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Syllabus

Homework Assignments

Here is a link to an Exam I that I gave a year and a half ago, when I last taught 303.
I also made up some Extra Credit/Review questions. I will go over the instructions for these in class...

Old Exam II
Extra Credit/Review questions for Chapter 3

Old Final
Extra Credit/Review Problems for Chapter 5
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Office: Math Tower 3-121
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Time: Wednesday Dec 16, 5:15-7:45p
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Syllabus for Math 303, Calculus IV with
Applications Fall 2009

Lecturer
Brian Weber
Office: Math Tower 3-121, Office phone: 632-8264
Email: brweber@math.sunysb.edu
Office hours: Monday 12:50-1:50p Wednesday 4:00-5:00p

TA
Somnath Basu
Office: Math Tower, 3-104
Email: basu@math.sunysb.edu
Office hours: Thursday 3-4p Thursday 5-6p (MLC) Friday 10-11a (MLC)

Course Text Differential Equations and Boundary Value Problems: Computing and Mod-
elling (Fourth Edition) by Edwards and Penney

Prerequisites
Official prerequisites are a C or higher in one of the following: MAT 127, MAT 132,

MAT 142, or AMS 161, or else a level 9 or higher on the mathematics placement exam.
Unofficially, you need a firm enough knowledge of derivatives and integrals to be able to
simplify expressions like d

dx

∫ x

1
3
√

t2 + 1 dt and
∫

xex dx.

Exams
Any necessary special formulas will be provided on the exam, and the problems will be

designed so that calculators won’t be necessary. Thus all you’ll need is your brain and a
pencil. No books, ‘cheatsheets,’ or calculators will be allowed.

Midterm 1: Oct 2, In-Class (20% of grade)
Midterm 2: Nov 2, In-Class (20% of grade)
Final: Dec 16, 5:15-7:45p (Room TBA) (40% of grade)

Homework (20% of grade)
One problem set will be due each week, at the beginning of recitation. The problem sets

consist of roughly 10-20 problems of varying difficulty. Exam questions will be modelled on
homework questions, so doing and understanding the homework is the best way to prepare
for the tests.

This is a 4 credit course, and as a fair warning, you will have to work hard to be suc-
cessful. If you fall seriously behind on the homework, you will not be able to keep up in
class and will not be prepared for the exams. You are encouraged to work in groups, but
you must write up your own solutions.

You must always show your work. No credit will be given for correct answers without
correct work, on either exams or homeworks. No exceptions.

Makeup policy
All of your responsibilities for this class have been announced well ahead of time, namely

in the first week of classes. Thus almost no requests for makeup homeworks or exams will
be granted. The only exceptions, assuming evidence is provided, will be for serious illness,
family emergency, or an unforeseeable catastrophe (flood, car wreck, etc).

Grading policy
The grading will be curved. This means your letter grade will be influenced by your

performance relative to the rest of the class. An approximate curve will be made after each
exam. The final curve, by which your course grade will be determined, will be set using the
same process used for the individual exams, so the individual exam grades should be a good
measure of how well you are doing.
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Chapter 1 Review/Extra Credit Problems

Remember, no credit will be given for answers without justification.

Problem I

Consider the multivariable function

f(x, y) =

{
−2xy

x2 + y2 , if (x, y) 6= (0, 0)
0 , if (x, y) = (0, 0),

and the associated differential equation

dy

dx
=

−2xy

x2 + y2
.

A) Find the points where f(x, y) is discontinuous (remember to justify your answer). Com-
pute ∂f

∂y , and find the points where ∂f
∂y is discontinuous.

B) For what values of a and b is the IVP y(a) = b guaranteed to have a unique solution?
For what values a, b is there no guarantee that the IVP y(a) = b has a solution?

C) Plot a slope field for this differential equation.

D) Considering your answer for (B) and the slope field you drew for (C), do you think any so-
lutions with initial condition y(0) = 0 exist, and if so, do you think there is a unique solution?

E) Find the differential equation’s general solution (there’s an easy way and a hard way!).

Problem II

Consider the multivariale function

f(x, y) =

{
2xy

x2 + y2 , if (x, y) 6= (0, 0)
0 , if (x, y) = (0, 0),

and the associated differential equation

dy

dx
=

2xy

x2 + y2
.

A) Find the points where f(x, y) is discontinuous (remember to justify your answer). Com-
pute ∂f

∂y , and find the points where ∂f
∂y is discontinuous.

B) For what values of a and b is the IVP y(a) = b guaranteed to have a unique solution?
For what values a, b is there no guarantee that the IVP y(a) = b has a solution?

C) Plot a slope field for this differential equation.

D) Considering your answer for (B) and the slope field you drew for (C), do you think any so-
lutions with initial condition y(0) = 0 exist, and if so, do you think there is a unique solution?

