
General Information

Instructor: Tom Sharland
e-mail: tjshar "at" math.sunysb.edu
Lectures: MW 4pm-5.20pm, ESS 079 
Office hours: Monday 2-3 and Friday 11-12 in
5D148; Thursday 2.30-3.30 in MLC.

Grader: Yuhan Sun
email: yuhansun "at" math.sunysb.edu
Office Hours: Wednesday 2-4 in MLC.

Course outline: A basic course in the logic of
mathematics, the construction of proofs and
the writing of proofs. The mathematical
content is primarily set theory, combinatorics
and number theory. There is considerable
focus on writing.

We will move from the concept of
mathematics as a computational subject
(focusing on special cases) to the notion of
mathematics as a theoretical subject focusing
on general facts, proved within a logical
framework. As a brief overview (more details
can be found on the syllabus page), we will
start with a discussion on logic and logical
connectives. We then move onto the topic of
sets and functions, objects which form the
building blocks of mathematics. We then use
these notions to discuss cardinality of sets
(very informally, how many objects they
contain). After this, we make us of our new
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techniques and ideas to prove results in areas
such as number theory.

Textbook: The course text is An Introduction
to Mathematical Reasoning by Peter J. Eccles.
The course syllabus will closely follow this
book. 
For further reading, many good books are
available - Foundations of Mathematics by I.
Stewart and D. Tall is aimed at a similar level,
and How to Prove it by D. J. Velleman is a
nice introductory text on writing proofs in
mathematics.

Tests:
There will be two midterm exams and a final
exam. Midterms will take place during classes.
The first midterm will be in class on 10/6;
here are some practice questions to help you
prepare. The second midterm will be in class
on 11/3; here are some practice questions to
help you prepare.

The Final exam will be at 8.30-11pm on
Tuesday 9th December in ESS 079, the usual
lecture room. There will be a Review Session
in Physics P112 at 2-4pm (or maybe finishing
later) on Monday 8th December. Here are
some practice problems, and some guidelines
for the exam. Here are some solutions to the
practice exam.

Course grade is computed by the following
scheme: 
Midterm Test I: 25% 
Midterm Test II: 25% 
Final Exam: 40% 

http://www.amazon.com/Introduction-Mathematical-Reasoning-Peter-Eccles/dp/0521597188
http://www.amazon.com/Introduction-Mathematical-Reasoning-Peter-Eccles/dp/0521597188


Homework: 10% 

Homework assignments can be found by
clicking the "Homework" link in the menubar
on the left of the webpage. You are encouraged
to discuss homework with your class mates,
since this aids understanding of complicated
concepts. However, you should write up
solutions individually, to ensure you
understand your own solutions. You are also
encouraged to attempt non-homework
problems from he textbook (or elsewhere) to
check you understand the topics we are
covering. Both the lecturer and the TA will be
happy to discuss such problems with you if
you get stuck. Late homework will never be
accepted but an assignment may be excused if
there is documented evidence as to why it was
missed. Similarly, make-up exams will only be
provided if documented evidence shows the
exam was missed due to unforeseen
circumstances. The homework grade will be
calculated as your best 10 assignments.

Information for students with disabilities
If you have a physical, psychological, medical, or learning
disability that may impact your course work, please contact
Disability Support Services at (631) 632-6748 or
http://studentaffairs.stonybrook.edu/dss/. They will determine with
you what accommodations are necessary and appropriate. All
information and documentation is confidential.

Students who require assistance during emergency evacuation are
encouraged to discuss their needs with their professors and
Disability Support Services. For procedures and information go to
the following website:
http://www.sunysb.edu/ehs/fire/disabilities.shtml

Academic integrity
Each student must pursue his or her academic goals honestly and
be personally accountable for all submitted work. Representing
another person's work as your own is always wrong. Faculty are
required to report any suspected instances of academic dishonesty
to the Academic Judiciary. Faculty in the Health Sciences Center
(School of Health Technology & Management, Nursing, Social
Welfare, Dental Medicine) and School of Medicine are required to
follow their school-specific procedures. For more comprehensive



information on academic integrity, including categories of
academic dishonesty, please refer to the academic judiciary
website http://www.stonybrook.edu/uaa/academicjudiciary/

Critical Incident Management Statement
Stony Brook University expects students to respect the rights,
privileges, and property of other people. Faculty are required to
report to the Office of Judicial Affairs any disruptive behavior that
interrupts their ability to teach, compromises the safety of the
learning environment, or inhibits students' ability to learn. Faculty
in the HSC Schools and the School of Medicine are required to
follow their school-specific procedures.

QPS Learning objective
Learning Outcomes for "Master Quantitative Problem Solving"
includes the following:
1. Interpret and draw inferences from mathematical models such as
formulas, graphs, tables, or schematics.
2. Represent mathematical information symbolically, visually,
numerically, and verbally.
3. Employ quantitative methods such as algebra, geometry,
calculus, or statistics to solve problems.
4. Estimate and check mathematical results for reasonableness.
5. Recognize the limits of mathematical and statistical methods.

STEM+
A grade of C or better in this course ful lls the Science,
Technology, Engineering, and Mathematics (STEM+) objective in
the Stony Brook Curriculum.



Syllabus

Here is the course outline for the MAT 200 course for
Fall 2014. I will try to update it regularly so that it
accurately resembles where we are in class. Chapters
correspond to the section in the class textbook: An
Introduction to Mathematical Reasoning by Peter J.
Eccles.

Week
Commencing Sections Covered Reading

8/25

1. The
Language of
Mathematics
2.
Implications
3. Proofs

Read pages
3-29.

9/1 4. Proof by
Contradiction

Read pages
30-38.

9/8

5. The
Induction
Principle
6. The
Language of
Set Theory

Read pages
39-65.
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9/15

6. The
Language of
Set Theory
7. Quantifiers

Read pages
65-88.

9/22
8. Functions
9. Types of
Functions

Read pages
89-114.

9/29 10. Counting
Finite Sets

Read pages
123-138.

10/6

MIDTERM
I
11.
Properties of
Finite Sets
12. Counting
Functions
and Subsets

Prepare
for the
midterm
Read
pages
139-
149.

10/13

12. Counting
Functions
and Subsets
13. Number
Systems

Read pages
149-169.

10/20

13. Number
Systems
14. Counting
Infinite Sets

Read pages
170-181.



10/27

14. Counting
Infinite Sets
15. The
Division
Theorem

11/3

MIDTERM
II
16. The
Euclidean
Algorithm

11/10

17.
Applications
of the
Euclidean
Algorithm
18. Linear
Diophantine
Equations

11/17

19.
Congurence
of Integers
20. Linear
Congruences

11/24

21.
Congruence
Classes
Eat Turkey!



12/1

22.
Equivalence
Relations and
Partitions



Homework Assignments

Here are the homework assignments for the
MAT 200 class for Fall 2014. There will be
one homework assignment per week, based on
the topics covered in class that week.
Homework will be posted by Wednesday each
week, and will be due in class on the following
Wednesday. I will try to post solutions to the
assignments shortly after they are handed in.
Note that it is suggested you work on problems
in the book to improve your familiarity with
the topics covered, since just doing the
homework will probably not be sufficient
practice.

Homework 1 is due in class on 9/3.
Homework 2 is due in class on 9/10.
Homework 3 is due in class on 9/17.
Homework 4 is due in class on 9/24.
Homework 5 is due in class on 10/1.
Homework 6 is due in class on 10/15.
Homework 7 is due in class on 10/22.
Homework 8 is due in class on 10/29.
Homework 9 is due in class on 11/12.
Homework 10 is due in class on 11/19.
Homework 11 is due in class on 12/3.
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Solutions

This page contains solution sets for the
homework assignments and also for the
practice midterm exams for the MAT200
course for Fall 2014. Please let me know if
there are any mistakes in the files.

Homework Solutions

Solutions to Homework 1.
Solutions to Homework 2.
Solutions to Homework 3.
Solutions to Homework 4.
Solutions to Homework 5.
Solutions to Homework 6.
Solutions to Homework 7.
Solutions to Homework 8.
Solutions to Homework 9.
Solutions to Homework 10.
Solutions to Homework 11.

Practice exam Solutions

Here are the solutions to the first practice
midterm.

Here are the solutiosn to the second practice
midterm. 
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PRACTICE QUESTIONS FOR MIDTERM I

MAT 200 - FALL 2014

Here are some practice questions for the Midterm I exam which will take place in class on 10/6.
Some of these questions will be useful for the exam, others will not be (directly) useful, but an ability
to tackle all of them will put you in good shape to do well on the exam. For other preparation,
make sure you know all the definitions we have introduced so far, as well as understanding the
results we have proven thus far in the course. Note that the best way to remember proofs is not
to memorise them verbatim, but to understand the concepts underlying the proofs. This will allow
you to apply these concepts to new problems.

Question 1. Use a truth table to show that P is equivalent to (not P ) ⇒ C, where C is a
contradiction.

Question 2. Use a truth table to show that P ⇒ Q and (P or Q)⇔ Q are equivalent.

Question 3. Prove that if x ∈ R and x2 ≥ 5x then x ≥ 5 or x ≤ 0.

Question 4. Prove that if a ∈ R then one of
√

5− a and
√

5 + a is irrational.

Question 5. Show for all n ∈ N that
n∑

i=1

1

i(i + 1)
=

n

n + 1
.

Question 6. Show for all n ∈ N that n3 − n is divisible by 3.

Question 7. Let A,B,C be sets. Show that A \ (B \ C) = (A \B) ∪ (A ∩ C).

Question 8. Prove that if X is a universal set and A,B ⊆ X, then A ⊆ B ⇔ Bc ⊆ Ac.

Question 9. Write the negation of ∀x ∈ N, ∃ y ∈ N, y = x − 1. Is the original statement true?
Prove or give a counterexample.

Question 10. Let C be the set of circles in R2: that is C = {C ⊂ R2 | C is a circle}. Also, define
R : C → R by R(C) = “Radius of C”. For each of the following statements, either prove them or
give a counterexample.

(i) ∀C1 ∈ C, ∀C2 ∈ C, C1 ∩ C2 = ∅.
(ii) ∃x ∈ R,∀C ∈ C, R(C) = x.

(iii) ∀C ∈ C, ∃x ∈ Z, R(C) = x.

Question 11. Give an example of a map f : N→ N which is an injection but not a surjection.

Question 12. Give an example of a map f : N→ N which is a surjection but not an injection.

Question 13. Let f : X → Y and g : Y → Z. If f is an injection and g ◦ f is an injection, must g
be an injection? Prove or give a counterexample.

Question 14. Let f : X → Y and g : Y → Z. If f is a surjection and g ◦ f is a surjection, must g
be a surjection? Prove or give a counterexample.

1



PRACTICE QUESTIONS FOR MIDTERM II

MAT 200 - FALL 2014

Same deal as last time - some of these questions will be useful, others less so. Again, you will
be expected to prove things in the exam, but the best method for remembering proofs is not to
memorise them, but to understand the underlying concepts. Also, some of the proofs will be of new
results, which will test your understanding of the material.

Question 1. Express the following recurring decimals as rational numbers.

