} of the homogeneous system $y^{\prime \prime}+P y^{\prime}+Q y=0$ associated with (31) provide two linearly independent solutions

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
y_{1} \\
y_{1}^{\prime}
\end{array}\right] \quad \text { and } \quad \mathbf{x}_{2}=\left[\begin{array}{l}
y_{2} \\
y_{2}^{\prime}
\end{array}\right]
$$

of the homogeneous system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ associated with (32). Observe that the determinant of the fundamental matrix $\boldsymbol{\Phi}=\left[\begin{array}{ll}\mathbf{x}_{1} & \mathbf{x}_{2}\end{array}\right]$ is simply the Wronskian

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

of the solutions y_{1} and y_{2}, so the inverse fundamental matrix is

$$
\boldsymbol{\Phi}^{-1}=\frac{1}{W}\left|\begin{array}{rr}
y_{2}^{\prime} & -y_{2} \\
-y_{1}^{\prime} & y_{1}
\end{array}\right| .
$$

Therefore the variation of parameters formula $\mathbf{x}_{p}=\boldsymbol{\Phi} \int \boldsymbol{\Phi}^{-1} \mathbf{f} d t$ in (22) yields

$$
\begin{aligned}
{\left[\begin{array}{l}
y_{p} \\
y_{p}^{\prime}
\end{array}\right] } & =\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right] \int \frac{1}{W}\left[\begin{array}{rr}
y_{2}^{\prime} & -y_{2} \\
-y_{1}^{\prime} & y_{1}
\end{array}\right]\left[\begin{array}{l}
0 \\
f
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right] \int \frac{1}{W}\left[\begin{array}{r}
-y_{2} f \\
y_{1} f
\end{array}\right] d t
\end{aligned}
$$

The first component of this column vector is

$$
y_{p}=\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right] \int \frac{1}{W}\left[\begin{array}{c}
-y_{2} f \\
y_{1} f
\end{array}\right] d t=-y_{1} \int \frac{y_{2} f}{W} d t+y_{2} \int \frac{y_{1} f}{W} d t
$$

If, finally, we supply the independent variable t throughout, the final result on the right-hand side here is simply the variation of parameters formula in Eq. (33) of Section 3.5 (where, however, the independent variable is denoted by x).

5.7 Problems

Apply the method of undetermined coefficients to find a particular solution of each of the systems in Problems 1 through 14. If initial conditions are given, find the particular solution that satisfies these conditions. Primes denote derivatives with respect to t.

1. $x^{\prime}=x+2 y+3, y^{\prime}=2 x+y-2$
2. $x^{\prime}=2 x+3 y+5, y^{\prime}=2 x+y-2 t$
3. $x^{\prime}=3 x+4 y, y^{\prime}=3 x+2 y+t^{2} ; x(0)=y(0)=0$
4. $x^{\prime}=4 x+y+e^{t}, y^{\prime}=6 x-y-e^{t} ; x(0)=y(0)=1$
5. $x^{\prime}=6 x-7 y+10, y^{\prime}=x-2 y-2 e^{-t}$
6. $x^{\prime}=9 x+y+2 e^{t}, y^{\prime}=-8 x-2 y+t e^{t}$
7. $x^{\prime}=-3 x+4 y+\sin t, y^{\prime}=6 x-5 y ; x(0)=1, y(0)=0$
8. $x^{\prime}=x-5 y+2 \sin t, y^{\prime}=x-y-3 \cos t$
9. $x^{\prime}=x-5 y+\cos 2 t, y^{\prime}=x-y$
10. $x^{\prime}=x-2 y, y^{\prime}=2 x-y+e^{t} \sin t$
11. $x^{\prime}=2 x+4 y+2, y^{\prime}=x+2 y+3 ; x(0)=1, y(0)=-1$
12. $x^{\prime}=x+y+2 t, y^{\prime}=x+y-2 t$
13. $x^{\prime}=2 x+y+2 e^{t}, y^{\prime}=x+2 y-3 e^{t}$
14. $x^{\prime}=2 x+y+1, y^{\prime}=4 x+2 y+e^{4 t}$

Problems 15 and 16 are similar to Example 2, but with two brine tanks (having volumes V_{1} and V_{2} gallons as in Fig. 5.7.1) instead of three tanks. Each tank initially contains fresh water, and the inflow to tank 1 at the rate of r gallons per minute has a salt concentration of c_{0} pounds per gallon. (a) Find the amounts $x_{1}(t)$ and $x_{2}(t)$ of salt in the two tanks after t minutes. (b) Find the limiting (long-term) amount of salt in each tank. (c) Find how long it takes for each tank to reach a salt concentration of $1 \mathrm{lb} / \mathrm{gal}$.

Plot similarly some solution curves for the following differential equations.

FIGURE 6.1.22. Phase portrait for the system corresponding to Eq. (5).

1. $\frac{d y}{d x}=\frac{4 x-5 y}{2 x+3 y}$
2. $\frac{d y}{d x}=\frac{4 x-5 y}{2 x-3 y}$
3. $\frac{d y}{d x}=\frac{4 x-3 y}{2 x-5 y}$
4. $\frac{d y}{d x}=\frac{2 x y}{x^{2}-y^{2}}$
5. $\frac{d y}{d x}=\frac{x^{2}+2 x y}{y^{2}+2 x y}$

Now construct some examples of your own. Homogeneous functions like those in Problems 1 through 5-rational functions with numerator and denominator of the same degree in x and y-work well. The differential equation

$$
\begin{equation*}
\frac{d y}{d x}=\frac{25 x+y\left(1-x^{2}-y^{2}\right)\left(4-x^{2}-y^{2}\right)}{-25 y+x\left(1-x^{2}-y^{2}\right)\left(4-x^{2}-y^{2}\right)} \tag{5}
\end{equation*}
$$

of this form generalizes Example 5 in this section but would be inconvenient to solve explicitly. Its phase portrait (Fig. 6.1.22) shows two periodic closed trajectoriesthe circles $r=1$ and $r=2$. Anyone want to try for three circles?

6.2 Linear and Almost Linear Systems

We now discuss the behavior of solutions of the autonomous system

$$
\begin{equation*}
\frac{d x}{d t}=f(x, y), \quad \frac{d y}{d t}=g(x, y) \tag{1}
\end{equation*}
$$

near an isolated critical point $\left(x_{0}, y_{0}\right)$ where $f\left(x_{0}, y_{0}\right)=g\left(x_{0}, y_{0}\right)=0$. A critical point is called isolated if some neighborhood of it contains no other critical point. We assume throughout that the functions f and g are continuously differentiable in a neighborhood of $\left(x_{0}, y_{0}\right)$.

We can assume without loss of generality that $x_{0}=y_{0}=0$. Otherwise, we make the substitutions $u=x-x_{0}, v=y-y_{0}$. Then $d x / d t=d u / d t$ and $d y / d t=$ $d v / d t$, so (1) is equivalent to the system

$$
\begin{align*}
& \frac{d u}{d t}=f\left(u+x_{0}, v+y_{0}\right)=f_{1}(u, v) \tag{2}\\
& \frac{d v}{d t}=g\left(u+x_{0}, v+y_{0}\right)=g_{1}(u, v)
\end{align*}
$$

that has $(0,0)$ as an isolated critical point.