E) Find the differential equation’s general solution.
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Find the general solution. Leave the solution in implicit form when appro-
priate.

1) dy
dx

= cos(x) Ans: y = sin(x) + C

2) dy
dx

= 1
x2 +3x +2

Ans: y = C + ln
∣∣∣x+1
x+2

∣∣∣
3) dy

dx
= cos(x)−x sin(x)

x cos(x)

4) dy
dx

= x
x2 +5x +4

5) x dy
dx

= 1 − y Ans: y = 1 + C
x

6) dy
dx

= x2

1−y2 Ans: y3 − 3y + x3 = C

7) x−1 dy
dx

= 1 − y

8) dy
dx

= x− e−x

y + ey

9) dy
dx

+ cos(x) y = 4 cos(x) Ans: y = 4 + Ce− sin(x)

10) dy
dx

= x−2xy
x2+1

Ans: y =
1
2
x2+C

x2+1

11) x dy
dx

= −17y + x3

12) x2 dy
dx

= −17y + x3

13) dy
dx

= y2+2xy
x2 Ans: y = Cx2

1−Cx

14) dy
dx

= x+y
x

Ans: y = x ln |x| + Cx

15) x dy
dx

= −xy + y2

x

16) dy
dx

= − 4x+3y
2x+y
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Evaluate dF (x, y) when F (x, y) is the given 2-variable function. Then solve
the stated differential equation. If you know how to do these, there is no work
whatsoever.

17) F (x, y) = x2 + xy + y3 Ans: dF = (2x + y)dx + (x + 3y2)dy

dy
dx

= − 2x+y
x+3y2 Ans: y3 + xy + x2 = C

18) F (x, y) = x2 cos(y) Ans: dF = 2x cos(y)dx− x2 sin(y)dy

dy
dx

= 2x cos(y)
x2 sin(y)

Ans: y = cos−1(Cx−2)

19) F (x, y) = xy

dy
dx

= − y
x

20) F (x, y) = xy2 + x + x2 − y5

dy
dx

= 5y4−2xy
y2+1+2x

Find the general solution.

21) dy
dx

= 3x2−y
2y+x

Ans: y2 + xy − x3 = C

22) dy
dx

= − y
3y2+x

Ans: y3 + xy = C

23) dy
dx

= 2x− y16

17y16+16xy15

24) dy
dx

= 4y−x
9x2+y−1

25) dy
dx

= y + y2 Ans: y = 1
−1+Ce−x

26) x dy
dx

= y + xy−1 Ans: y2 = 2
3
x + Cx−2

27) x dy
dx

= y + xy2

28) dy
dx

= y + y−1
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Instructions for getting extra credit

Do either problem I or problem II (or both!)
Do at least 9 additional problems.
Turn in your work.

If you don't turn in at least 10 problems or if you don't do either problem I or II, you won't get any extra
credit.

You will get 2 points for each correctly solved problem. Only your 10 best problems will be graded, no
matter how many are turned in.

This will count as one-half of a homework assignment (which is 12.5% of the total homework grade before
Exam I)



Test II Name

April 15, 2008

Math 303 - Differential Equations with Applications

• No credit will be given for answers without mathematical or logical justification.

• Simplify answers as much as possible.

• No calculators, notes, or books

Part I

1) Determine whether the following set of column vectors is linearly dependent or linearly
independent. (7 pts)

v1 =


1
2
17
−20

 v2 =


0
2
−1
1

 v3 =


0
1
−2
−2

 v3 =


0
1
1
3
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2) (4 pts each) Perform the indicated operation

a)

 1 2
2 −1
−1 1

 ·
(

1 1 1
1 −1 1

)

b)
(
−101 17 2
−1 29 5

)T
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3) a) (5 pts) Express the following system as a matrix equation

x′
1 = 2x1 + x2 − x3 + cos(2t)

x′
2 = x3 + sin(3t)

x′
3 = −x1 + x2 + et

b) (5 pts) Convert the following system to a single second order equation

x′ = x− y

y′ = 2x + y

3



Part II

4) (10 pts) Find the general solution

x′′ + 9x′ + 20x = 0

5) (10 pts) Find the solution

x′′ + 4x′ + 13x = 0, x(0) = 0, x′(0) = −6.
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6) Consider the differential equation x′′ + 4x′ + 13x = 40 cos(t) (similar to problem 5).
a) (10 pts) Find the general solution

b) (5 pts) Find the solution, given initial conditions x(0) = 3, x′(0) = −5.
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Part III
7) Consider the equation

x(4) + 4x′′ + 4x = cos(2t).

a) (5 pts) Find the complimentary solution.

b) (5 pts) If you used the method of undetermined coefficients, what would your ‘guess’
for the particular solution be? DO NOT actually try to determine the coefficients.

c) (5 pts) Do you think this differential equation could serve as a reasonable model for
some simple physical system? Why or why not? (Be brief, but clear.)
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8) Consider the mass-spring-dashpot system with the specifications

Mass m = 1 Damping constant c = 2
Spring constant k = 2 External forcing f(t) = cos(ω t).