(a) 2.71828
(b) 2.34567
(c) 1.2345 + 2.419

Question 2. Show that if A and B are finite sets, then if A ⊂ B we have

minB ≤ minA

Question 3. Let X and Y be finite sets with |X| < |Y |. Show there does not exist a surjection
φ : X → Y .

Question 4. Let X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4, y5}.
(a) How many maps are there f : X → Y ?
(b) How many maps are there f : Y → X?
(c) What is |{f ∈ Fun(X,Y ) | y4 /∈ imf}|?

Question 5. Suppose we pick 17 elements from the set N32. Show that we must have picked a
pair of integers whose sum is 33.

Question 6. Four people visit a restaurant and each choose one meal from a choice of seven on
the menu.

(a) How many possible combinations are there if we record who chose which dish?
(b) How many possible combinations are there if we do not record who chose which dish?
(c) How many possible combinations are there if we record who chose which dish and each

person chose a different dish from everyone else?

Question 7. Suppose X ∩ Y = ∅. Show that the function

f :

k⋃
i=0

Pi(X)× Pk−i(Y )→ Pk(X ∪ Y )

given by f(A,B) = A ∪B is a bijection. From this, deduce that(
m+ n

k

)
=

n∑
i=0

(
m

i

)(
n

k − i

)
.

Question 8. Which of the following sets are countably infinite?
1



• C
• {a

√
2 + b

√
3 + c

√
5 | a, b, c ∈ Q}

• {πm + en | m,n ∈ Z}
• Fun(N, {0, 1})
• The set of circles in the plane with rational centers and rational radii.

Question 9.

(a) Let a < b and c < d. Show that the map f : [a, b]→ [c, d] given by

f(x) =
(b− x)c

b− a
+

(x− a)d

b− a
is a bijection. Deduce that any two closed intervals containing more than one point have
the same cardinality.

(b) Show that all intervals containing more than one point have the same cardinality. (Hint: it
is not necessary to find an explicit bijection to do this).

(c) Show that all intervals containing more than one point have the same cardinality as R.

Question 10. By considering the map f : [0, 1)× [0, 1)→ [0, 1), defined by

f((0.a1a2, . . . an . . . , 0.b1b2 . . . bn . . .)) = 0.a1b1a2b2 . . . anbn . . .

(and using the expansion ending in recurring 0s if there is a choice) deduce that |R× R| = |R|.



PRACTICE QUESTIONS FOR THE FINAL EXAM

MAT 200 - FALL 2014

Here are some practice questions for the final. Here are some pointers.

• You are expected to know the basic definitions covered in class. This means you should give
precise mathematical definitions; for example “f is an injection if f(x1) = f(x2) ⇒ x1 =
x2” and NOT “f is an injection if no two things map to the same thing in the codomain”.

• There will be proofs in the exam. Again, these proofs should be made up of precise math-
ematical arguments, where each step logically follows from the previous one. You will be
penalised for “hand-wavy” or unjustified arguments. Many of the proofs will be of results
covered in class (but no proof will be very long, so as a freebie, I’ll tell you that you won’t
have to prove the Pigeonhole principle for example).

• If you are using a result covered in class, you should explicitly state so, perhaps by sum-
marising what the result says. If the result has a name (e.g. Pigeonhole principle), you can
use that.

• The exam will be split into two parts. The first question will cover what I consider to be
the “basics” of the course. This will focus on some of the simpler ideas in each section of
the notes. A good perfomrance on question 1 will indicate a grasp of the basic concepts in
the course, and will be rewarded with at least a C grade.

• The latter questions will involve some of the more difficult concepts, or more complicated
examples than question 1. If you want to score a high grade, you should also be able to
answer these questions too.

• Even if you can’t work out a whole proof, outline your ideas. Showing you have an under-
standing of the concepts underlying the proof will get some credit.

Below are the questions. In general, I will be aiming these practice questions for the later
questions on the exam, but some of the questions may also be helpful for question 1. For other
practice, make sure you look back over the homework problems from the course.

Question 1. Show that
n∏

i=2

(
1− 1

i2

)
=

n + 1

2n
.

Question 2. Show that if f : X → Y is a surjection then there exists an injection g : Y → X (you
may assume the axiom of choice1).

Question 3. Let L be the set of lines in the plane and let f : R3 → L be defined so that f(a, b, c)
is the line with equation ax + by = c. Show that f is a surjection but not an injection.

Question 4. Let C = {(x, y) ∈ R2 | x2 + y2 = 1} be the unit circle in the plane. Show that
|C| = |R|.

1If you don’t understand this comment, feel free to be able to assume that given any set X, you are able to pick
an element x from X.

1



Question 5. Solve the following linear diophantine equations

(i) 9m + 18n + 45p = 93
(ii) 3m + 7n + 12p = 14
(iii) 4m + 6n + 13p = 42

Question 6. Solve the linear congruences.

(a) 5x ≡ 17 mod 123
(b) 90x ≡ 18 mod 135
(c) 490 ≡ 84 mod 1428.

Question 7. Let L be the set of lines in the plane and define a relation ∼ on L by L1 ∼ L2 if and
only if L1 ∩ L2 6= ∅. Is ∼ reflexive, symmetric or transitive? Is ∼ an equivalence relation?

Question 8. Let L be the set of lines in the plane and define a relation ∼ on L by L1 ∼ L2 if and
only if L1 ∩ L2 = ∅. Is ∼ reflexive, symmetric or transitive? Is ∼ an equivalence relation?

Question 9. Let X = Fun(R,R) be the set of functions f : R→ R. Let ∼ be a relation on X given
by

f ∼ g ⇔ there exists a bijection h : R→ R such that g = h−1 ◦ f ◦ h.
Show that ∼ is an equivalence relation.

(a) What is the equivalence class of the identity function idR?
(b) What is the equivalence class of the function f defined by f(x) = 0 for all x ∈ R?



PRACTICE SOLUTIONS FOR THE FINAL EXAM

MAT 200 - FALL 2014

Question 1. Show that

n∏
i=2

(
1− 1

i2

)
=
n+ 1

2n
.

for all n ≥ 2.

Solution 1. We proceed by induction on n. For the base case n = 2, we note that

2∏
i=2

(
1− 1

i2

)
= 1− 1

4
=

3

4
=

2 + 1

2× 2

so the equality holds. Now suppose that for some k ≥ 2 we have

k∏
i=2

(
1− 1

i2

)
=
k + 1

2k
.

Then now

k+1∏
i=2

(
1− 1

i2

)
=

k∏
i=2

(
1− 1

i2

)
×
(

1− 1

(k + 1)2

)
=

k + 1

2k
×
(

1− 1

(k + 1)2

)
=

k + 1

2k
− k + 1

2k(k + 1)2

=
(k + 1)3 − (k + 1)

2k(k + 1)2

=
(k + 1)2 − 1

2k(k + 1)

=
k2 + 2k

2k(k + 1)

=
k + 2

2(k + 1)
=

(k + 1) + 1

2(k + 1)

and so by the principle of mathematical induction, the result holds for all n ≥ 2.

1



Question 2. Show that if f : X → Y is a surjection then there exists an injection g : Y → X (you
may assume the axiom of choice1).

Solution 2. We know that if f is a surjection then there exists a right inverse g : Y → X which
satisfies f(g(y)) = y for all y ∈ Y (this was proved earlier in the course - to prove this statement
requires the axiom of choice). We now show that this right inverse is the required injection. Let
g(y1) = g(y2) = x ∈ X. Then by definition of a right inverse, we must have y1 = f(x) = y2, from
which it follows that g is an injection.

Question 3. Let L be the set of lines in the plane and let f : R3 → L be defined so that f(a, b, c)
is the line with equation ax+ by = c. Show that f is a surjection but not an injection.

Solution 3. The fact f is a surjection is immediate - all lines in the plane are of the form ax+by = c
for some choice of (a, b, c) ∈ R3. To see that f is not an injection, note that f(1,−1, 0) = f(2,−2, 0),
with both images being the line y = x.

Question 4. Let C = {(x, y) ∈ R2 | x2 + y2 = 1} be the unit circle in the plane. Show that
|C| = |R|.

Solution 4. Notice that the circle can be thought of as the set of points (cos θ, sin θ) for θ ∈ [0, 2π).
This gives a bijection f : [0, 2π)→ C. Now we just need to show that |R| = |[0, 2π)|. But this follows
from the arguments in the practice questions for midterm 2.

Question 5. Solve the following linear diophantine equations

(i) 9m+ 18n+ 45p = 93
(ii) 3m+ 7n+ 12p = 14
(iii) 4m+ 6n+ 13p = 42

Solution 5. I just include the solutions here. The technique is similar to that found on the
homework a couple of weeks ago. Of course, the given form of the solutions are not unique - you
should check that the sets you give are the same as the ones given here (assuming I got the answer
right, of course!).

(a) There are no solutions. The left hand side is divisible by 9, but the right hand side is not.
(b) The solution set is (m,n, p) = (−4− 4q − 7r, 2 + 3r, 1 + q).
(c) The solution set is (m,n, p) = (4− 5q − 3r,−3q + 2r, 2 + 2q).

Question 6. Solve the linear congruences.

(a) 5x ≡ 17 mod 123

1If you don’t understand this comment, feel free to be able to assume that given any set X, you are able to pick
an element x from X.



(b) 90x ≡ 18 mod 135
(c) 490x ≡ 84 mod 1428.

Solution 6. Again, I just include the solutions.

(a) There is a unique solution x ≡ 28 mod 123.
(b) There are no solutions since the problem is equivalent to 5x ≡ 1 mod 15 which has no

solutions since hcf(5, 15) = 5.
(c) This is equivalent to solving 35x ≡ 6 mod 102 which is solved by x ≡ 6 mod 102. There

are hcf(490, 1428) = 14 solutions modulo 1428, these are

x ≡ 6, 108, 210, 312, 414, 516, 618, 720, 822, 924, 1026, 1128, 1230, 1332 mod 1428.

Question 7. Let L be the set of lines in the plane and define a relation ∼ on L by L1 ∼ L2 if and
only if L1 ∩ L2 6= ∅. Is ∼ reflexive, symmetric or transitive? Is ∼ an equivalence relation?

Solution 7. Clearly ∼ is reflexive and symmetric. However, it is not transitive. To see this,
consider the lines L1 as the line y = x, L2 the line y = −x and L3 the line y = x + 1. Then L1

and L2 intersect at (0, 0), and L2 and L3 intersect at (−1/2, 1/2). However since L1 and L3 are
parallel, they do not intersect. The relation is not an equivalence relation.

Question 8. Let L be the set of lines in the plane and define a relation ∼ on L by L1 ∼ L2 if and
only if L1 ∩ L2 = ∅. Is ∼ reflexive, symmetric or transitive? Is ∼ an equivalence relation?

Solution 8. This time it is clear that ∼ is not reflexive but it is symmetric. It is not transitive since
if L2 is parallel to L1 then L1 ∼ L2 and L2 ∼ L1 but L1 � L2. The relation is not an equivalence
relation. However, if we changed it to

L1 ∼′ L2 ⇔ L1 ∩ L2 = ∅ or L1 = L2

then this is an equivalence relation, with equivalence classes being sets of parallel lines in the plane.