Example 1

 The system$$
\begin{align*}
& \frac{d x}{d t}=3 x-x^{2}-x y=x(3-x-y) \\
& \frac{d y}{d t}=y+y^{2}-3 x y=y(1-3 x+y) \tag{3}
\end{align*}
$$

has $(1,2)$ as one of its critical points. We substitute $u=x-1, v=y-2$; that is, $x=u+1$, $y=v+2$. Then

$$
3-x-y=3-(u+1)-(v+2)=-u-v
$$

and

$$
1-3 x+y=1-3(u+1)+(v+2)=-3 u+v
$$

so the system in (3) takes the form

$$
\begin{align*}
& \frac{d u}{d t}=(u+1)(-u-v)=-u-v-u^{2}-u v \\
& \frac{d v}{d t}=(v+2)(-3 u+v)=-6 u+2 v+v^{2}-3 u v \tag{4}
\end{align*}
$$

and has $(0,0)$ as a critical point. If we can determine the trajectories of the system in (4) near $(0,0)$, then their translations under the rigid motion that carries $(0,0)$ to $(1,2)$ will be the trajectories near $(1,2)$ of the original system in (3). This equivalence is illustrated by Fig. 6.2.1 (which shows computer-plotted trajectories of the system in (3) near the critical point $(1,2)$ in the $x y$-plane) and Fig. 6.2 .2 (which shows computer-plotted trajectories of the system in (4) near the critical point $(0,0)$ in the $u v$-plane).

FIGURE 6.2.1. The saddle point
$(1,2)$ for the system
$x^{\prime}=3 x-x^{2}-x y$,
$y^{\prime}=y+y^{2}-3 x y$
of Example 1.

FIGURE 6.2.2. The saddle point $(0,0)$ for the equivalent system $u^{\prime}=-u-v-u^{2}-u v$,
$v^{\prime}=-6 u+2 v+v^{2}-3 u v$.

Figures 6.2.1 and 6.2.2 illustrate the fact that the solution curves of the $x y$ system in (1) are simply the images under the translation $(u, v) \rightarrow\left(u+x_{0}, v+y_{0}\right)$ of the solution curves of the $u v$-system in (2). Near the two corresponding critical points- $\left(x_{0}, y_{0}\right)$ in the $x y$-plane and $(0,0)$ in the $u v$-plane-the two phase portraits therefore look precisely the same.

Linearization Near a Critical Point

Taylor's formula for functions of two variables implies that-if the function $f(x, y)$ is continuously differentiable near the fixed point $\left(x_{0}, y_{0}\right)$-then

$$
f\left(x_{0}+u, y_{0}+v\right)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right) u+f_{y}\left(x_{0}, y_{0}\right) v+r(u, v)
$$

where the "remainder term" $r(u, v)$ satisfies the condition

$$
\lim _{(u, v) \rightarrow(0,0)} \frac{r(u, v)}{\sqrt{u^{2}+v^{2}}}=0
$$

(Note that this condition would not be satisfied if $r(u, v)$ were a sum containing either constants or terms linear in u or v. In this sense, $r(u, v)$ consists of the "nonlinear part" of the function $f\left(x_{0}+u, y_{0}+v\right)$ of u and v.)

If we apply Taylor's formula to both f and g in (2) and assume that $\left(x_{0}, y_{0}\right)$ is an isolated critical point so $f\left(x_{0}, y_{0}\right)=g\left(x_{0}, y_{0}\right)=0$, the result is

$$
\begin{align*}
& \frac{d u}{d t}=f_{x}\left(x_{0}, y_{0}\right) u+f_{y}\left(x_{0}, y_{0}\right) v+r(u, v) \\
& \frac{d v}{d t}=g_{x}\left(x_{0}, y_{0}\right) u+g_{y}\left(x_{0}, y_{0}\right) v+s(u, v) \tag{5}
\end{align*}
$$

where $r(u, v)$ and the analogous remainder term $s(u, v)$ for g satisfy the condition

$$
\begin{equation*}
\lim _{(u, v) \rightarrow(0,0)} \frac{r(u, v)}{\sqrt{u^{2}+v^{2}}}=\lim _{(u, v) \rightarrow(0,0)} \frac{s(u, v)}{\sqrt{u^{2}+v^{2}}}=0 \tag{6}
\end{equation*}
$$

Then, when the values u and v are small, the remainder terms $r(u, v)$ and $s(u, v)$ are very small (being small even in comparison with u and v).

If we drop the presumably small nonlinear terms $r(u, v)$ and $s(u, v)$ in (5), the result is the linear system

$$
\begin{align*}
& \frac{d u}{d t}=f_{x}\left(x_{0}, y_{0}\right) u+f_{y}\left(x_{0}, y_{0}\right) v \tag{7}\\
& \frac{d v}{d t}=g_{x}\left(x_{0}, y_{0}\right) u+g_{y}\left(x_{0}, y_{0}\right) v
\end{align*}
$$

whose constant coefficients (of the variables u and v) are the values $f_{x}\left(x_{0}, y_{0}\right)$, $f_{y}\left(x_{0}, y_{0}\right)$ and $g_{x}\left(x_{0}, y_{0}\right), g_{y}\left(x_{0}, y_{0}\right)$ of the functions f and g at the critical point $\left(x_{0}, y_{0}\right)$. Because (5) is equivalent to the original (and generally) nonlinear system $u^{\prime}=f\left(x_{0}+u, y_{0}+v\right), v^{\prime}=g\left(x_{0}+u, y_{0}+v\right)$ in (2), the conditions in (6) suggest that the linearized system in (7) closely approximates the given nonlinear system when (u, v) is close to $(0,0)$.

Assuming that $(0,0)$ is also an isolated critical point of the linear system, and that the remainder terms in (5) satisfy the condition in (6), the original system $x^{\prime}=f(x, y), y^{\prime}=g(x, y)$ is said to be almost linear at the isolated critical point $\left(x_{0}, y_{0}\right)$. In this case, its linearization at $\left(x_{0}, y_{0}\right)$ is the linear system in (7). In short, this linearization is the linear system $\mathbf{u}^{\prime}=\mathbf{J u}$ (where $\mathbf{u}=\left[\begin{array}{ll}u & v\end{array}\right]^{T}$) whose coefficient matrix is the so-called Jacobian matrix

$$
>\quad \mathbf{J}\left(x_{0}, y_{0}\right)=\left[\begin{array}{ll}
f_{x}\left(x_{0}, y_{0}\right) & f_{y}\left(x_{0}, y_{0}\right) \tag{8}\\
g_{x}\left(x_{0}, y_{0}\right) & g_{y}\left(x_{0}, y_{0}\right)
\end{array}\right]
$$

of the functions f and g, evaluated at the point $\left(x_{0}, y_{0}\right)$.