Recall the spring equation m x′′ + cx′ + kx = f(t).
a) (13 pts) Find the amplitude C of the steady periodic response as a function of ω.

b) (12 pts) Find the frequency of practical resonance (if any).
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Chapter 3 Review/Extra Credit Problems

Remember, no credit will be given for answers without justification.

State whether the functions are linearly dependent and/or algebraically
dependent (1 point each).

1) y1 = cos(x)
y2 = sin(x)
y3 = cos(x) + sin(x)

Ans: Linearly dependent, Algebraically dependent

2) x1 = sin(t)
x2 = et

x3 = et sin(t) − 7et

Ans: Algebraically dependent

3) x1 = cos(t) + cos(2t)
x2 = cos(t) − cos(2t)
x3 = e3t + e−t

x4 = e3t − e−t

x5 = cos(t) + e−t

4) x1 = cos(t) + cos(2t)
x2 = cos(t) − cos(t)
x3 = cos(t)

5) x1 = cot(t)
x2 = e2t

x3 = e2t+1 − π cot(t)

6) y1 = sin(t)
y2 = cos(t)
y3 = 1

1



Find the general solution (2 points each)

7) y′′ + 7y′ + 12y = 0

Ans: y(t) = c1 e−4t + c2 e−3t

8) y′′′ + 2y′′ − y′ − 2y = 0

9) d2x
dt2 + 2dx

dt + 10x = 0

10) x(4) + 4x(3) + 6x′′ + 4x′ + x = 0

Find the solution (2 points each)

11) y′′ + 7y′ + 12y = 0, y(0) = 0, y′(0) = 1

Ans: y(t) = −e−4t + e−3t

12) y′′′ + 2y′′ − y′ − 2y = 0, y(0) = 1, y′(0) = −2, y′′(0) = 4

13) d2x
dt2 + 2dx

dt + 10x = 0, x(0) = 0, x′(0) = 3

14) x(4) + 4x(3) + 6x′′ + 4x′ + x = 0, x(0) = 0, x′(0) = 0, x′′(0) = 0, x(3)(0) = 0

2



Find the solution (4 points each)

15) d2x
dt2 + 2dx

dt + 5x = cos(t), x(0) = 11/5, x′(0) = −29/10

Ans: x(t) =
(
2e−t + 1

5

)
cos(2t) +

(
−e−t + 1

10

)
sin(2t)

16) d2x
dt2 + 4x = cos(2t), x(0) = 1, x′(0) = −1

17) y′′ − 2y′ + y = et, y(0) = 1, y(0) = 2

3



Find the amplitude C(ω) of the system’s steady-state reponse.
Plot the function C(ω), and indicate the frequency of practical resonance (if any exists).
(8 points per problem)

18) d2x
dt2 + 2dx

dt + 5x = cos(ωt)

Practical resonance at ω =
√

3

19) d2x
dt2 + 5x = cos(ωt) (same system, but without damping)

20) x′′ + 3x′ + x = cos(ωt)

4



Final Exam Name

Math 303 - Differential Equations with Applications

May 15, 2008

• No credit will be given for answers without mathematical or logical justification.

• You may leave answers in implicit form, when appropriate.

• Simplify answers as much as possible.

• No calculators, notes, or books.

Part I

1) (7 pts) Solve for x: dx
dt = tx − t

x , x(0) = 2.

2) (8 pts) Find the general solution: dy
dx = 2x− y

x + 6y .

1



3) (15 pts) Solution with a concentration of 0.1 lbs of salt per gallon pours into a tank at a
rate of 2

t+1 gallons per minute. Also, well-mixed solution leaves the tank at the same rate.
How much salt is in the tank after 1 minute, if initially the tank contains 1 gallon of water
mixed with 0.9 lb of salt?

2



4) The equation for a particle caught in the gravitational field of a body of mass M is

d2r

dt2
= −G M

r2
,

where G ≈ 6.67× 10−11m3kg−1s−2 and r is the distance to the center of mass of the body.
A particle of dust is caught in the gravitational field of a small, spherically shaped asteroid
of mass 16

6.67 × 1011kg and radius 100m.

a) (10 pts) Use the methods of differential equations to find dr
dt .

b) (10 pts) Initially the dust particle is motionless relative to the asteroid and 300m from
its surface. With what speed will it strike the asteroid’s surface?
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Part II
5) Consider the differential equation

x′′′′ + 2x′′′ + 2x′′ = 4 − 12t

a) (10 pts) Find the complimentary solution

b) (15 pts) Find the general solution.

c) (5 pts) Find the solution, given x(0) = 0, x′(0) = 0, x′′(0) = 8, x′′′(0) = −6.
(There’s an easy way and a hard way.)
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Part III
6) (5 pts) Compute etA, where A =

 0 −1 6
0 0 4
0 0 0

.