Question 9. Let X = Fun(R,R) be the set of functions f : R→ R. Let ∼ be a relation on X given
by

f ∼ g ⇔ there exists a bijection h : R→ R such that g = h−1 ◦ f ◦ h.
Show that ∼ is an equivalence relation.

(a) What is the equivalence class of the identity function idR?
(b) What is the equivalence class of the function f defined by f(x) = 0 for all x ∈ R?

Solution 9. Reflexivity holds since if we set h to be the identity on R, f ∼ f . Clearly symmetry
also holds since

f ∼ g ⇔ g = h−1 ◦ f ◦ h for some bijection h ⇔ f = h ◦ g ◦ h−1

and since h−1 must be a bijection, the condition holds. To check transitivity, suppose f ∼ g and
g ∼ k. Then there exist bijections h1 and h2 such that

g = h−11 ◦ f ◦ h1 and k = h−12 ◦ g ◦ h2.



Combining these two gives
k = h−12 ◦ h

−1
1 ◦ f ◦ h1 ◦ h2.

Since (h1 ◦h2)−1 = h−12 ◦h
−1
1 and the compositions of bijections are bijections, it follows that f ∼ k

as required and so ∼ is an equivalence relation.

(a) Suppose f ∈ [id]. Then there exists a bijection h such that

f = h−1 ◦ id ◦ h = h−1 ◦ h = id

so f = id and so [id] = {id}.
(b) Suppose g ∈ [f ]. Then there exists a bijection h such that for all x ∈ R

g(x) = h−1 ◦ f ◦ h(x) = h−1(0)

and so g is a constant function. Hence [f ] is the set of constant functions on R.



Homework 1

1. Find the contrapositive to the statement “If it quacks like a duck, it is a duck”.

2. Problem 2, p53: By using truth tables prove that, for all statements P and Q, the three
statements

(a) P ⇒ Q

(b) (P or Q)⇔ Q

(c) (P and Q)⇔ P

are logically equivalent.

3. (Compare Problem 3, p53) Define the logical connective ∗ by

(P ∗Q) means ((not P ) or (not Q)).

Show that

(a) (not P ) means (P ∗ P )

(b) (P or Q) means ((P ∗ P ) ∗ (Q ∗Q)).

(c) (P and Q) means ((P ∗Q) ∗ (Q ∗ P ))

(d) (P ⇒ Q) means ((P ∗ (Q ∗Q)).

4. Problem 6, p54: Use the properties of addition and multiplication of real numbers given in
Properties 2.3.1 (pp 18-19) to deduce that, for all real numbers a and b,

(a) a× 0 = 0 = 0× a

(b) (−a)b = −ab = a(−b)
(c) (−a)(−b) = ab

Recall that for any given x, the element −x is such that x + (−x) = 0 = (−x) + x.

1



MAT 200 HOMEWORK 2

DUE IN CLASS ON 9/10

Problem 1. Prove by contradiction that there is no largest integer. Hint: Suppose there were a
largest integer n,. . .

Problem 2. Prove by contradiction that there is no smallest postive real number.

Problem 3. Let a, b and c be positive intergers. Show that if a divides b and a divides c then a
divides (b+ c).

Problem 4. Use induction to prove Bernouilli’s inequality. That is, for all integers n ≥ 1 and all
x > −1 we have

(1 + x)n ≥ 1 + nx.

1



MAT 200 HOMEWORK 3

DUE IN CLASS ON 9/17

Problem 1. Prove by induction that

n∑
k=1

(k · k!) = 1 · 1! + 2 · 2! + 3 · 3! + · · · = (n + 1)! − 1

for all integers n ≥ 1.

Problem 2. Here are some attempted proofs by induction. Three are incorrect proofs of false facts.
In these cases explain why the proof fails. In the remaining case, the proof is a faulty proof of a
true fact. In this case you should repair the proof so that it correctly proves the stated proposition.

(a) Proposition. All cows are the same color.
Proof. We proceed by induction on the number of cows. First the base case: clearly one
cow is the same color as itself, so the case for n = 1 is true. Now suppose that it is true for
n cows. Consider a collection of n+ 1 cows. Removing one of them, we have n cows, which
by the inductive hypothesis have the same color. Now add back in this cow and remove
another one. Again, we have a collection of n cows and these are all the same color. So the
cow we first removed is the same color as the other cows, which is the same color as the
second cow we removed. Hence all n+ 1 cows are the same color and so we have proved the
inductive step. Hence by the principle of mathematical induction, all cows are the same
color.

(b) Proposition. 2 + 4 + · · · + 2n = n(n + 1).
Proof. If

2 + 4 + · · · + 2n = n(n + 1)

then

2 + 4 + · · · + 2n + 2(n + 1) = n(n + 1) + 2(n + 1) = (n + 1)(n + 2).

Hence by induction the formula is true for all n.

(c) Proposition. 1 + 3 + 5 + · · · + (2n− 1) = n2 + 1.
Proof. Assume it is true that

1 + 3 + 5 + · · · + (2n− 1) = n2 + 1.

Then, adding 2n + 1 to both sides, we get

1 + 3 + 5 + · · · + (2n− 1) + (2n + 1) = (n2 + 1) + 2n + 1 = (n + 1)2 + 1.

This proves the inductive step. Hence by the principle of mathematical induction, the
formula holds.

1



(d) Proposition. Suppose n straight lines are drawn on a circular disk, so that no three lines
meet at the same point. Then these lines split the disk up into 2n different regions.
Proof. Clearly, one line splits the disk into 2 regions, so the base step is true. Now suppose
that the statement holds for n; that is, the n lines split the disk into 2n regions. Then, if
we add another line, this splits each region into two separate regions. Hence there are now
2 × 2n = 2n+1 regions. Thus, by the principle of mathematical induction, the result holds.

Problem 3. (Problem 17, p55.) For a positive integer n the number an is defined inductively by

a1 = 1

ak+1 =
6ak + 5

ak + 2
for every positive integer k ≥ 1.

Prove for all positive integers n that 0 < an < 5.

Problem 4. (This is quite hard, so give yourself time to think about it). In this example, we use
“forwards-backwards” induction. First, define the symbol

n∏
i=1

xi

inductively by

1∏
i=1

xi = x1

k+1∏
i=1

xi =

(
k∏

i=1

xi

)
× xk+1 for k ≥ 1.

This means that
∏n

i=1 xi is the product of the numbers x1, . . . , xn. We will prove that for all positive
real numbers xi and all n ≥ 1

1

n

n∑
i=1

xi ≥

(
n∏

i=1

xi

) 1
n

.

(i) Show that the statement holds for n = 1.
(ii) Using the fact that (x + y)2 ≥ 0, show that the statement holds for n = 2.
(iii) Show that if the statement holds for n = 2m, then it also holds for n = 2m+1 by using

induction on m (Hint : you may need to use part (ii) at some point. . . ). This is the
forwards induction.

(iv) Show that if the statement is true for n = k, then it is also true for n = k − 1. To do this,
given the numbers x1, . . . , xk−1, define

xk =
x1 + · · · + xk−1

k − 1
.

Then, by the inductive hypothesis, we have

x1 + · · · + xk−1 + x1+···+xk−1

k−1

k
=

k∑
i=1

xi ≥

(
k∏

i=1

xi

) 1
k

= k

√
x1 × · · · × xk−1 ×

x1 + · · ·xk−1

k − 1
.

Proceed from here to prove the statement is true for n = k − 1. From this deduce that the
statement is true for all n ≥ 1.



MAT 200 HOMEWORK 4

DUE IN CLASS ON 9/24

Problem 1. Let A, B, C and D be sets.

(i) Prove that A ∩Ac = ∅.
(ii) Prove that (A ∩B)c = Ac ∪Bc.
(iii) Prove that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
(iv) Prove that A ∩ (A ∪B) = A.
(v) Prove that (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D).

Problem 2. Let X be a set. Then, for subsets A, B ∈ P(X), define the symmetric difference of A
and B to be

A4B = (A ∪B) \ (A ∩B).

Observe that A4B = B 4A.

(i) Show that (A4B)4 C = A4 (B 4 C).
(ii) Show that there exists a unique E ∈ P(X) such that, for all A ∈ P(X) we have A4E = A.
(iii) For E as above, show that for all A ∈ P(X) there exists a unique set B ∈ P(X) such that

A4B = E.
(iv) Show that, for all A, B ∈ P(X), there exists a unique C ∈ P(X) such that A4 C = B.
(v) Let X = Z, A be the set of even integers and B be the set of multiples of 3. Describe the

set A4B.

Problem 3. Prove or give a counterexample to the following statements.

(i) ∀x ∈ R ∃y ∈ R, xy > 0.
(ii) ∃x ∈ R ∀y ∈ R, xy > 0.
(iii) ∀x ∈ R ∃y ∈ R, xy ≥ 0.
(iv) ∃x ∈ R ∀y ∈ R, xy ≥ 0.
(v) ∀n ∈ N (n is even or n is odd).

(vi) (∀n ∈ Z n is even) or (∀n ∈ Z n is odd).

1



MAT 200 HOMEWORK 5

DUE IN CLASS ON 10/1

Problem 1. Let X be any set. For each A ∈ P(X), define the characteristic function χA : X →
{0, 1} by

χA(x) =

{
1 if x ∈ A,
0 if x /∈ A.

Let A,B ∈ P(X) and x ∈ X.

(i) Show that χA∩B(x) = χA(x)χB(x).
(ii) Give a formula for x 7→ χX\A(x) in terms of χA(x).

(iii) Using the fact that A \B = A ∩Bc and Bc = X \B, give a formula for x 7→ χA\B(x).
(iv) Find the set C so that χC(x) = χA(x) + χB(x)− χA(x)χB(x).

Problem 2. Show that if f : X → Y is an injection and g : Y → Z is an injection, then g◦f : X → Z
is an injection.

Problem 3. Show that f : X → Y has a right inverse if and only if it is a surjection.

Problem 4. Let f : X → Y . Prove the following equalities hold for the induced functions
f : P(X)→ P(Y ) and f−1 : P(Y )→ P(X).

(i) For all X1, X2 ∈ P(X), f(X1 ∪X2) = f(X1) ∪ f(X2).
(ii) For all Y1, Y2 ∈ P(Y ), f−1(Y1 ∩ Y2) = f−1(Y1) ∩ f−1(Y2).

1



MAT 200 HOMEWORK 6

DUE IN CLASS ON 10/15

Problem 1. Let A be a set containing 10 positive integers less than 100 (so that A ⊂ N100 and
|A| = 10). Using the pigeonhole principle, show that there exists two disjoint subsets of A which
have the same sum. Here, the sum of a set is the sum of the elements in the set.

Problem 2. Suppose X and Y are finite sets with |X| = |Y |. Show that a function φ : X → Y is
an injection if and only if it is a surjection.

Problem 3. There are 164 students in a Calculus class. Of these, 110 like differentiation, 107 like
integration and 94 like differential equations. Furthermore, 18 liked only differentiation, 13 liked
only integration and 4 liked only differential equations. There were 9 students who did not like any
of the topics. How many students liked all three topics? (Hint: Draw a Venn diagram representing
this problem. You should have four regions of unknown cardinality. Find four equations in these
unknowns and solve them to find the required solution).