Example 1
Continued

In (3) we have $f(x, y)=3 x-x^{2}-x y$ and $g(x, y)=y+y^{2}-3 x y$. Then

$$
\mathbf{J}(x, y)=\left[\begin{array}{cc}
3-2 x-y & -x \\
-3 y & 1+2 y-3 x
\end{array}\right], \quad \text { so } \quad \mathbf{J}(1,2)=\left[\begin{array}{rr}
-1 & -1 \\
-6 & 2
\end{array}\right]
$$

Hence the linearization of the system $x^{\prime}=3 x-x^{2}-x y, y^{\prime}=y+y^{2}-3 x y$ at its critical point $(1,2)$ is the linear system

$$
\begin{aligned}
u^{\prime} & =-u-v, \\
v^{\prime} & =-6 u+2 v
\end{aligned}
$$

that we get when we drop the nonlinear (quadratic) terms in (4).
It turns out that in most (though not all) cases, the phase portrait of an almost linear system near an isolated critical point (x_{0}, y_{0}) strongly resembles-qualitatively-the phase portrait of its linearization near the origin. Consequently, the first step toward understanding general autonomous systems is to characterize the isolated critical points of linear systems.

Isolated Critical Points of Linear Systems

In Section 5.3 we used the eigenvalue-eigenvector method to study the 2×2 linear system

$$
\left[\begin{array}{l}
x^{\prime} \tag{9}\\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

with constant-coefficient matrix \mathbf{A}. The origin $(0,0)$ is a critical point of the system regardless of the matrix \mathbf{A}, but if we further require the origin to be an isolated critical point, then (by a standard theorem of linear algebra) the determinant $a d-b c$ of \mathbf{A} must be nonzero. From this we can conclude that the eigenvalues λ_{1} and λ_{2} of A must be nonzero. Indeed, λ_{1} and λ_{2} are the solutions of the characteristic equation

$$
\begin{align*}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) & =\left|\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right| \\
& =(a-\lambda)(d-\lambda)-b c \tag{10}\\
& =\lambda^{2}-(a+d) \lambda+(a d-b c) \\
& =0,
\end{align*}
$$

and the fact that $a d-b c \neq 0$ implies that $\lambda=0$ cannot satisfy Eq. (10); hence λ_{1} and λ_{2} are nonzero. The converse also holds: If the characteristic equation (10) has no zero solution-that is, if all eigenvalues of the matrix \mathbf{A} are nonzero-then the determinant $a d-b c$ is nonzero. Altogether, we conclude that the origin $(0,0)$ is an isolated critical point of the system in Eq. (9) if and only if the eigenvalues of \mathbf{A} are all nonzero. Our study of this critical point can be divided, therefore, into the five cases listed in the table in Fig. 6.2.3. This table also gives the type of each critical point as found in Section 5.3 and shown in our gallery Fig. 5.3.16 of typical phase plane portraits:

Eigenvalues of A	Type of Critical Point
Real, unequal, same sign	Improper node
Real, unequal, opposite sign	Saddle point
Real and equal	Proper or improper node
Complex conjugate	Spiral point
Pure imaginary	Center

FIGURE 6.2.3. Classification of the isolated critical point $(0,0)$ of the two-dimensional system $\mathbf{x}^{\prime}=\mathbf{A x}$.

Closer inspection of that gallery, however, reveals a striking connection between the stability properties of the critical point and the eigenvalues λ_{1} and λ_{2} of \mathbf{A}. For example, if λ_{1} and λ_{2} are real, unequal, and negative, then the origin represents an improper nodal sink; because all trajectories approach the origin as $t \rightarrow+\infty$, the critical point is asymptotically stable. Likewise, if λ_{1} and λ_{2} are real, equal, and negative, then the origin is a proper nodal sink, and is again asymptotically stable. Further, if λ_{1} and λ_{2} are complex conjugate with negative real part, then the origin is a spiral sink, and is once more asymptotically stable. All three of these cases can be captured as follows: If the real parts of λ_{1} and λ_{2} are negative, then the origin is an asymptotically stable critical point. (Note that if λ_{1} and λ_{2} are real, then they are themselves their real parts.)

Similar generalizations can be made for other combinations of signs of the real parts of λ_{1} and λ_{2}. Indeed, as the table in Fig. 6.2.4 shows, the stability properties
of the isolated critical point $(0,0)$ of the system in Eq. (9) are always determined by the signs of the real parts of λ_{1} and λ_{2}. (We invite you to use the gallery in Fig. 5.3.16 to verify the conclusions in the table.)

Real Parts of λ_{1} and λ_{2}	Type of Critical Point	Stability
Both negative	- Proper or improper nodal sink, or - Spiral sink	Asymptotically stable
Both zero (i.e., λ_{1} and λ_{2} are given by $\pm i q$ with $q \neq 0$)	- Center	Stable but not asymptotically stable
At least one positive	- Proper or improper nodal source, or - Spiral source, or - Saddle point	Unstable

FIGURE 6.2.4. Stability properties of the isolated critical point $(0,0)$ of the system in Eq. (9) with nonzero eigenvalues λ_{1} and λ_{2}.

These findings are summarized in Theorem 1:

THEOREM 1 Stability of Linear Systems

Let λ_{1} and λ_{2} be the eigenvalues of the coefficient matrix \mathbf{A} of the twodimensional linear system

$$
\begin{align*}
& \frac{d x}{d t}=a x+b y \tag{11}\\
& \frac{d y}{d t}=c x+d y
\end{align*}
$$

with $a d-b c \neq 0$. Then the critical point $(0,0)$ is

1. Asymptotically stable if the real parts of λ_{1} and λ_{2} are both negative;
2. Stable but not asymptotically stable if the real parts of λ_{1} and λ_{2} are both zero (so that $\lambda_{1}, \lambda_{2}= \pm q i$);
3. Unstable if either λ_{1} or λ_{2} has a positive real part.

It is worthwhile to consider the effect of small perturbations in the coefficients a, b, c, and d of the linear system in (11), which result in small perturbations of the eigenvalues λ_{1} and λ_{2}. If these perturbations are sufficiently small, then positive real parts (of λ_{1} and λ_{2}) remain positive and negative real parts remain negative. Hence an asymptotically stable critical point remains asymptotically stable and an unstable critical point remains unstable. Part 2 of Theorem 1 is therefore the only case in which arbitrarily small perturbations can affect the stability of the critical point $(0,0)$. In this case pure imaginary roots $\lambda_{1}, \lambda_{2}= \pm q i$ of the characteristic equation can be changed to nearby complex roots $\mu_{1}, \mu_{2}=r \pm s i$, with r either positive or negative (see Fig. 6.2.5). Consequently, a small perturbation of the coefficients of the linear system in (11) can change a stable center to a spiral point that is either unstable or asymptotically stable.

FIGURE 6.2.6. The effects of perturbation of real equal roots.

There is one other exceptional case in which the type, though not the stability, of the critical point $(0,0)$ can be altered by a small perturbation of its coefficients. This is the case with $\lambda_{1}=\lambda_{2}$, equal roots that (under a small perturbation of the coefficients) can split into two roots μ_{1} and μ_{2}, which are either complex conjugates or unequal real roots (see Fig. 6.2.6). In either case, the sign of the real parts of the roots is preserved, so the stability of the critical point is unaltered. Its nature may change, however; the table in Fig. 6.2.3 shows that a node with $\lambda_{1}=\lambda_{2}$ can either remain a node (if μ_{1} and μ_{2} are real) or change to a spiral point (if μ_{1} and μ_{2} are complex conjugates).

