MAT 303

Calculus IV with Applications

Autumn 2011

This course will introduce basic methods for solving ordinary differential equations, with a particular emphasis on linear differential equations with constant coefficients and systems of differential equations. Differential equations are the language in which the laws of physics are expressed, and have numerous applications in the physical, biological, and social sciences. We will discuss many standard applications. We will also briefly discuss some numerical methods for solving differential equations.

Textbook:

Differential Equations: Computing and Modeling, 4th Edition, by Edwards & Penney, Pearson/Prentice Hall.

http://us.mg5.mail.yahoo.com/dc/launch?.gx=1&.rand=35ljst8b7romd

Help: The Mathematics Learning Centre (MLC) is located in Math Tower S-240A, and offers free help to any student requesting it. It also provides a locale for students wishing to form study groups. The MLC is open 10am-6pm Monday through Thursday.

The class meets on Mondays, Wednesdays, and Fridays, 11⁴⁵-12⁴⁰ in Library-E4330.

Recitation 01 meets on Wednesdays, 9³⁵-10³⁰ in Light Engineering-152.

Recitation 02 meets on Fridays, 1⁵⁰-2⁴⁵ in Light Engineering-154.

Schedule:

Week of	Sections covered Assignment (To be submitted in the right recitation class the week after)	Comments
Aug 28 th - Sept 2 nd	1.1: 1, 3, 13, 19, 27; 1.2: 1, 4, 8, 15, 42; 1.3: 2, 8, 21, 29.	
Sept 5 th -Sept 9 th	1.4: 1, 2, 3, 4, 6, 19, 23, 24, 48; 1.5: 1, 2, 3, 5, 12, 15.	No class on Monday 9 th , labour day.
Sept 12 th - Sept 16 th	1.6: 1, 5, 8, 17, 18, 19, 31, 34, 36; 2.1: 2, 4, 32, 33.	
Sept 19 th - Sept 23 rd	2.2: 9, 21; 2.3: 2, 4, 6, 25, 26, 29.	
Sept 26 th - Sept 30 th	2.4: 3, 5; Review	No class on Friday, but Wednesday runs on Friday schedule.
Oct 3 th -Oct 7 th	3.1: 4, 10, 14, 17, 19, 20, 29, 34, 40, 46.	First midterm exam on Monday, October 3 rd in class. Answers
Oct 10 th -Oct 14 th	3.2: 1, 4, 8, 18, 21, 30, 31; 3.3: 3, 5, 9, 10, 18, 21, 22.	
Oct 17 th -Oct 21 st	3.4: 1, 3, 15, 17, 19, 12(a, b, e); 3.5: 1, 2, 3, 6, 35, 47, 53.	
Oct 24 th -Oct 28 th	3.6: 1, 4, 7, 11, 13, 15, 18; 3.7: 8, 13, 17.	
Oct 31 st - Nov 4 th	4.1: 1, 5, 6, 11, 17, 21, 22. Review	
Nov 7 th -Nov 11 th	5.1: 1, 2, 4, 6, 7, 11, 14, 19, 21, 22, 30; 5.2: 1, 6, 11, 19, 41.	Second midterm exam on Monday, Nov. 7 th in class. Answers The answer to problem 1 must be corrected to $y(x) = c1 e^{(-1/2x)} + (X) c2 e^{(-1/2x)}$, an

		x is missing in the solution.
Nov 14 th - Nov 18 th	5.4: 1, 3, 11, 15; 5.5: 1, 3, 10, 17, 26, 35.	
Nov 21 st - Nov 25 th	5.6: 1, 2, 8.	No classes on Wednesday or on Friday.
Nov 28 th - Dec 2 nd	8.1: 1, 4, 6, 14, 18; 8.2: 1, 2, 6, 16, 17.	
Dec 5 th -Dec 9 th	More discussions on power series solutions of ODEs, Review for final exam	
Dec 12 th - Dec 16 th		Class only on Monday, the last day of classes. Final exam on Tuesday, Nov. 13th, 2: ¹⁵ -4: ⁴⁵ pm.

Disabilities:

If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact Disability Support Services at http://studentaffairs.stonybrook.edu/dss or (631)632-6748. They will determine with you what accomodations are necessary and appropriate. All information and documentation is confidential.