Problem 4. Using induction on n, prove the general inclusion-exclusion principle for unions of
finite sets: Let A1, A2, . . . , An finite sets. For each I = {i1, i2, . . . ir} ⊆ Nn, denote

AI =
⋂
i∈I

Ai = Ai1 ∩Ai2 ∩ · · · ∩Air .

Then ∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

∅ 6=I⊆Nn

(−1)|I|−1|AI |

where the sum is taken over all non-empty subsets of Nn.

Problem 5. Let X be a set and suppose φ : N→ X is an injection. Prove that X is an infinite set.

1



MAT 200 HOMEWORK 7

DUE IN CLASS ON 10/22

Problem 1. Let n ∈ N. Suppose that A ⊆ N2n and |A| = n+ 1. Show that A must contain a pair
of integers a 6= b such that a divides b.

Problem 2. Use the inclusion-exclusion principle from the last homework to show that the number
of surjections from Nm to Nn is given by

nm −
(
n

1

)
(n− 1)m +

(
n

2

)
(n− 2)m − · · ·+ (−1)n−1

(
n

n− 1

)
1m.

(Hint: In the inclusion-exclusion formula, define the set Ai = {f : Nm → Nn | i /∈ im(f)}). From
this deduce that

nn −
(
n

1

)
(n− 1)n +

(
n

2

)
(n− 2)n − · · ·+ (−1)n−1

(
n

n− 1

)
1n = n!

Problem 3. Prove there does not exist a rational number whose square is 6.

Problem 4. Find the rational numbers corresponding to the following infinite decimals.

(1) 7.10322194
(2) 234.91591
(3) 17.17

1



MAT 200 HOMEWORK 8

DUE IN CLASS ON 10/29

Problem 1. Define inequality between two fractions by

a1
b1

<
a2
b2
⇔

{
a1b2 < a2b1 if b1b2 > 0,

a1b2 > a2b1 if b1b2 < 0.

Show that this definition is well-defined. Furthermore, show that this relation is transitive; that is.
a1
b1

<
a2
b2

and
a2
b2

<
a3
b3

=⇒ a1
b1

<
a3
b3

Problem 2. Using the definition of an infinite decimal, prove that each finite decimal may be
written as an infinite decimal in two different ways:

a0.a1a2 . . . an−1an = a0.a1a2 . . . an−1an0̇

= a0.a1a2 . . . an−1(an − 1)9̇.

where an > 0 if n > 0. From this, prove that every real number is represented by a unique infinite
decimal unless it is represented by a finite decimal, in which case it is represented by precisely two
infinite decimals as above.

Problem 3. Show that the set of polynomials of degree n with rational coefficients is countably
infinite. Using this, show that the set of algebraic numbers is countably infinite.

Problem 4. We exhibit another proof that Q is countably infinite. Using the map φ : Q → N,
defined by

φ(q) =

{
2a3b if q = a

b ,

2a3b5 if q = −a
b

where a
b is written in lowest terms and a ≥ 0, b > 0, show that |Q| ≤ |N|. Now show that |N| ≤ |Q|

and deduce, by the Cantor-Schröder-Bernstein Theorem, that |N| = |Q.

1



MAT 200 HOMEWORK 9

DUE IN CLASS ON 11/12

Problem 1. Find the highest common factor of the following pairs a and b using the Euclidean
algorithm.

(a) a = 442 and b = 255
(b) a = 924 and b = 560
(c) a = 532 and b = 285
(d) a = 3960 and b = 2541

Problem 2. By repeatedly using the division theorem, find the infinite decimal which represents
the rational number 4

13 (compare with problem 15.6 on p198).

Problem 3. Prove that every infinite decimal representing a rational number is recurring (where
we consider finite decimals to be ending with recurring 0s) and furthermore that if the fraction is
written in lowest terms as a

b then the number of recurring digits is less than b.

Problem 4. Let un be the nth Fibonacci number. Prove that the Euclidean algorithm takes
exactly n steps to prove that hcf(un+1, un) = 1.

Problem 5. We define the least common multiple of non-zero integers a and b to be the unique
positive integer m such that

(i) m is divisible by a and m is divisible by b,
(ii) If a divides n and b divides n then m ≤ n.

We write m = lcm(a, b).

(a) Prove that if a divides n and b divides n then lcm(a, b) divides n. Deduce that ab
lcm(a,b) is

an integer.
(b) Prove that ab

lcm(a,b) is a common divisor of a and b and hence ab
lcm(a,b) ≤ hcf(a, b).

(c) Prove that ab
hcf(a,b) is a common multiple of a and b. Now deduce that if a and b are positive,

then
hcf(a, b)lcm(a, b) = ab.

1



MAT 200 HOMEWORK 10

DUE IN CLASS ON 11/19

Problem 1. Decide whether the following linear diophantine equations have a solution. If they do
have a solution, find all such solutions to the equation.

(a) 442m + 255n = 17
(b) 924m + 560n = 84
(c) 532m + 285n = 27
(d) 3960m + 2541n = −132

Problem 2. Solve the linear diophantine equation

6m + 10n + 15p = 1.

by defining x = 3m + 5n and solving the resulting linear diophantine equation.

Problem 3. Solve, if possible, the following linear diophantine equations.

(a) 2m + 3n + 5p = 24
(b) 2m + 6n + 8p = 17
(c) 3m + 6n + 11p = 13
(d) 6m + 15n + 21p = 33

Problem 4. Let n > 1. Show that if there are no non-zero integer solutions to

xn + yn = zn

then there exists are no non-zero rational solutions. Hint: Maybe the contrapositive will help. . .

1



MAT 200 HOMEWORK 11

DUE IN CLASS ON 12/3

Problem 1. Solve the following linear congruences.

(a) 154x ≡ 24 mod 819
(b) 231x ≡ 147 mod 598
(c) 156x ≡ 42 mod 252
(d) 9x ≡ 0 mod 21

Problem 2.

(a) What is the final digit of 32014?
(b) What is the final digit of 732014?
(c) What is the final digit of 22014?
(d) What is the final digit of 1462014?

Problem 3. Compute the inverse of 204 modulo 367. Using this, solve the following linear con-
gruences.

(a) 204x = 4 mod 367
(b) 204x = 11 mod 367
(c) 204x = 99 mod 367
(d) 204x = 9 mod 367

Problem 4. Prove that the Fibonacci number un is divisible by 3 if and only if n is divisible by 4.

1



MAT200 SOLUTIONS 1

Problem 1. Find the contrapositive to the statement “If it quacks like a duck, it is a duck”.

Solution 1. The contrapositive is “If it is not a duck, it does not quack like a duck”.

Problem 2. Problem 2, p53: By using truth tables prove that, for all statements P and Q, the
three statements

(i) P ⇒ Q
(ii) (P or Q)⇔ Q

(iii) (P and Q)⇔ P

are logically equivalent.

Solution 2. We first show that P ⇒ Q is logically equivalent to (P or Q)⇔ Q.

P Q P ⇒ Q P or Q (P or Q)⇒ Q (P or Q)⇐ Q (P or Q)⇔ Q
T T T T T T T
T F F T F T F
F T T T T T T
F F T F T T T

The bold columns agree, which gives the required equivwlence. Now we show P ⇒ Q is logically
equivalent to (P and Q)⇔ P

P Q P ⇒ Q P and Q (P and Q)⇒ P (P and Q)⇐ P (P and Q)⇔ Q
T T T T T T T
T F F F T F F
F T T F T T T
F F T F T T T

Again, since the bold columns agree, the statements are logically equivalent. Since the first state-
ment is logically equivalent to the second and third statements, the second and third statements
are also logically equivalent.

Problem 3. (Compare Problem 3, p53) Define the logical connective ∗ by

(P ∗Q) means ((not P ) or (not Q)).

Show that

(i) (not P ) means (P ∗ P )
(ii) (P or Q) means ((P ∗ P ) ∗ (Q ∗Q)).

(iii) (P and Q) means ((P ∗Q) ∗ (Q ∗ P ))
(iv) (P ⇒ Q) means ((P ∗ (Q ∗Q)).

Solution 3. We use the symbol ≡ to mean “is logically equivalent to”.

(i) P ∗ P ≡ not P or not P ≡ not P .



(ii) We’ll break this down step-by-step

((P ∗ P ) ∗ (Q ∗Q)) ≡ (not P ) ∗ (not Q) (by part (i))

≡ (not (not P )) or (not (not Q))

≡ P or Q.

(iii) Again we’ll do this step-by-step:

((P ∗Q) ∗ (Q ∗ P )) ≡ ((not P ) or (not Q)) ∗ ((not Q) or (not P ))

≡ (not ((not P ) or (not Q))) or (not ((not Q) or (not P )))

≡ (P and Q) or (Q and P ) (as (not (A or B)) ≡ (not A) and (not B))

≡ P and Q

(iv) We find

(P ∗ (Q ∗Q) ≡ P ∗ (not Q)

≡ (not P ) or (not (not Q))

≡ (not P ) or Q

and we saw in class that this final line is logically equivalent to P ⇒ Q.

Problem 4. Problem 6, p54: Use the properties of addition and multiplication of real numbers
given in Properties 2.3.1 (pp 18-19) to deduce that, for all real numbers a and b,

(i) a× 0 = 0 = 0× a
(ii) (−a)b = −ab = a(−b)
(iii) (−a)(−b) = ab

Solution 4. We solve the properties in turn, noting which of the properties on pages 18-19 we use
in parentheses.

(i)

a× 0 = a× (0 + 0) (iv)

= (a× 0) + (a× 0) (iii)

We now add −(a× 0) to each side to get

0 = (a× 0) + (−(a× 0)) = ((a× 0) + (a× 0)) + (−(a× 0))

= (a× 0) + ((a× 0) + (−(a× 0))) (ii)

= (a× 0) + 0 (vi)

= (a× 0) (iv)

= (0× a). (i)

(ii)

ab + (−a)b = (a + (−a))b ((iii) and (i))

= 0× b (vi)

= 0. ((by part (i))



Hence (−a)b = −(ab) by the uniqueness property in (vi) and the proof that a(−b) = −ab
is similar.

(iii) We will make use of the previous parts of this question.

(−a)(−b) + (−a)b = (−a)(−b + b)

= (−a)× 0 (by part (i))

This means that (−a)(−b) = −((−a)b)) and since −((−a)b) = ab by part (ii) and (vi), we
have shown that (−a)(−b) = ab.



MAT200 SOLUTIONS 2

Problem 1. Prove by contradiction that there is no largest integer. Hint: Suppose there were a
largest integer n,. . .

Proof. Suppose, to obtain a contradiction that n is the largest integer. Since n is an integer, the
number n+ 1 is also an integer. However, since n+ 1 is an integer and n+ 1 > n, this contradicts
the assumption that n is the largest integer. Hence there can be no largest integer. �

Problem 2. Prove by contradiction that there is no smallest positive real number.

Proof. To obtain a contradiction, assume that ε > 0 is the smallest positive real number. Then we
see that

0 <
ε

2
< ε

which means that there exists a smaller positive real number than ε. This contradiction means
there is no smallest positive real number. �

Problem 3. Let a, b and c be positive integers. Show that if a divides b and a divides c then a
divides (b+ c).