Suppose that the linear system in (11) is used to model a physical situation. It is unlikely that the coefficients in (11) can be measured with total accuracy, so let the unknown precise linear model be

$$
\begin{align*}
& \frac{d x}{d t}=a^{\star} x+b^{\star} y \tag{11*}\\
& \frac{d y}{d t}=c^{\star} x+d^{\star} y
\end{align*}
$$

If the coefficients in (11) are sufficiently close to those in (11^), it then follows from the discussion in the preceding paragraph that the origin $(0,0)$ is an asymptotically stable critical point for (11) if it is an asymptotically stable critical point for (11^), and is an unstable critical point for (11) if it is an unstable critical point for $\left(11^{\star}\right)$. Thus in this case the approximate model in (11) and the precise model in (11*) predict the same qualitative behavior (with respect to asymptotic stability versus instability).

Almost Linear Systems

Recall that we first encountered an almost linear system at the beginning of this section, when we used Taylor's formula to write the nonlinear system (2) in the almost linear form (5) which led to the linearization (7) of the original nonlinear system. In case the nonlinear system $x^{\prime}=f(x, y), y^{\prime}=g(x, y)$ has $(0,0)$ as an isolated critical point, the corresponding almost linear system is

$$
\begin{align*}
& \frac{d x}{d t}=a x+b y+r(x, y), \\
& \frac{d y}{d t}=c x+d y+s(x, y) \tag{12}
\end{align*}
$$

where $a=f_{x}(0,0), b=f_{y}(0,0)$ and $c=g_{x}(0,0), d=g_{y}(0,0)$; we assume also that $a d-b c \neq 0$. Theorem 2 , which we state without proof, essentially implies that-with regard to the type and stability of the critical point $(0,0)$-the effect of the small nonlinear terms $r(x, y)$ and $s(x, y)$ is equivalent to the effect of a small perturbation in the coefficients of the associated linear system in (11).

THEOREM 2 Stability of Almost Linear Systems

Let λ_{1} and λ_{2} be the eigenvalues of the coefficient matrix of the linear system in (11) associated with the almost linear system in (12). Then

1. If $\lambda_{1}=\lambda_{2}$ are equal real eigenvalues, then the critical point $(0,0)$ of (12) is either a node or a spiral point, and is asymptotically stable if $\lambda_{1}=\lambda_{2}<0$, unstable if $\lambda_{1}=\lambda_{2}>0$.
2. If λ_{1} and λ_{2} are pure imaginary, then $(0,0)$ is either a center or a spiral point, and may be either asymptotically stable, stable, or unstable.
3. Otherwise-that is, unless λ_{1} and λ_{2} are either real equal or pure imaginary-the critical point $(0,0)$ of the almost linear system in (12) is of the same type and stability as the critical point $(0,0)$ of the associated linear system in (11).

Thus, if $\lambda_{1} \neq \lambda_{2}$ and $\operatorname{Re}\left(\lambda_{1}\right) \neq 0$, then the type and stability of the critical point of the almost linear system in (12) can be determined by analysis of its associated linear system in (11), and only in the case of pure imaginary eigenvalues is the stability of $(0,0)$ not determined by the linear system. Except in the sensitive cases $\lambda_{1}=\lambda_{2}$ and $\operatorname{Re}\left(\lambda_{i}\right)=0$, the trajectories near $(0,0)$ will resemble qualitatively those of the associated linear system-they enter or leave the critical point in the same way, but may be "deformed" in a nonlinear manner. The table in Fig. 6.2.7 summarizes the situation.

Eigenvalues $\lambda_{\mathbf{1}}, \lambda_{\mathbf{2}}$ for the Linearized System	Type of Critical Point of the Almost Linear System
$\lambda_{1}<\lambda_{2}<0$	Stable improper node
$\lambda_{1}=\lambda_{2}<0$	Stable node or spiral point
$\lambda_{1}<0<\lambda_{2}$	Unstable saddle point
$\lambda_{1}=\lambda_{2}>0$	Unstable node or spiral point
$\lambda_{1}>\lambda_{2}>0$	Unstable improper node
$\lambda_{1}, \lambda_{2}=a \pm b i$	$(a<0)$
$\lambda_{1}, \lambda_{2}=a \pm b i$	$(a>0)$
$\lambda_{1}, \lambda_{2}= \pm b i$	Stable spiral point

FIGURE 6.2.7. Classification of critical points of an almost linear system.
An important consequence of the classification of cases in Theorem 2 is that a critical point of an almost linear system is asymptotically stable if it is an asymptotically stable critical point of the linearization of the system. Moreover, a critical point of the almost linear system is unstable if it is an unstable critical point of the linearized system. If an almost linear system is used to model a physical situation, then-apart from the sensitive cases mentioned earlier-it follows that the qualitative behavior of the system near a critical point can be determined by examining its linearization.
Example 2
Determine the type and stability of the critical point $(0,0)$ of the almost linear system

$$
\begin{align*}
& \frac{d x}{d t}=4 x+2 y+2 x^{2}-3 y^{2} \tag{13}\\
& \frac{d y}{d t}=4 x-3 y+7 x y
\end{align*}
$$

Solution The characteristic equation for the associated linear system (obtained simply by deleting the quadratic terms in (13)) is

$$
(4-\lambda)(-3-\lambda)-8=(\lambda-5)(\lambda+4)=0
$$

so the eigenvalues $\lambda_{1}=5$ and $\lambda_{2}=-4$ are real, unequal, and have opposite signs. By our discussion of this case we know that $(0,0)$ is an unstable saddle point of the linear system, and hence by Part 3 of Theorem 2, it is also an unstable saddle point of the almost linear system in (13). The trajectories of the linear system near $(0,0)$ are shown in Fig. 6.2.8, and those of the nonlinear system in (13) are shown in Fig. 6.2.9. Figure 6.2 .10 shows a phase

FIGURE 6.2.8. Trajectories of the linearized system of Example 2.

FIGURE 6.2.9. Trajectories of the original almost linear system of Example 2.

FIGURE 6.2.10. Phase portrait for the almost linear system in Eq. (13).
portrait of the nonlinear system in (13) from a "wider view." In addition to the saddle point at $(0,0)$, there are spiral points near the points $(0.279,1.065)$ and $(0.933,-1.057)$, and a node near ($-2.354,-0.483$).

We have seen that the system $x^{\prime}=f(x, y), y^{\prime}=g(x, y)$ with isolated critical point $\left(x_{0}, y_{0}\right)$ transforms via the substitution $x=u+x_{0}, y=v+y_{0}$ to an equivalent $u v$-system with corresponding critical point $(0,0)$ and linearization $\mathbf{u}^{\prime}=\mathbf{J u}$, whose coefficient matrix \mathbf{J} is the Jacobian matrix in (8) of the functions f and g at $\left(x_{0}, y_{0}\right)$. Consequently we need not carry out the substitution explicitly; instead, we can proceed directly to calculate the eigenvalues of \mathbf{J} preparatory to application of Theorem 2.