Students who require assistance during emergency evacuation are encouraged to discuss their needs with the lecturer and Disability Support Service. For procedure and information go to the following website: http://www.stonybrook.edu/ehs/fire/disabilities.shtml

Academic integrity:

Each student must pursue their academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Faculty are required to report any suspected instances of academic dishonesty to the Academic Judiciary. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/uaa/academicjudiciary

Teaching Assistants:

Recitation 01: Alexandra Popa (Mathematics Building-3-105).

Office hours: Tuesday 8-9am in office; Tuesday 10-11am and Thursday 10-11am in the MLC. **E-mail:** alexandra AT math DOT sunysb DOT edu

Recitation 02: S.Ali Aleyasin (Mathematics Building-2-121). Office hours: Tuesday 5-6pm in office; Tuesday and Wednesday 6-7pm in the MLC. E-mail: sali AT math DOT sunysb DOT edu

Instructor:

Prof. C. Denson Hill (Mathematics Building-2-113). Office hours: Monday, Wednesday, Friday 2:30-3:30pm. E-mail: dhill AT math DOT sunysb DOT edu

MAT 303

First Midterm Exam

Name Answers I.D.#. 1°. Salve the initial value problem $\begin{cases} \frac{dy}{dx} = 3\sqrt{x} \\ y(4) = 0 \end{cases}$.

2°. Solve the initial value problem $\begin{cases} \frac{dy}{dx} = 6 e^{2x-y} \\ y(0) = 0 \end{cases}$.

3. Find the general solution of
$$\frac{dy}{dx} + 2xy + 6x = 0$$
.
 $y(x) = C - 3$

#. Find (perhaps implicitly) the general solution to

$$(3\chi^2+2y^2)dx+(4\chi y+6y^2)dy = 0$$
.
{continue on next page}

 $\chi^3 + 2\chi y^2 + 2y^3 = C$

5.° Find the general solution to Xy"+ y'= 4X. $y(x) = \chi^2 + A \ln x + B$

6. Assuming you are near the earth, and no air resistance, how high does a ball of mass m go, if it is thrown repwords with initial velocity Vo from an initial height Xo (Xo >0 and Vo >0)? xo $\chi_{\max} = \chi_0 + \frac{V_0^2}{2g}$ X=0_________EARTH/) g = gravitational constant $\chi_0 = \chi(0) > 0$ $V_0 = \tilde{\chi}(0) > 0$ it occurs at time

2

FALL 2011 MAT 303 Second Midtarm Exam Each problem 4 pt max in 24 = 4×6 Name Answers ____I.D.#_ 1°. Find the general solution y(x) of 4y"+4 y'+y=0. $y(x) = c_1 e^{-\frac{x}{2}} + c_2 e^{-\frac{x}{2}}$

2°. Solve the initial value problem
$$y''-3y'+2y=0$$
, $y(0)=1$, $y(0)=0$.
 $y(x) = 2e - e^{2x}$

$$y(x) = e^{5x} \{ C_1 \cos 2x + C_2 \sin 2x \}$$

2 4.° Use the method of undetermined Coefficients to find a particular solution yp (x) to y"+2y'+5y = e sin x.

$$y_{p}(x) = \frac{1}{65} e^{\chi} \{7 \sin \chi - 4 \cos \chi\}$$

5.° Use Variation of parameters to find a particular solution

$$y_p(x)$$
 to $y'' + 4y = \sin^2 x$.
Using $y_1(x) = \cos 2x$, $y_2(x) = 4 \sin 2x$
 $W(x) = 4 = \begin{vmatrix} \cos 2x & \sin 2x \\ -2 \sin 2x & \sin 2x \\ -2 \sin 2x & 2 \cos 2x \end{vmatrix}$
So Voriation of parameters gives
 $y_p(x) = -\cos 2x \int \frac{\sin^2 x \sin 2x}{4} dx$
 $+ \sin 2x \int \frac{\sin^2 x \cos 2x}{4} dx$
Gatually

$$y_p(x) = \frac{1}{8} - \frac{x}{8} \sin 2x$$

One way of writing the sale is where

$$\chi_p(t) = \frac{F_0}{\sqrt{(k-m\omega)^2 + (c\omega)^2}} \sin(\omega t - \alpha)$$
 tand = $\frac{c\omega}{k-m\omega^2}$

$$X_{p}(t) = \frac{-c\omega F_{o}}{(k - m\omega^{2})^{2} + (c\omega)^{2}} \cos \omega t + \frac{(k - m\omega^{2}) F_{o}}{(k - m\omega^{2})^{2} + (c\omega)^{2}} \sin \omega t,$$

by using undetermined coefficients

and a series and the