Proof. Since a divides b, there exists an integer m such that b = am. Similarly, since a divides c,
there exists an integer n such that c = an. Then

b+ c = am+ an = a(m+ n).

Since (m+ n) is an integer (being the sum of two integers), we see that a divides b+ c. �

Problem 4. Use induction to prove Bernouilli’s inequality. That is, for all integers n ≥ 1 and all
x > −1 we have

(1 + x)n ≥ 1 + nx.

Proof. We proceed by induction. Let P (n) be the statement that (1 +x)n ≥ 1 +nx. for all x > −1.
Then for n = 1 (the base case) we have

(1 + x)1 = 1 + x = 1 + (1)x

and so the statement (in the form of equality) holds. For the inductive step, assume the inductive
hypothesis P (k):

(1 + x)k ≥ 1 + kx

for some integer k ≥ 1 and for all x > −1. Then

(1 + x)k+1 = (1 + x)k(1 + x)

≥ (1 + kx)(1 + x) (by the inductive hypothesis and since x > −1)

= 1 + (k + 1)x+ kx2

≥ 1 + (k + 1)x. (since kx2 ≥ 0)

This final statement is P (k + 1), and so by the principle of mathematical induction, P (n) is true
for all positive integers n. �



MAT 200 HOMEWORK 3

Problem 1. Prove by induction that

n∑
k=1

(k · k!) = 1 · 1! + 2 · 2! + 3 · 3! + · · · = (n + 1)!− 1

for all integers n ≥ 1.

Solution 1. Proof. Clearly the statement holds for n = 1, since

1 · 1! = 1 = 2− 1 = 2!− 1.

Now suppose the proposition holds for n = k. Then we have

k∑
i=1

(i · i!) = (k + 1)!− 1.

Hence we get

k+1∑
i=1

(i · i!) =

k∑
i=1

(i · i!) + ((k + 1) · (k + 1)!)

= ((k + 1)!− 1) + ((k + 1) · (k + 1)!)

= ((k + 1)!)(1 + (k + 1))− 1

= (k + 2)!− 1

Hence, by the principle of mathematical induction, the proposition is true for all n ≥ 1. �

Problem 2. Here are some attempted proofs by induction. Three are incorrect proofs of false facts.
In these cases explain why the proof fails. In the remaining case, the proof is a faulty proof of a
true fact. In this case you should repair the proof so that it correctly proves the stated proposition.

(a) Proposition. All cows are the same color.
Proof. We proceed by induction on the number of cows. First the base case: clearly one
cow is the same color as itself, so the case for n = 1 is true. Now suppose that it is true for
n cows. Consider a collection of n+ 1 cows. Removing one of them, we have n cows, which
by the inductive hypothesis have the same color. Now add back in this cow and remove
another one. Again, we have a collection of n cows and these are all the same color. So the
cow we first removed is the same color as the other cows, which is the same color as the
second cow we removed. Hence all n+ 1 cows are the same color and so we have proved the
inductive step. Hence by the principle of mathematical induction, all cows are the same
color.

(b) Proposition. 2 + 4 + · · ·+ 2n = n(n + 1).
Proof. If

2 + 4 + · · ·+ 2n = n(n + 1)



then

2 + 4 + · · ·+ 2n + 2(n + 1) = n(n + 1) + 2(n + 1) = (n + 1)(n + 2).

Hence by induction the formula is true for all n.

(c) Proposition. 1 + 3 + 5 + · · ·+ (2n− 1) = n2 + 1.
Proof. Assume it is true that

1 + 3 + 5 + · · ·+ (2n− 1) = n2 + 1.

Then, adding 2n + 1 to both sides, we get

1 + 3 + 5 + · · ·+ (2n− 1) + (2n + 1) = (n2 + 1) + 2n + 1 = (n + 1)2 + 1.

This proves the inductive step. Hence by the principle of mathematical induction, the
formula holds.

(d) Proposition. Suppose n straight lines are drawn on a circular disk, so that no three lines
meet at the same point. Then these lines split the disk up into 2n different regions.
Proof. Clearly, one line splits the disk into 2 regions, so the base step is true. Now suppose
that the statement holds for n; that is, the n lines split the disk into 2n regions. Then, if
we add another line, this splits each region into two separate regions. Hence there are now
2× 2n = 2n+1 regions. Thus, by the principle of mathematical induction, the result holds.

Solution 2. (a) The inductive step does not work for the case n = 1. This is because, when
there are only two cows, the collections of cows under consideration do not have any cows
in common (they each contain only one cow). Since there are no common elements, we
cannot assert the cows all have the same color.

(b) This is almost correct. It just needs cleaning up and the base step needs adding.

Proof. The claim holds for n = 1 since

2 = 1× 2

Now suppose it holds for n = k. Then we get

2 + 4 + · · ·+ 2n + 2(n + 1) = n(n + 1) + 2(n + 1) (by the inductive hypothesis)

= (n + 2)(n + 1).

Hence by induction, the proposition holds for all n ≥ 1. �

(c) This is similar to the previous problem, except this time the base case is false! This is easily
checked as for n = 1, we have 1 6= 2 = 12 + 1.

(d) Here, the logic in the inductive step is faulty. You can check this by attempting to go from
the step n = 2 to n = 3; it is not true that the new line drawn must intersect each of the
previous regions (indeed, it is impossible), and so the proof is not correct.

Problem 3. (Problem 17, p55.) For a positive integer n the number an is defined inductively by

a1 = 1

ak+1 =
6ak + 5

ak + 2
for every positive integer k ≥ 1.

Prove for all positive integers n that 0 < an < 5.



Solution 3. Proof. Clearly the proposition holds for n = 1. To prove the inductive step, assume
that 0 < ak < 5. We write

ak+1 =
6ak + 5

ak + 2
=

6(ak + 2)− 7

ak + 2
= 6− 7

ak + 2
.

By the inductive hypothesis, we get

0 <
5

2
= 6− 7

2
< ak+1 < 6− 7

7
= 5.

Hence by induction, the proposition holds. �

Problem 4. (This is quite hard, so give yourself time to think about it). In this example, we use
“forwards-backwards” induction. First, define the symbol

n∏
i=1

xi

inductively by

1∏
i=1

xi = x1

k+1∏
i=1

xi =

(
k∏

i=1

xi

)
× xk+1 for k ≥ 1.

This means that
∏n

i=1 xi is the product of the numbers x1, . . . , xn. We will prove that for all positive
real numbers xi and all n ≥ 1

1

n

n∑
i=1

xi ≥

(
n∏

i=1

xi

) 1
n

.

(i) Show that the statement holds for n = 1.
(ii) Using the fact that (x + y)2 ≥ 0, show that the statement holds for n = 2.
(iii) Show that if the statement holds for n = 2m, then it also holds for n = 2m+1 by using

induction on m (Hint : you may need to use part (ii) at some point. . . ). This is the
forwards induction.

(iv) Show that if the statement is true for n = k, then it is also true for n = k − 1. To do this,
given the numbers x1, . . . , xk−1, define

xk =
x1 + · · ·+ xk−1

k − 1
.

Then, by the inductive hypothesis, we have

x1 + · · ·+ xk−1 + x1+···+xk−1

k−1

k
=

k∑
i=1

xi ≥

(
k∏

i=1

xi

) 1
k

= k

√
x1 × · · · × xk−1 ×

x1 + · · ·xk−1

k − 1
.

Proceed from here to prove the statement is true for n = k − 1. From this deduce that the
statement is true for all n ≥ 1.

Solution 4.

(i) This step is easy since both sides are equal to x1.



(ii) Now, using the hint, we get (replacing y by −x2)

0 ≤ (x1 − x2)2 = x2
1 − 2x1x2 + x2

2

which means that

(x1 + x2)2 = x2
1 + 2x1x2 + x2

2 ≥ 4x1x2.

Taking square roots and rearranging this gives

x1 + x2

2
≥
√
x1x2

which is the statement for n = 2.
(iii) Assume the proposition holds for n = 2m, so that

1

2m

2m∑
i=1

xi ≥

(
2m∏
i=1

xi

) 1
2m

.

Then

1

2m+1

2m+1∑
i=1

xi =
1

2m+1

(
2m∑
i=1

xi +

2m∑
i=1

x2m+i

)

=
1

2

(∑2m

i=1 xi

2m
+

∑2m

i=1 x2m+i

2m

)

(inductive step) ≥ 1

2

(2m∏
i=1

xi

) 1
2m

+

(
2m∏
i=1

x2m+i

) 1
2m


(from the case n = 2) ≥

√√√√√(2m∏
i=1

xi

) 1
2m
(

2m∏
i=1

x2m+i

) 1
2m

=

2m+1∏
i=1

xi

 1

2m+1

.

This proves the inductive step.
(iv) Suppose the statement is true for n = k. Following the hint, given the numbers x1, . . . , xk−1,

we define xk = x1+···+xk−1

k−1 . Then

x1 + · · ·+ xk−1 + x1+···+xk−1

k−1

k
≥ k

√
x1 · · ·xk−1

x1 + · · ·xk−1

k − 1



Rewriting the left hand side, this becomes

x1 + · · ·+ xk−1

k − 1
≥ k

√
x1 · · ·xk−1

x1 + · · ·xk−1

k − 1

⇔
(
x1 + · · ·+ xk−1

k − 1

)k

≥ x1 · · ·xk−1
x1 + · · ·xk−1

k − 1

⇔
(
x1 + · · ·+ xk−1

k − 1

)k−1

≥ x1 · · ·xk−1

⇔ x1 + · · ·+ xk−1

k − 1
≥ k−1

√
x1 · · ·xk−1.

This final line is

1

k − 1

k−1∑
i=1

xi ≥

(
k−1∏
i=1

xi

) 1
k−1

which completes the proof.
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Problem 1. Let A, B, C and D be sets.

(i) Prove that A ∩Ac = ∅.
(ii) Prove that (A ∩B)c = Ac ∪Bc.
(iii) Prove that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
(iv) Prove that A ∩ (A ∪B) = A.
(v) Prove that (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D).

Solution 1.

Proof.

(i) Suppose that x ∈ A ∩ Ac. Then x ∈ A and x ∈ Ac. But this is impossible, so no such x
can exist. Hence A ∩Ac = ∅.

(ii) Proof of ⊆: Let x ∈ (A ∩ B)c. Then x /∈ A ∩ B and so x /∈ A or x /∈ B. This means that
x ∈ Ac or x ∈ Bc and so x ∈ Ac ∪Bc.
Proof of ⊇: Let x ∈ Ac ∪ Bc. Then x ∈ Ac or x ∈ Bc, and so x /∈ A or x /∈ B. Hence
x /∈ A ∩B and so x ∈ (A ∩B)c.