Example 3 Determine the type and stability of the critical point $(4,3)$ of the almost linear system

$$
\begin{align*}
& \frac{d x}{d t}=33-10 x-3 y+x^{2} \tag{14}\\
& \frac{d y}{d t}=-18+6 x+2 y-x y
\end{align*}
$$

Solution With $f(x, y)=33-10 x-3 y+x^{2}, g(x, y)=-18+6 x+2 y-x y$ and $x_{0}=4, y_{0}=3$ we have

$$
\mathbf{J}(x, y)=\left[\begin{array}{cc}
-10+2 x & -3 \\
6-y & 2-x
\end{array}\right], \quad \text { so } \quad \mathbf{J}(4,3)=\left[\begin{array}{rr}
-2 & -3 \\
3 & -2
\end{array}\right]
$$

The associated linear system

$$
\begin{align*}
& \frac{d u}{d t}=-2 u-3 v \tag{15}\\
& \frac{d v}{d t}=3 u-2 v
\end{align*}
$$

has characteristic equation $(\lambda+2)^{2}+9=0$, with complex conjugate roots $\lambda=-2 \pm 3 i$. Hence $(0,0)$ is an asymptotically stable spiral point of the linear system in (15), so Theorem 2 implies that $(4,3)$ is an asymptotically stable spiral point of the original almost linear system in (14). Figure 6.2 .11 shows some typical trajectories of the linear system in (15), and Fig. 6.2.12 shows how this spiral point fits into the phase portrait for the original almost linear system in (14).

FIGURE 6.2.11. Spiral trajectories of the linear system in Eq. (15).

FIGURE 6.2.12. Phase portrait for the almost linear system in Eq. (14).

6.2 Problems

In Problems 1 through 10, apply Theorem 1 to determine the type of the critical point $(0,0)$ and whether it is asymptotically stable, stable, or unstable. Verify your conclusion by using a computer system or graphing calculator to construct a phase portrait for the given linear system.

1. $\frac{d x}{d t}=-2 x+y, \quad \frac{d y}{d t}=x-2 y$
2. $\frac{d x}{d t}=4 x-y, \quad \frac{d y}{d t}=2 x+y$
3. $\frac{d x}{d t}=x+2 y, \quad \frac{d y}{d t}=2 x+y$
4. $\frac{d x}{d t}=3 x+y, \quad \frac{d y}{d t}=5 x-y$
5. $\frac{d x}{d t}=x-2 y, \quad \frac{d y}{d t}=2 x-3 y$
6. $\frac{d x}{d t}=5 x-3 y, \quad \frac{d y}{d t}=3 x-y$
7. $\frac{d x}{d t}=3 x-2 y, \quad \frac{d y}{d t}=4 x-y$
8. $\frac{d x}{d t}=x-3 y, \quad \frac{d y}{d t}=6 x-5 y$
9. $\frac{d x}{d t}=2 x-2 y, \quad \frac{d y}{d t}=4 x-2 y$
10. $\frac{d x}{d t}=x-2 y, \quad \frac{d y}{d t}=5 x-y$

Each of the systems in Problems 11 through 18 has a single critical point $\left(x_{0}, y_{0}\right)$. Apply Theorem 2 to classify this critical point as to type and stability. Verify your conclusion by using a computer system or graphing calculator to construct a phase portrait for the given system.
11. $\frac{d x}{d t}=x-2 y, \quad \frac{d y}{d t}=3 x-4 y-2$
12. $\frac{d x}{d t}=x-2 y-8, \quad \frac{d y}{d t}=x+4 y+10$
13. $\frac{d x}{d t}=2 x-y-2, \quad \frac{d y}{d t}=3 x-2 y-2$
14. $\frac{d x}{d t}=x+y-7, \quad \frac{d y}{d t}=3 x-y-5$
15. $\frac{d x}{d t}=x-y, \quad \frac{d y}{d t}=5 x-3 y-2$
16. $\frac{d x}{d t}=x-2 y+1, \quad \frac{d y}{d t}=x+3 y-9$
17. $\frac{d x}{d t}=x-5 y-5, \quad \frac{d y}{d t}=x-y-3$
18. $\frac{d x}{d t}=4 x-5 y+3, \quad \frac{d y}{d t}=5 x-4 y+6$

In Problems 19 through 28, investigate the type of the critical point $(0,0)$ of the given almost linear system. Verify your conclusion by using a computer system or graphing calculator to construct a phase portrait. Also, describe the approximate locations and apparent types of any other critical points that are visible in your figure. Feel free to investigate these additional critical points; you can use the computational methods discussed in the application material for this section.
19. $\frac{d x}{d t}=x-3 y+2 x y, \quad \frac{d y}{d t}=4 x-6 y-x y$
20. $\frac{d x}{d t}=6 x-5 y+x^{2}, \quad \frac{d y}{d t}=2 x-y+y^{2}$
21. $\frac{d x}{d t}=x+2 y+x^{2}+y^{2}, \quad \frac{d y}{d t}=2 x-2 y-3 x y$
22. $\frac{d x}{d t}=x+4 y-x y^{2}, \quad \frac{d y}{d t}=2 x-y+x^{2} y$
23. $\frac{d x}{d t}=2 x-5 y+x^{3}, \quad \frac{d y}{d t}=4 x-6 y+y^{4}$
24. $\frac{d x}{d t}=5 x-3 y+y\left(x^{2}+y^{2}\right), \quad \frac{d y}{d t}=5 x+y\left(x^{2}+y^{2}\right)$
25. $\frac{d x}{d t}=x-2 y+3 x y, \quad \frac{d y}{d t}=2 x-3 y-x^{2}-y^{2}$
26. $\frac{d x}{d t}=3 x-2 y-x^{2}-y^{2}, \quad \frac{d y}{d t}=2 x-y-3 x y$
27. $\frac{d x}{d t}=x-y+x^{4}-y^{2}, \quad \frac{d y}{d t}=2 x-y+y^{4}-x^{2}$
28. $\frac{d x}{d t}=3 x-y+x^{3}+y^{3}, \quad \frac{d y}{d t}=13 x-3 y+3 x y$

Differential Equations with Linear Algebra

Homework Problems

1.1. Explicit Solutions. (25 points)

Solve the following equations using the methods (separation of variables, integrating factors) presented in class.

- $x^{\prime}+x=\frac{1}{e^{t}}$
- $3 e^{t} \tan x \frac{d t}{d x}+\left(1-e^{t}\right) \sec ^{2} x=0$
- $x^{\prime}+\frac{1-2 t}{t^{2}} x=1$
- $\frac{d y}{d x}=x+y$
- $x y^{\prime}+(2 x-3) y=x^{4}$
1.2. Initial Value Problem. (10 points)

Solve the following initial value problem.
$y^{\prime \prime}=\sin (x), y(0)=1, y^{\prime}(0)=1$.
1.3. Linear Combination. (5 points)

Verify that if $y_{1}(x)$ and $y_{2}(x)$ are solutions of the respective equations

$$
y^{\prime}+g y=f_{1} \quad \text { and } \quad y^{\prime}+g y=f_{2}
$$

then $c_{1} y_{1}+c_{2} y_{2}$ is, for every pair of constants c_{1}, c_{2}, a solutions of the equation

$$
y^{\prime}+g y=c_{1} f_{1}+c_{2} f_{2}
$$

1.4. Characterizing Isoclines. (10 points)

Consider the linear differential equation $y^{\prime}+a y=c$, with a, c constant, $a \neq 0$. Prove that the isoclines of the direction field of this equation are horizontal lines and that every horizontal line is an isocline.
1.5. (Bonus problem) A Bernoulli Equation.