7) Consider the equation(
x1

x2

)′
=
(

0 −1
1 0

) (
x1

x2

)
+
(

1
t

)
.

a) (5 pts) If you use the method of undetermined coefficients, what would your ‘guess’ for
xp be?

b) (15 pts) Find xp.
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Part IV

8) Consider the system


x1

x2

x3

x4


′

=


1 0 0 1
0 −1 −2 0
0 2 −1 0
0 0 0 1




x1

x2

x3

x4


a) (10 pts) Find the eigenvalues of the matrix.

b) (20 pts) Find the system’s general solution.
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(continued from previous page)

c) (10 pts) Write down the fundamental matrix Φ(t), and compute Φ(0)−1

HINT: This particular Φ(0) should have some special properties. Before trying to compute Φ(0)−1,

see what you get when you multiply Φ(0) · Φ(0)T .

d) (5 pts) Given x(0) = (−1 1 0 2 )T , find x(t).
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Chapter 5 Review/Extra Credit Problems

Remember, no credit will be given for answers without justification.
Instructions: Do #1, either #2 or #3, and either #4 or #5.

1) Let

A =

 3 0 −1
−1 2 2
1 0 1


a) (5 pts) Show that A can be written as A = B + C, where B is the diagonal
matrix with 2’s along the diagonal, and C is a nilpotent matrix.

b) (5 pts) Use part (a) to compute eA.

c) (5 pts) Compute etA.

d) (5 pts) Solve the initial value problem x1

x2

x3

′

=

 3 0 −1
−1 2 2
1 0 1

  x1

x2

x3

 ,

 x1(0)
x2(0)
x3(0)

 =

 1
2
−1

 .

In the following two problems, you will consider a system x′ = Ax + f . Perform the
following:

a) (10 pts) Find the complimentary solution

b) (5 pts) What is your ‘guess’ for the particular solution, xp?
Special instructions: Be extremely specific. Do not write xp = ta + b for example, but

instead write xp = t

(
a1

a2

)
+
(

b1

b2

)
, or maybe even xp =

(
ta1 + b1

ta2 + b2

)
.

c) (10 pts) Plug in your ‘guess’ for xp. You will get a system of 4 equation and 4 unknowns.
Write this system in augmented matrix form.

d) (5 pts) Find xp.

2)
(

x1

x2

)′
=
(

1 2
6 2

) (
x1

x2

)
+
(

cos(t)
sin(t)

)

3)
(

x1

x2

)′
=
(
−1 2
−1 −4

) (
x1

x2

)
+
(

t
1 + t

)

1



In the following two problems, you will consider a system x′ = Ax. Answer the following
questions:

a) (10 pts) Find all the generalized eigenvectors of A.

b) (5 pts) Find the general solution.

c) (10 pts) Find Φ(t) and compute Φ(0)−1.

d) (5 pts) Find the solution, given x(0) = (−1 1 0 1)T .

4) 
x1

x2

x3

x4


′

=


−1 1 0 0
−1 −1 0 0
0 0 −1 1
0 0 0 −1




x1

x2

x3

x4



5) 
x1

x2

x3

x4


′

=


−1 −1 −1 1
0 −1 0 −1
0 0 −1 1
0 0 0 −1




x1

x2

x3

x4
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Review Problem Sheet
MAT 303 - Fall ’09 Name

1) (15 pts) Which method would you use to solve the following?
Justify your answer, but do not actually solve the equation.

• xy′ = y−2x−1 + x

• y′ = xy + x + y + 1

• y′ = −2xy+y
x2+x

• y′′ + x(y′)2 = 0

• y′ = x2y + x

• xy′ = y + y2

• y′′

y′ − 2y = 0

2) (25 pts) Find the general solution for any three of the DE’s
from problem 1.

3) Consider the system y′′ − 2y′ + y = 0.
a) (5 pts) Find the general solution.
b) (10 pts) Convert this equation to a system, and find the

general solution.

4) Consider the system y′′′ + 2y′′ − y′ − 2y = 0.
a) (5 pts) Find the general solution.
b) (20 pts) Convert this equation to a system, and find the

general solution.

5) (10 pts) Use Taylor series methods to solve y′′ − 2y′ + y = 0.

6) (10 pts) Use Taylor series methods to find the first three terms
of the solution to the unforced pendulum equation

y′′ + sin(y) = 0, y(0) = 0, y′(0) = 1.

1