(iii) Proof of ⊆: Let x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B or C. This means that x ∈ A
and either x ∈ B or x ∈ C, hence x ∈ A and x ∈ B or x ∈ A and x ∈ C. But this means
that x ∈ (A ∩B) ∪ (A ∩ C).
Proof of ⊇: Now suppose x ∈ (A ∩ B) ∪ (A ∩ C). Then either x ∈ A ∩ B or x ∈ A ∩ C,
which means that either x ∈ A and x ∈ B or x ∈ A and x ∈ C. Hence x ∈ A and either
x ∈ B or x ∈ C, thus x ∈ A and x ∈ B ∪ C. It follows that x ∈ A ∩ (B ∪ C).

(iv) From part (iii), we see that A ∩ (A ∪ B) = (A ∩ A) ∪ (A ∩ B) = A ∪ (A ∩ B). Clearly
A ⊆ A ∪ (A ∩ B). Now suppose that x ∈ A ∪ (A ∩ B). Then x ∈ A or x ∈ A and
x ∈ B. Hence x ∈ A and x ∈ B; in particular, x ∈ A. Thus A ∪ (A ∩ B) ⊆ A and so
A ∩ (A ∪B) = A ∪ (A ∩B) = A.

(v)

(x, y) ∈ (A×B) ∩ (C ×D) ⇔ (x, y) ∈ A×B and (x, y) ∈ C ×D

⇔ x ∈ A and y ∈ B and x ∈ C and y ∈ D

⇔ x ∈ A and x ∈ C and y ∈ B and y ∈ D

⇔ x ∈ A ∩ C and y ∈ B ∩D

⇔ (x, y) ∈ (A ∩ C)× (B ∩D).

�

Problem 2. Let X be a set. Then, for subsets A, B ∈ P(X), define the symmetric difference of A
and B to be

A4B = (A ∪B) \ (A ∩B).

Observe that A4B = B 4A.

(i) Show that (A4B)4 C = A4 (B 4 C).
1



(ii) Show that there exists a unique E ∈ P(X) such that, for all A ∈ P(X) we have A4E = A.
(iii) For E as above, show that for all A ∈ P(X) there exists a unique set B ∈ P(X) such that

A4B = E.
(iv) Show that, for all A, B ∈ P(X), there exists a unique C ∈ P(X) such that A4 C = B.
(v) Let X = Z, A be the set of even integers and B be the set of multiples of 3. Describe the

set A4B.

Solution 2.

(i) This is quite tricky, and perhaps the clearest way to see it is true is to use a truth table.
Note that x ∈ A4B means that x is in exactly one of the two sets A and B. Then we can
construct the table below.

x ∈ A x ∈ B x ∈ C x ∈ A4B x ∈ (A4B)4 C x ∈ B 4 C x ∈ A4 (B 4 C)
T T T F T F T
T F T T F T F
T T F F F T F
T F F T T F T
F T T T F F F
F F T F T T T
F T F T T T T
F F F F F F F

Since the two bold rows agree, the sets are equal.
(ii) Take E = ∅. Then for all A ∈ P(X) we have A4∅ = (A \∅) ∪ (∅ \A) = A ∪∅ = A.
(iii) For every A ∈ P(X), we have A4A = (A \A) ∪ (A \A) = ∅ ∪∅ = ∅.
(iv) Take C = A4B. Then using parts (i), (ii) and (iii), we get

A4 C = A4 (A4B)

= (A4A)4B

= ∅4B

= B.

(v) A4 B is the set of all integers which are either multiples of 2 or multiples of 3 but which
are not multiples of 6.

Problem 3. Prove or give a counterexample to the following statements.

(i) ∀x ∈ R ∃y ∈ R, xy > 0.
(ii) ∃x ∈ R ∀y ∈ R, xy > 0.
(iii) ∀x ∈ R ∃y ∈ R, xy ≥ 0.
(iv) ∃x ∈ R ∀y ∈ R, xy ≥ 0.
(v) ∀n ∈ N (n is even or n is odd).

(vi) (∀n ∈ Z n is even) or (∀n ∈ Z n is odd).

Solution 3.

(i) This is false. If we take x = 0 then clearly for all y ∈ R we have xy = 0.
(ii) This is false. Given x ∈ R, take y = −x. Then xy = −x2 ≤ 0.

(iii) This is true. Indeed, given x ∈ R, we can take y = x. Then xy = x2 ≥ 0.
(iv) This is true. Take x = 0. Then for any choice of y ∈ R we have xy = 0 ≥ 0.



(v) This is true, since if n ∈ N then either n is a multiple of 2 (in which case it is even) or it is
not a multiple of 2 (in which case it is odd).

(vi) This is false. Notice this is of the form P or Q. The first statement is false since there
exists an odd natural number (for example, 17). The second statement is false since there
exists an even natural number (for example, 378). Hence the statement is false.
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DUE IN CLASS ON 10/1

Problem 1. Let X be a set. For each A ∈ P(X), define χA : X → {0, 1} by

χA(x) =

{
0 if x /∈ A
1 if x ∈ A.

Suppose that A,B ∈ P(X).

(i) Show that χA(x)χB(x) = χA∩B(x)
(ii) Show that χA(x) + χB(x)− χA(x)χB(x) = χA∪B(x).
(iii) Using the fact that A \B = A ∩Bc and Bc = X \B, give a formula for x 7→ χA\B(x).
(iv) Find the set C so that χC(x) = χA(x) + χB(x)− χA(x)χB(x).

Solution 1.

(i) By computing the four cases we get

χA(x)χB(x) =


0× 0 = 0 if x /∈ A and x /∈ B
1× 0 = 0 if x ∈ A and x /∈ B
0× 1 = 0 if x /∈ A and x ∈ B
1× 1 = 1 if x ∈ A and x ∈ B.

Thus χA(x)χB(x) = 1 if and only if x ∈ A ∩B, thus the required equality holds.
(ii) Notice that if χA(x) = 1 then χX\A(x) = 0 and if χA(x) = 0 then χX\A(x) = 1. Thus we

get

χX\A(x) = 1− χA(x).

(iii) We make use of the previous two answers. We notice that since A \ B = A ∩ (X \ B), we
get

χA\B(x) = χA∩(X\B)(x) = χA(x)χX\B(x) = χA(x)(1− χB(x)).

(iv) We claim the set C = A ∪B. Again, computing the four cases

χC(x) =


0 + 0− (0× 0) = 0 if x /∈ A and x /∈ B
1 + 0− (1× 0) = 1 if x ∈ A and x /∈ B
0 + 1− (0× 1) = 1 if x /∈ A and x ∈ B
1 + 1− (1× 1) = 1 if x ∈ A and x ∈ B.

Thus we see that χC(x) = 1 if and only if x ∈ A ∪B, and so C = A ∪B.

Problem 2. Let f : X → Y and g : Y → Z. Prove that if f is injective and g is injective, then
g ◦ f is injective.

Solution 2.
1



Proof. We need to show that for x1, x2 ∈ X, then if g(f(x1)) = g(f(x2)) then x1 = x2. So suppose
g(f(x1)) = g(f(x2)). By injectivity of g, this means that f(x1) = f(x2). Moreover, the injectivity
of f means that x1 = x2. Thus g ◦ f is injective. �

Problem 3. Let f : X → Y . Prove that f has a right inverse if and only if it is surjective.

Solution 3.

Proof. Proof of ⇒: Suppose f has a right inverse g : Y → X and let y ∈ Y . Consider the element
x0 = g(y) ∈ X. Then since g is a right inverse to f , we have f(x0) = f(g(y)) = y. Thus there
exists x ∈ X such that f(x) = y. Since y was arbitrary, f is surjective.
Proof of⇐: Now suppose f is surjective. Then given y ∈ Y , there exists x0 ∈ X such that f(x) = y.
So define g(y) = x0. Then we get f(g(y)) = f(x0) = y, and so g is a right inverse. �

Problem 4. Let f : X → Y . Show that for all X1, X2 ∈ P(X) and all Y1, Y2 ∈ P(X)

(i) f(X1 ∪X2) = f(X1) ∪ f(X2).
(ii) f−1(Y1 ∩ Y2) = f−1(Y1) ∩ f−1(Y2).

Solution 4.

(i) Proof of ⊆: Let y ∈ f(X1 ∪X2). Then there exists x ∈ X1 ∪X2 such that f(x) = y. So
there exists x ∈ X1 such that f(x) = y or there exists x ∈ X2 such that f(x) = y. Thus we
have y ∈ f(X1) or y ∈ f(X2), and so y ∈ f(X1) ∪ f(X2).
Proof of ⊇: Let y ∈ f(X1) ∪ f(X2). Then there exists x ∈ X1 such that f(x) = y or there
exists x ∈ X2 such that f(x) = y. Hence there exists x ∈ X1 ∪X2 such that f(x) = y and
so y ∈ f(X1 ∪X2).

(ii)

x ∈ f−1(Y1 ∩ Y2) ⇔ f(x) ∈ Y1 ∩ Y2
⇔ f(x) ∈ Y1 and f(x) ∈ Y2
⇔ x ∈ f−1(Y1) and x ∈ f−1(Y2)

⇔ x ∈ f−1(Y1) ∩ f−1(Y2).
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Problem 1. Let A be a set containing 10 positive integers less than 100 (so that A ⊂ N100 and
|A| = 10). Using the pigeonhole principle, show that there exists two disjoint subsets of A which
have the same sum. Here, the sum of a set is the sum of the elements in the set.

Solution 1. Given 10 elements of N100, the largest possible sum for a subset is 91 + 92 + · · · +
99 + 100 = 955. Clearly, the smallest possible sum is 0 (the sum of the empty set). Hence there
are at most 956 possible sums. However, the cardinality of P(A) is 210 = 1024, so there are 1024
subset sums. By the pigeonhole principle, there must be some sum which is obtained more than
once (since 1024 > 956). To show that we can pick the subsets to be disjoint, suppose there exists
two subsets, X and Y with the same sum. Write Z = X ∩ Y . Then X \Z and Y \Z will have the
same sum, and by construction will be disjoint.

Problem 2. Suppose X and Y are finite sets with |X| = |Y |. Show that a function φ : X → Y is
an injection if and only if it is a surjection.

Solution 2. Suppose φ is an injection but not a surjection. Then there exists y ∈ Y such that there
is no x ∈ X with φ(x) = y. But then im(φ) ⊂ Y and so |im(φ)| < |Y | = |X|. But by the pigeonhole
principle, if |im(φ)| < |X|, there cannot be an injection φ : X → im. This is a contradiction, so φ
is a surjection.

Now suppose φ is a surjection but not an injection. Then there exists x1 6= x2 in X such that
φ(x1) = φ(x2). Then we must have |im(φ)| ≤ |X| − 1 < |X| = |Y |. But that must mean that
im(φ) 6= Y and so φ is not a surjection. This is a contradiction, so φ must be an injection.

Problem 3. There are 164 students in a Calculus class. Of these, 110 like differentiation, 107 like
integration and 94 like differential equations. Furthermore, 18 liked only differentiation, 13 liked
only integration and 4 liked only differential equations. There were 9 students who did not like any
of the topics. How many students liked all three topics? ( Hint: Draw a Venn diagram representing
this problem. You should have four regions of unknown cardinality. Find four equations in these
unknowns and solve them to find the required solution).

Solution 3. First we look at the suggested Venn diagram, labelling the unknown regions (see next
page). Now, using the addition principle, and the information in the question, we get the following
system of equations.