Solve the following differential equation.
$3 \frac{d x}{d t}=2 x+\frac{t+1}{x^{2}}$.
Due Date: Thursday, February 2, at the beginning of recitation.

Stony Brook University
Sabyasachi Mukherjee, Matthew Dannenberg

Problem Set 2

Differential Equations with Linear Algebra

Homework Problems

2.1. A Non-standard Vector Space Structure on \mathbb{R}^{2}. (20 points)

Show that $\left(\mathbb{R}^{2}, \mathbb{R}, \oplus, \odot\right)$ with the operations defined as follows is a vector space.

$$
\begin{gathered}
{\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \oplus\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+x_{2}-1 \\
y_{1}+y_{2}+2
\end{array}\right]} \\
c \odot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
c x-c+1 \\
c y+2 c-2
\end{array}\right]
\end{gathered}
$$

Here, + , - denote the usual addition and subtraction of real numbers.
2.2. A subspace of $M_{n}(\mathbb{R})$. (10 points)

Show that the set of all real $n \times n$ upper triangular matrices is a subspace of $M_{n}(\mathbb{R})$.
2.3. Finding a Basis. (10 points)

Let \mathcal{P}_{3} be the vector space of real polynomials of degree at most 3 (with respect to usual addition of polynomials and multiplication of scalars with polynomials). Let V be the subspace of \mathcal{P}_{3} defined as:

$$
V=\left\{f(x) \in \mathcal{P}_{3}: f(0)+f(1)=0, f^{\prime}(0)=f^{\prime}(1)\right\}
$$

Find a basis for V.
2.4. Containment of subspaces. (10 points)

Let W_{1}, W_{2} and W_{3} be subspaces of a vector space V such that W_{1} is contained in $W_{2} \cup W_{3}$. Show that W_{1} is either contained in W_{2}, or contained in W_{3}.
2.5. Describing Linear Maps. (10 points)

Describe explicitly a linear map from \mathbb{R}^{3} into \mathbb{R}^{3} which has as its range the subspace spanned by $(1,0,-1)$ and $(1,2,2)$.
2.6. (Bonus problem) Range and Null Space. (10 points)

Let V be a vector space and $T: V \rightarrow V$ be a linear map. Show that the following two statements about T are equivalent.
(a) Range $(T) \cap \operatorname{Null}(T)=\{0\}$.
(b) $\operatorname{Null}(T \circ T) \subseteq \operatorname{Null}(T)$.

Due Date: Thursday, February 9, at the beginning of recitation.

Stony Brook University
Sabyasachi Mukherjee, Matthew Dannenberg

Problem Set 3

Differential Equations with Linear Algebra

Homework Problems

3.1. Vector Spaces and Dimension. (10 points)

For each of the following spaces, show whether or not it is a vector space over the scalar field \mathbb{R}. If it is a vector space, give its dimension.
(a) Symmetric 2×2 real matrices, i.e. matrices A such that the transpose A^{T} is equal to A (with respect to usual matrix addition and multiplication of scalars with matrices).
(b) $\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ (with respect to the standard operations on \mathbb{R}^{2}).
3.2. Range and Null Space. (10 points)

Find the null space and range of the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $f(x, y, z)=\left[\begin{array}{ccc}1 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & -2 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.
What is the sum of the dimensions of these two subspaces?
3.3. Coordinates of Vectors. (10 points)

Show that $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$ is a basis of \mathbb{R}^{3}. What are the coordinates of the vector $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ with respect to the ordered basis \mathcal{B} ?
3.4. Linear Independence. (10 points)

Suppose that the vectors u_{1}, u_{2} and u_{3} in a vector space V are linearly independent. Show that the vectors $u_{1}+u_{2}, u_{2}+u_{3}$ and $u_{3}+u_{1}$ are also linearly independent.
3.5. Diagonalizing Linear Maps. (20 points)

The following matrices A represent linear maps $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with respect to the standard (ordered) basis $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. For each of them, determine whether or not T is diagonalizable. If T is diagonalizable, find a basis of \mathbb{R}^{3} consisting of eigenvectors of T and find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.
(a) $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0\end{array}\right]$.
(b) $A=\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$.
3.6. (Bonus problem) A Basis of \mathcal{P}_{3}. (10 points)

Let \mathcal{P}_{3} be the vector space of all real polynomials of degree at most 3 , and $f(x)$ be a real polynomial of degree 3 . Show that $\left\{f(x), f^{\prime}(x), f^{\prime \prime}(x), 1\right\}$ is a basis of \mathcal{P}_{3}.

Due Date: Thursday, February 16, at the beginning of recitation.

Stony Brook University
Sabyasachi Mukherjee, Matthew Dannenberg

Problem Set 4

Differential Equations with Linear Algebra

Homework Problems

4.1. Eigenvalues of Linear Maps. ($5+10$ points)
(a) Let $T: V \rightarrow V$ be a linear map with an eigenvalue λ. Show that λ^{2} is an eigenvalue of $T \circ T$.
(b) Let $\mathcal{C}^{\infty}(\mathbb{R})$ be the vector space of all infinitely differentiable real functions (with respect to addition and scalar multiplication of functions). Consider the linear map $T:=\frac{d^{2}}{d x^{2}}$: $\mathcal{C}^{\infty}(\mathbb{R}) \rightarrow \mathcal{C}^{\infty}(\mathbb{R})$. For $\lambda>0$, prove that any linear combination of $e^{x \sqrt{\lambda}}$ and $e^{-x \sqrt{\lambda}}$ is an eigenvector for λ.
4.2. Computing Powers of Matrices. (10 points)

Show that if $A=\left[\begin{array}{cc}0 & 2 \\ -1 & 3\end{array}\right]$, then $A^{10}=\left[\begin{array}{cc}-1022 & 2046 \\ -1023 & 2047\end{array}\right]$.
(Hint: Write A as $P D P^{-1}$, where D is diagonal.)
4.3. Inner Product or Not?. (5 points)

Consider the vector space \mathbb{R}^{2} with respect to usual addition and scalar multiplication of vectors. Does the formula $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}-x_{2} y_{2}$ (where $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}\right)$) define an inner product on \mathbb{R}^{2} ?
4.4. Recovering Angle from Length. (10 points)

Prove that if $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$ is the norm defined by an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then $\langle\mathbf{x}, \mathbf{y}\rangle=$ $\frac{1}{4}\left(\|\mathbf{x}+\mathbf{y}\|^{2}-\|\mathbf{x}-\mathbf{y}\|^{2}\right)$.
4.5. Symmetric Matrices. (10 points)

Let A be a real symmetric 2×2 matrix. Show that $\langle A(\mathbf{x}), \mathbf{y}\rangle=\langle\mathbf{x}, A(\mathbf{y})\rangle$ for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ (here \langle,$\rangle denotes the usual dot product in \mathbb{R}^{2}$).
4.6. Finding an Orthonormal Basis. (10 points)

Let $V=\mathcal{P}_{2}[0,1]$ be the vector space of all real polynomials of degree at most 2 restricted to $[0,1]$. If V is given the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

find an orthonormal basis for V.
(Hint: Apply Gram-Schmidt on the basis $\left\{1, x, x^{2}\right\}$.)
Due Date: Thursday, February 23, at the beginning of recitation.

Differential Equations with Linear Algebra

Homework Problems

5.1. Linear Differential Equation with Constant Coefficients. ($10+10$ points)

Solve the following initial value problems (do not use trial solutions, use the method of repeated integration):
(a) $y^{\prime \prime}+y^{\prime}-6 y=0, y(0)=2, y^{\prime}(0)=2$.
(b) $y^{\prime \prime}-2 y^{\prime}+2 y=0, y(\pi)=2, y^{\prime}(\pi)=0$.
5.2. Differential Equations with A Prescribed Solution. ($5+5$ points)

Find linear differential equations of minimal order (with constant coefficients) that are satisfied by the following functions:
(a) $f(x)=2 x e^{-x}+e^{-x}$.
(b) $g(x)=3 \cos (4 x)-5 e^{2 x} \sin 3 x$.
5.3. Undetermined Coefficients. (10 points)

Find the general solution of the following linear non-homogenous differential equation using the method of undetermined coefficients:
$y^{\prime \prime}-4 y=2 e^{2 x}$.
5.4. Variation of Parameters. (10 points)

For the following differential equation, find or guess a solution y_{1} of the associated homogenous equation. Then determine $u(x)$ so that $y(x)=u(x) y_{1}(x)$ is a solution of the differential equation containing two arbitrary constants.
$x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=x^{4}, x>0$.
(Hint: try $y_{1}=x^{n}$, for some positive integer n)
5.5. Linear Independence and Wronskian. (10 points)

Compute the Wronskian of the functions $y_{1}(x)=e^{-3 x}, y_{2}(x)=\cos 2 x$, and $y_{3}(x)=\sin 2 x$, and conclude that they are linearly independent (on \mathbb{R}).
5.6. (Bonus Problem) Exploiting The Power of Wronskians. (10 points)

Let r_{1}, r_{2} be two distinct real roots of the quadratic equation $x^{2}+p x+q=0$, where $p, q \in \mathbb{R}$. We have seen, using exponential functions as trial solutions, that $y_{1}(x)=e^{r_{1} x}$ and $y_{2}(x)=e^{r_{2} x}$ are solutions of the linear differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+q y=0 \tag{1}
\end{equation*}
$$

(a) Prove that the Wronskian of $y_{1}(x)$ and $y_{2}(x)$ never vanishes on \mathbb{R}.
(b) Let $f(x)$ be an arbitrary solution of (1). Prove that the Wronskian of the functions $\left\{y_{1}(x), y_{2}(x), f(x)\right\}$ is identically zero. Now use a theorem from the lecture notes to conclude that $\left\{y_{1}(x), y_{2}(x)\right\}$ is a basis for the vector space of all solutions of (1). In particular, the space has dimension 2.

Remark. The assumption that r_{1} and r_{2} are distinct real numbers is unnecessary, with minor modifications the above proof goes through in the other cases (i.e. if $r_{1}=r_{2} \in \mathbb{R}$ or if r_{1} and r_{2} are complex conjugate) as well.

Due Date: Thursday, March 9, at the beginning of recitation.

Differential Equations with Linear Algebra

Homework Problems

6.1. Computing Inverse Laplace Transforms. ($7+7+7+9$ points)
(a) Find the inverse Laplace transforms of the following functions (you may use any standard formula involving Laplace transforms listed in the book):
(a) $\frac{s^{2}-2 s}{s^{4}+5 s^{2}+4}$,
(b) $\frac{1}{s^{2}\left(s^{2}-1\right)}$,
(c) $\frac{s}{(s-3)\left(s^{2}+1\right)}$.
(b) Find $\mathcal{L}^{-1}\left(\frac{1}{\left(s^{2}+a^{2}\right)^{2}}\right)$.
6.2. Initial Value Problems via Laplace Transform. ($10+10$ points)
(a) Solve the following initial value problem using Laplace transform:
$x^{\prime \prime}+4 x^{\prime}+13 x=t e^{-t} ; x(0)=0, x^{\prime}(0)=2$.
(b) Use the convolution theorem to derive the indicated solution $x(t)$ of the given initial value problem:
$x^{\prime \prime}+4 x^{\prime}+13 x=f(t) ; x(0)=0, x^{\prime}(0)=0$.
$x(t)=\frac{1}{3} \int_{0}^{t} f(t-u) e^{-2 u} \sin (3 u) d u$.
6.3. Laplace Transform of Discontinuous Function. (10 points)
(a) Define the Heaviside function

$$
H(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } 0 \leq t\end{cases}
$$

Show that $\mathcal{L}[H(t-a)](s)=\frac{1}{s} e^{-a s}$.
(b) Solve the differential equation $y^{\prime \prime}=H(t-a)(0<a)$, with initial conditions $y(0)=1$, $y^{\prime}(0)=0$.
6.4. (Bonus Problem) Bump Function. (10 points)

Prove that the function

$$
\Psi(x)= \begin{cases}\exp \left(-\frac{1}{1-x^{2}}\right) & \text { for }|x|<1 \\ 0 & \text { otherwise }\end{cases}
$$

is everywhere differentiable and that its derivative is continuous. (In fact, the function has continuous derivatives of all orders. This is an example of a bump function.)

Due Date: Thursday, March 23, at the beginning of recitation.

Differential Equations with Linear Algebra

Homework Problems

7.1. Existence and Uniqueness of Solutions. (10 points)
(a) Explain which part(s) of the existence and uniqueness theorem (of solutions of differential equations) fail(s) to apply to the initial value problem

$$
\dot{x}= \begin{cases}\sqrt{x}, & \text { if } x \geq 0 \\ 0, & \text { if } x<0\end{cases}
$$

and $x(0)=0$.
(b) Find two distinct solutions of this equation.
7.2. Inverse of a Matrix Using Cayley-Hamilton Theorem. (10 points)

Find the inverse of the matrix $\left[\begin{array}{ccc}2 & 4 & 8 \\ 1 & 0 & 0 \\ 1 & -3 & -7\end{array}\right]$ using the Cayley-Hamilton theorem.
7.3. Computing Matrix Exponential: Brute Force Method. (10 points)

Find $e^{t A}$ by computing the successive terms $I, t A, t^{2} A^{2} / 2!, \cdots$ in the series definition, where $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
7.4. Solving Systems of Linear Differential Equations by Two Different Methods. (20 points) Consider the system of linear differential equations

$$
\left[\begin{array}{c}
\dot{x} \tag{1}\\
\dot{y}
\end{array}\right]=\left[\begin{array}{c}
y \\
-6 x+5 y
\end{array}\right],(x(0), y(0))=(1,2)
$$

(a) Solve (1) using the method of elimination.
(b) Solve (1) using the matrix exponential method.
(c) Did we know a priori that the two methods would produce the same solution?
7.5. Interplay between The Elimination Method and The Matrix Exponential Method. points)
Consider the system of linear differential equations

$$
\left[\begin{array}{c}
\dot{x} \tag{2}\\
\dot{y}
\end{array}\right]=\left[\begin{array}{c}
9 x-4 y \\
4 x+y
\end{array}\right]
$$

(a) Find the general solution of (2) using the method of elimination.
(b) Now use the general solution obtained in part (a) to find particular solutions satisfying $(x(0), y(0))=(1,0)$ and $(x(0), y(0))=(0,1)$.
(c) Use the results of part (b) to find $e^{t A}$, where $A=\left[\begin{array}{cc}9 & -4 \\ 4 & 1\end{array}\right]$
7.6. Matrix Exponential of a 2×2 Matrix with Trace Zero. (10 points)

Let $A \in M_{2}(\mathbb{R})$ with $\operatorname{trace}(A)=0$. Show that $\exp (A)=\cos (\sqrt{\operatorname{det}(A)}) I+\frac{\sin (\sqrt{\operatorname{det}(A)})}{\sqrt{\operatorname{det}(A)}} A$, where $\frac{\sin (\sqrt{\operatorname{det}(A)})}{\sqrt{\operatorname{det}(A)}}$ is interpreted as 1 when $\operatorname{det}(A)=0$, in accordance with the limit $\lim _{t \rightarrow 0} \frac{\sin t}{t}=$ 1.