18 + w + x + y = 110
13 + w + x + z = 107
4 + x + y + z = 94

(9 + 18 + 13 + 4) + w + x + y + z = 164



IntDiff

DE

w

x

y z

18 13

4
9

which simplifies to
w + x + y = 92
w + x + z = 94

x + y + z = 90
w + x + y + z = 120

Using standard techniques, this solves to w = 30, x = 26, y = 26, z = 28. Since x represents the
students who like all three topics, we see that 26 students like all three topics.

Problem 4. Using induction on n, prove the general inclusion-exclusion principle for unions of
finite sets: Let A1, A2, . . . , An finite sets. For each I = {i1, i2, . . . ir} ⊆ Nn, denote

AI =
⋂
i∈I

Ai = Ai1 ∩Ai2 ∩ · · · ∩Air .

Then ∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

∅ 6=I⊆Nn

(−1)|I|−1|AI |

where the sum is taken over all non-empty subsets of Nn.

Solution 4. Proof. For the base case n = 1, we just note that∣∣∣∣∣
1⋃

i=1

Ai

∣∣∣∣∣ = |A1| =
∑

I={1}

(−1)|I|−1|AI |



Also, recall for n = 2, the inclusion-exclusion principle says that

|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|

Now, for the inductive step, suppose that the formula holds for some n = k. Then we have∣∣∣∣∣
k⋃

i=1

Ai

∣∣∣∣∣ =
∑

∅ 6=I⊆Nk

(−1)|I|−1|AI |

where the sum is taken over all non-empty subsets of Nk.
So now consider the union of k + 1 sets, and make use of the case for the union of two sets:∣∣∣∣∣

k+1⋃
i=1

Ai

∣∣∣∣∣ =

∣∣∣∣∣
k⋃

i=1

Ai ∪Ak+1

∣∣∣∣∣
=

∣∣∣∣∣
k⋃

i=1

Ai

∣∣∣∣∣+ |Ak+1| −

∣∣∣∣∣
(

k⋃
i=1

Ai

)
∩Ak+1

∣∣∣∣∣ .
We consider this final term. First by the distributivity rule, we can write∣∣∣∣∣

(
k⋃

i=1

Ai

)
∩Ak+1

∣∣∣∣∣ =

∣∣∣∣∣
k⋃

i=1

(Ai ∩Ak+1)

∣∣∣∣∣ .
Notice this is a union of k sets, and furthermore for I = {i1, i2, . . . , ir}⋂
i∈I

Ai∩Ak+1 = (Ai1∩Ak+1)∩(Ai2∩Ak+1)∩· · ·∩(Air∩Ak+1) = Ai1∩Ai2∩· · ·∩Air∩Ak+1 = AI∩Ak+1.

So we may use the inductive hypothesis∣∣∣∣∣
k⋃

i=1

(Ai ∩Ak+1)

∣∣∣∣∣ =
∑

∅6=I⊆Nk

(−1)|I|−1|AI ∩Ak+1|.

This leads us to∣∣∣∣∣
k+1⋃
i=1

Ai

∣∣∣∣∣ =

∣∣∣∣∣
k⋃

i=1

Ai ∪Ak+1

∣∣∣∣∣
=

∣∣∣∣∣
k⋃

i=1

Ai

∣∣∣∣∣+ |Ak+1| −

∣∣∣∣∣
(

k⋃
i=1

Ai

)
∩Ak+1

∣∣∣∣∣
=

∑
∅6=I⊆Nk

(−1)|I|−1|AI |+ |Ak+1| −
∑

∅ 6=I⊆Nk

(−1)|I|−1|AI ∩Ak+1|

=
∑

∅ 6=I⊆Nk

(−1)|I|−1|AI |+ |Ak+1|+
∑

∅ 6=I⊆Nk

(−1)|I||AI ∩Ak+1|

Looking at this final expression, we see that the first term concerns intersections of all (non-empty)
subsets of Nk+1 which do not contain k + 1 and the final two terms concern all (non-empty) subsets



of Nk+1 which contain k + 1. So we are summing over all such subsets and so we get∣∣∣∣∣
k+1⋃
i=1

Ai

∣∣∣∣∣ =
∑

∅ 6=I⊆Nk+1

(−1)|I|−1|AI |

and so by the principle of mathematical induction, the result holds. �

Problem 5. Let X be a set and suppose φ : N → X is an injection. Prove that X is an infinite
set.

Solution 5. Proof. We assume X is finite and obtain a contradiction. Since X is finite, there exists
n ∈ N for which there is a bijection ψ : Nn → X. Consider the map φ|Nn+1

. Since φ is an injection,
so is φ|Nn+1 . Then the map ψ−1 ◦ φ|Nn+1 : Nn+1 → Nn is a composition of injections and so also an
injection. But this is a contradiction of the pigeonhole principle, and so X must be infinite. �
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Problem 1. Let n ∈ N. Suppose that A ⊆ N2n and |A| = n+ 1. Show that A must contain a pair
of integers a 6= b such that a divides b.

Solution 1. Define the function f : A → {1, 3, . . . , 2n − 1} by defining f(a) to be the largest odd
divisor of a. Note that if f(a) = m then a = 2km for some k ≥ 0. We note that the codomain
has cardinality n, and so by the pigeonhole principle, there exists some value r such that there are
a < b in A with f(a) = r = f(b). By the above remark, we have that there exists k, j ≥ 0 such that
a = 2kr and b = 2jr. But then b = (2j−k)a, and so a divides b as required.

Problem 2. Use the inclusion-exclusion principle from the last homework to show that the number
of surjections from Nm to Nn is given by

nm −
(
n

1

)
(n− 1)m +

(
n

2

)
(n− 2)m − · · ·+ (−1)n−1

(
n

n− 1

)
1m.

( Hint: In the inclusion-exclusion formula, define the set Ai = {f : Nm → Nn | i /∈ im(f)}). From
this, deduce that

nn −
(
n

1

)
(n− 1)n +

(
n

2

)
(n− 2)n − · · ·+ (−1)n−1

(
n

n− 1

)
1n = n!.

Solution 2. Take Ai as defined in the hint. Then if S is the set of surjections f : Nm → Nn, we
have

S = Fun(Nm,Nn) \

(
n⋃

i=1

Ai

)
.

So we have |S| = |Fun(Nm,Nn)|−|
⋃n

i=1Ai|. From the class, we know that |Fun(Nm,Nn)| = nm. To
deal with the other term, we use the inclusion-exclusion principle. We have (see previous homework
for the notation)∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
∑

∅6=I⊆Nn

(−1)|I|−1|AI |

=
∑

1≤i1≤n

|Ai1 | −
∑

1≤i1<i2≤n

|Ai1 ∩Ai2 |

+ · · ·+ (−1)n−2
∑

1≤i1<···<in−1≤n

|Ai1 ∩ · · · ∩Ain−1 | + (−1)n−1 |A1 ∩ · · · ∩An|

Now notice that

Ai1 ∩ · · · ∩Air = {f ∈ Fun(Nm,Nn) | {i1, . . . , ir} ∩ im(f) = ∅}.

So this is a set of maps from a set of cardinality m to a set of cardinality (n − r), and so has
cardinality (n− r)m. Furthermore, the set {i1, . . . , ir} ⊆ Nn is an r-subset: by definition there are



(
n
r

)
such subsets. Hence the sum above containing r intersections is equal to

(
n
r

)
(n− r)m. Putting

all this together gives∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =

(
n

1

)
(n− 1)m −

(
n

2

)
(n− 2)m + · · ·+ (−1)n−2

(
n

n− 2

)
(2)m + (−1)n−1

(
n

n− 1

)
(1)m.

Thus we have

|S| = nm −
(
n

1

)
(n− 1)m +

(
n

2

)
(n− 2)m − · · ·+ (−1)n−1

(
n

n− 1

)
1m

as required.
To solve the second part, note that we already showed that the number of bijections φ : Nn → Nn

is n!. Furthermore, this is equal to the number of surjections from Nn to Nn. Hence, by replacing
m by n in the formula for |S|, we get

nn −
(
n

1

)
(n− 1)n +

(
n

2

)
(n− 2)n − · · ·+ (−1)n−1

(
n

n− 1

)
1n = n!

Problem 3. Prove there does not exist a rational number whose square is 6.

Solution 3. Suppose that there is a rational number such that x2 = 6, where x = p
q when written

in lowest terms . Then we have

6 = x2 =
p2

q2

and so we have

p2 = 6q2.

Since p2 is a multiple of 6, it is in particular a multiple of 2, and so is even. Thus p = 2r for some
integer r. Hence we can now rewrite the second displayed equation as

4r2 = 6q2 and so 2r2 = 3q2.

In this final equation, the left hand side is clearly even, and so the right hand side must also be
even. It follows that q2 is even, and so q must also be even. But we have shown that both p and
q are even, and so x = p

q could not have been in the lowest terms. This contradiction shows that

there is no rational whose square is 6.

Problem 4. Find the rational numbers corresponding to the following infinite decimals.

(1) 7.10322194
(2) 234.91591
(3) 17.17

Solution 4.

(1) We split this number into an initial part and a recurring part:

a = 7.10322194 = 7.1032 + 0.00002194.

Since the recurring string has length 4, we multiply a by 104 to get

104a = 71032.2194 + 0.00002194.



Since 104a and a have the same recurring part, we can subtract the latter from the former
to get a finite decimal, which is a rational number. That is

9999a = 104a− a = 71032.2194− 7.1032 = 71025.1162 =
710251162

10000
.

Hence

a =
710251162

99990000
=

355125581

49995000
.

(2) We again split the number into initial and recurring parts:

b = 234.915 + 0.00091.

The recurring string is length 2, so we multipy by 102 to get

100b = 23491.591 + 0.00091

which yields

99b = 23491.591− 234.915 = 23256.676 =
23256676

1000
.

Hence

b =
23256676

99000
=

581469

24750
.

(3) We follow the same method as before, so first we write (note it is best to avoid putting the
integer part in the recurring part)

c = 17 + 0.17

and so
100c = 1717 + 0.17

which gives us

c =
1700

99
.
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Problem 1. Define inequality between two fractions by

a1
b1

<
a2
b2
⇔

{
a1b2 < a2b1 if b1b2 > 0,

a1b2 > a2b1 if b1b2 < 0.

Show that this definition is well-defined. Furthermore, show that this relation is transitive; that is
a1
b1

<
a2
b2

and
a2
b2

<
a3
b3

=⇒ a1
b1

< a3b3

Solution 1. Suppose that a1
b1

and c1
d1

represent the same rational number, and that a2
b2

and c2
d2

. We
need to show

a1
b1

<
a2
b2
⇔ c1

d1
<
c2
d2
.

By assumption, we have
a1d1 = b1c1 and a2d2 = b2c2.