Hint: Recall the power series expansions of \sin and cos.
7.7. Matrix Exponential Using N-D Decomposition. (10 points)

Find e^{A} using the N-D decomposition of A, where $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ -1 & 3 & 1 \\ -1 & 0 & 4\end{array}\right]$.
7.8. (Bonus Problem) An Application of Jordan Canonical Forms. (20 points)

The goal of this problem is to prove that

$$
\operatorname{det}\left(e^{A}\right)=e^{\operatorname{trace}(A)},
$$

for every $A \in M_{n}(\mathbb{C})$. Let us start with a couple of important definitions.

Definition 1 Two matrices A and B are called similar over \mathbb{C} if there exists an invertible matrix $P \in M_{n}(\mathbb{C})$ such that $A=P^{-1} A P$.

Definition 2 Let $A=\left(a_{i j}\right) \in M_{n}(\mathbb{C})$. The characteristic polynomial of A is defined as $\operatorname{det}(\lambda I-A)$. Clearly, the characteristic polynomial of A is a degree n polynomial in λ.
(a) Show that similar matrices have the same determinant and the same characteristic polynomial. Conclude that similar matrices have the same eigenvalues with the same multiplicities.
(b) Let $A=\left(a_{i j}\right) \in M_{n}(\mathbb{R}), \lambda^{n}+p_{1} \lambda^{n-1}+\cdots+p_{n}$ be the characteristic polynomial of A, and $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ be the set of all eigenvalues (not necessarily distinct) of A. Show that $-\sum_{i=1}^{n} \lambda_{i}=p_{1}=-\sum_{i=1}^{n} a_{i i}$. Conclude that similar matrices have the same trace, which is equal to the sum of all the (common) eigenvalues. In particular, we have $e^{\text {trace }(A)}=\exp \left(\sum_{i=1}^{n} \lambda_{i}\right)$.
(c) Recall that every complex $n \times n$ matrix is similar to its Jordan canonical form. Using the Jordan canonical form of A, show that e^{A} is similar to an upper triangular matrix with entries $e^{\lambda_{1}}, e^{\lambda_{2}}, \cdots, e^{\lambda_{n}}$ on its principal diagonal. Conclude that $\operatorname{det}\left(e^{A}\right)=$ $\exp \left(\sum_{i=1}^{n} \lambda_{i}\right)$.
(d) Quod erat demonstrandum.

Due Date: Monday, April 10, at the beginning of class.

Differential Equations with Linear Algebra

Homework Problems

8.1. Method of Undetermined Coefficients. (15 points)

Apply the method of undetermined coefficients to find the general solution of the following system.
$x^{\prime}=6 x-7 y+10, y^{\prime}=x-2 y-2 e^{-t}$.
8.2. Method of Variation of Parameters. (15 points)

Apply the method of variation of parameters to solve the initial value problem $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}2 & -4 \\ 1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{c}36 t^{2} \\ 6 t\end{array}\right],\left[\begin{array}{l}x(0) \\ y(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
8.3. Limitations of Power Series Method. (10 points)

Show that the power series method fails to yield a power series solution of the form $y=$ $\sum_{n=0}^{\infty} c_{n} x^{n}$ for the differential equation $x^{2} y^{\prime}+y=0$.
8.4. Truncated Power Series Solution. (20 points)

Find the first six non-zero terms of the power series solution of the following differential equation around $x=0$.
$\left(x^{2}-4\right) y^{\prime \prime}+3 x y^{\prime}+y=0, y(0)=4, y^{\prime}(0)=1$
8.5. (Bonus Problem) Power Series Solution Via Recurrence Relation. (15 points)

Find the general solution in powers of x of the following differential equation. State the recurrence relation and the radius of convergence of the power series.
$\left(x^{2}-1\right) y^{\prime \prime}+4 x y^{\prime}+2 y=0$.
Due Date: Thursday, April 27, at the beginning of class.

Differential Equations with Linear Algebra

Homework Problems

9.1. Stability Analysis-I. (10 points)

Carry out a stability analysis for the equilibrium point $(0,0)$ of the following system.

$$
\frac{d x}{d t}=5 x-3 y+y\left(x^{2}+y^{2}\right), \quad \frac{d y}{d t}=5 x+y\left(x^{2}+y^{2}\right)
$$

9.2. Stability Analysis-II. (15 points)

Find all equilibrium points of the given system, and carry out a stability analysis for each equilibrium point.

$$
\frac{d x}{d t}=x y-2, \quad \frac{d y}{d t}=x-2 y
$$

9.3. Stability Analysis and Bifurcation. (15 points)

We discussed the following theorem in class.

THEOREM 1 Stability of Linear Systems

Let λ_{1} and λ_{2} be the eigenvalues of the coefficient matrix \mathbf{A} of the twodimensional linear system

$$
\begin{align*}
& \frac{d x}{d t}=a x+b y \\
& \frac{d y}{d t}=c x+d y \tag{11}
\end{align*}
$$

with $a d-b c \neq 0$. Then the critical point $(0,0)$ is

1. Asymptotically stable if the real parts of λ_{1} and λ_{2} are both negative;
2. Stable but not asymptotically stable if the real parts of λ_{1} and λ_{2} are both zero (so that $\lambda_{1}, \lambda_{2}= \pm q i$);
3. Unstable if either λ_{1} or λ_{2} has a positive real part.

The following problem, which discusses the behavior of an equilibrium point for various parameters, is an interesting application of the above theorem.

First note that the characteristic equation of the 2×2 matrix \mathbf{A} can be written in the form $\lambda^{2}-T \lambda+D=0$, where D is the determinant of \mathbf{A} and the trace T of the matrix \mathbf{A} is the sum of its two diagonal elements. Then apply Theorem 1 to show that the type of the critical point $(0,0)$ of the system $\mathbf{x}^{\prime}=\mathbf{A x}$ is determined-as indicated in Fig. 1 -by the location of the point (T, D) in the trace-determinant plane with horizontal T-axis and vertical D-axis.

FIGURE 1. The critical point $(0,0)$ of the system $\mathbf{x}^{\prime}=\mathbf{A x}$ is a

- spiral sink or source if the point (T, D) lies above the parabola $T^{2}=4 D$ but off the D-axis;
- stable center if (T, D) lies on the positive D-axis;
- nodal sink or source if (T, D) lies between the parabola and the T-axis;
- saddle point if (T, D) lies beneath the T-axis.

Due Date: Thursday, May 4, at the beginning of recitation.