There are four cases here, depending on whether b1b2 and d1d2 are positive or negative. I outline
a couple of the cases below, the other two are similar.
b1b2 > 0, d1d2 > 0. We get

a1
b1

<
a2
b2

⇔ a1b2 < a2b1

⇔ a1b2d1d2 < a2b1d1d2

⇔ (a1d1)b2d2 < (a2d2)b1d1

⇔ (b1c1)b2d2 < (b2c2)b1d1

⇔ c1d2 < c2d1

⇔ c1
d1

<
c2
d2
.

b1b2 < 0, d1d2 > 0. We get
a1
b1

<
a2
b2

⇔ a1b2 > a2b1

⇔ a1b2d1d2 > a2b1d1d2

⇔ (a1d1)b2d2 > (a2d2)b1d1

⇔ (b1c1)b2d2 > (b2c2)b1d1

⇔ c1d2 < c2d1

⇔ c1
d1

<
c2
d2
.

To show transitivity, we need to split into eight cases, depending on whether b1, b2 and b3 are
positive or negative. Below I consider the case where they are all positive; suitable amendments
deal with the other cases. Assume b1, b2, b3 > 0. Then since a1

b1
< a2

b2
we have

a1b2 < a2b1.



Similarly, since a2
b2
< a3

b3
we have

a2b3 < a3b2.

This gives

a1b2 < a2b1 ⇒ a1b2b3 < a2b1b3 < a3b2b1

from which it follows that

a1b3 < a3b1

and so a1
b1
< a3

b3
.

Problem 2. Using the definition of an infinite decimal, prove that each finite decimal may be
written as an infinite decimal in two different ways:

a0.a1a2 . . . an−1an = a0.a1a2 . . . an−1an0̇

= a0.a1a2 . . . an−1(an − 1)9̇

where an > 0 if n > 0. From this, prove that every real number is represented by a unique infinite
decimal unless it is represented by a finite decimal, in which case it is represented by precisely two
infinite decimals as above.

Solution 2. Let a = a0.a1a2 . . . an−1an be a finite decimal and let b0.b1 . . . bk . . . be an infinite
decimal representing a. By definition of an infinite decimal representing a, we must have for each k

b0.b1 . . . bk ≤ a0.a1 . . . an ≤ b0.b1 . . . bk +
1

10k
.

It follows from this that bi = ai for i = 0, . . . n− 1.
Clearly the infinite decimal a = a0.a1a2 . . . an−1an0̇ represents a, since for each k we have

a0.a1 . . . an

k zeroes︷ ︸︸ ︷
0 . . . 0 ≤ a = a0.a1 . . . an ≤ a0.a1 . . . an

k zeroes︷ ︸︸ ︷
0 . . . 0 +

1

10n+k
.

Now consider the infinite decimal a0.a1 . . . an−1(an − 1)9̇. We clearly have for each k that

a0.a1 . . . an−1(an − 1)

k nines︷ ︸︸ ︷
9 . . . 9 ≤ a = a0.a1 . . . an ≤ a0.a1 . . . an−1(an − 1)

k nines︷ ︸︸ ︷
9 . . . 9 +

1

10n+k

which means the decimal representation with recurring 9s must also represent a. Now suppose that
a0.a1 . . . an−1cn . . . ck . . . is any other infinite decimal, then there will exist an integer k > n such
that

|a− a0.a1 . . . an−1cn . . . ck| >
1

10k
.

For example, if cn = an and ck−1 6= 0, the above must hold. A similar consideration takes care of
the decimal ending in recurring 9s.

Now suppose that a is not represented by a finite decimal and that the two infinite decimals
a0.a1 . . . an . . . and b0.b1 . . . bn . . . both represent a. We prove by induction that ak = bk for all k.
For the base case, we note that since a does not have a finite representation, we must have a0 = b0.
For the inductive step, suppose that for some k ≥ 0 we have shown that ai = bi for all 0 ≤ i ≤ k.
Suppose that ak+1 < bk+1. Then

a0.a1 . . . akak+1 +
1

10k+1
≤ a0.a1 . . . akbk+1



But we must also have

a0.a1 . . . akak+1 ≤ a ≤ a0.a1 . . . akak+1 +
1

10k+1

and

a0.a1 . . . akbk+1 ≤ a ≤ b0.b1 . . . akbk+1 +
1

10k+1

This means that a = a0.a1 . . . ak(ak+1 + 1). But this is a finite decimal, and this is a contradiction.
Hence ak+1 = bk+1. Hence by induction, both the infinite expansions agree.

Problem 3. Show that the set of polynomials of degree n with rational coefficients is countably
infinite. Using this, show that the set of algebraic numbers is countably infinite.

Solution 3. First, we note that the set of polynomials of degree n is clearly infinite. To see that
it is countable, note that the map

a0 + a1x+ · · ·+ an−1x
n−1 + anx

n 7→ (a0, a1, . . . , an−1, an) ∈ Qn

maps the set of polynomials of degree n with rational coefficients to a subset of the countably
infinite set Qn (we need to consider polynomials in the lowest terms, so this is not quite a bijection,
but the above is enough). Hence the set of polynomials of degree n with rational coefficients is
countably infinite. Now the union over all n is a countable union of countably infinite sets, and so
is countably infinite.

For the algebraic numbers, note that such a number is the root of some polynomial with rational
coefficients. Since each polynomial has finitely many roots, and there are countably infinite many
such polynomials, it follows there are countably infinite many algebraic numbers.

Problem 4. We exhibit another proof that Q is countably infinite. Using the map φ : Q → N,
defined by

φ(q) =

{
2a3b if q = a

b ,

2a3b5 if q = −ab
where a

b is written in lowest terms and a ≥ 0, b > 0, show that |Q| ≤ |N|. Now show that |N| ≤ |Q|
and deduce, by the Cantor-Schröder-Bernstein Theorem, that |N| = |Q|.

Solution 4. We first show that φ is an injection. Suppose φ(q1) = φ(q2). Then φ(q1)
φ(q2)

= 1, so

they have the same factors, so that φ(q1) is divisible by 2a if and only if φ(q2) is divisible by 2a.
The same holds for divisibility by 3b and by 5. Hence if φ(q) = 2a3b5c (c ∈ {0, 1}) if and only if
q = (−1)c ab . Thus we must have q1 = q2. This means |Q| ≤ |N|. Moreover, the inclusion ι : N→ Q
is an injection, and so |N| ≤ |Q|. By the Cantor-Schröder-Bernstein Theorem, |N| = |Q|.
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Problem 1. Find the highest common factor of the following pairs a and b using the Euclidean
algorithm.

(a) a = 442 and b = 255
(b) a = 924 and b = 560
(c) a = 532 and b = 285
(d) a = 3960 and b = 2541

Solution 1.

(a) We repeatedly use the division algorithm to get

442 = (255× 1) + 187

255 = (187× 1) + 68

187 = (68× 2) + 51

68 = (51× 1) + 17

51 = (17× 3)

and so hcf(442, 255) = 17.
(b) As above, we compute

924 = (560× 1) + 364

560 = (364× 1) + 196

364 = (196× 1) + 168

196 = (168× 1) + 28

168 = (28× 6)

and so hcf(924, 560) = 28.
(c) The Euclidean algorithm gives

532 = (285× 1) + 247

285 = (247× 1) + 38

247 = (38× 6) + 19

38 = (19× 2)

and so hcf(532, 285) = 19.



(d) Finally, we compute

3960 = (2541× 1) + 1419

2541 = (1419× 1) + 1122

1419 = (1122× 1) + 297

1122 = (297× 3) + 231

297 = (231× 1) + 66

231 = (66× 3) + 33

66 = (33× 2)

and so hcf(3960, 2541) = 33.

Problem 2. By repeatedly using the division theorem, find the infinite decimal which represents
the rational number 4

13 (compare with problem 15.6 on p198).

Solution 2. We use the division theorem to work out the decimals in the expansion of 4
13 . To find

the first decimal place, note that 40 = (3× 13) + 1, and so our first decimal place a1 is a1 = 3. We
continue in this way to get

40 = (3× 13) + 1 ⇒ a1 = 3

10 = (0× 13) + 10 ⇒ a2 = 0

100 = (7× 13) + 9 ⇒ a3 = 7

90 = (6× 13) + 12 ⇒ a4 = 6

120 = (9× 13) + 3 ⇒ a5 = 9

30 = (2× 13) + 4 ⇒ a6 = 2.

The final remainder is 4, which means the next step will see us return to the same computation as
the first step. Since this will then mean we repeat the pattern again, we see that 4

13 = 0.307692.

Problem 3. Prove that every infinite decimal representing a rational number is recurring (where
we consider finite decimals to be ending with recurring 0s) and furthermore that if the fraction is
written in lowest terms as a

b then the number of recurring digits is less than b.

Solution 3. Suppose we follow the same method as above. Then each application of the division
theorem leaves some remainder r with 0 ≤ r < b. If r = 0 then we will ahve a finite decimal
ending in recurring 0s. Otherwise, suppose that at each step 0 < r < b - and there are precisely
b− 1 possible remainders. After b iterations of the above method, by the pigeonhole principle some
remainder must have appeared twice, and so the pattern will be repeating. Since it is already
repeating by the bth step, the total number of recurring digits must be strictly smaller than b.

Problem 4. Let un be the nth Fibonacci number. Prove that the Euclidean algorithm takes exactly
n steps to prove that hcf(un+1, un) = 1.



Solution 4. We proceed by induction. For the base case, note that the Euclidean algorithm takes
one step to show that hcf(u2, u1) = hcf(1, 1) = 1. For the inductive step, suppose that for some
k ≥ 1 the Euclidean algorithm takes k steps to prove that hcf(uk+1, uk) = 1. Then since

uk+2 = uk+1 + uk

we see by the Division Theorem that hcf(uk+2, uk+1) = hcf(uk+1, uk). Then, by the inductive
hypothesis it takes k steps to prove hcf(uk+1, uk) = 1. Hence we have seen it takes k + 1 steps to
prove hcf(uk+2, uk+1) = 1. This proofs the statement by induction.

Problem 5. We define the least common multiple of non-zero integers a and b to be the unique
positive integer m such that

(i) m is divisible by a and m is divisible by b,
(ii) If a divides n and b divides n then m ≤ n.

We write m = lcm(a, b).

(a) Prove that if a divides n and b divides n then lcm(a, b) divides n. Deduce that ab
lcm(a,b) is

an integer.
(b) Prove that ab

lcm(a,b) is a common divisor of a and b and hence ab
lcm(a,b) ≤ hcf(a, b).

(c) Prove that ab
hcf(a,b) is a common multiple of a and b. Now deduce that if a and b are positive,

then

hcf(a, b)lcm(a, b) = ab.

Solution 5.

(a) Suppose to obtain a contradiction that a divides n and b divides n but lcm(a, b) does not
divide n. Then by the Division Theorem there exists integers q and r with 0 < r < lcm(a, b)
such that

n = lcm(a, b)× q + r.

By assumption a divides n and by definition a divides lcm(a, b), from which it follows that
a divides r. Similarly, we can see that b divides r. This means that r is a common multiple
of a and b. However, r < lcm(a, b), which is a contradiction since by definition lcm(a, b)
is the least common multiple. Hence we see that lcm(a, b) divides n. In particular ab is a
common multiple of a and b, and so the proposition applies to ab. Hence ab is divisible by
lcm(a, b) and so ab

lcm(a,b) is an integer.

(b) We will show that
a
ab

lcm(a,b)

is an integer. But this is easy since

a
ab

lcm(a,b)

=
lcm(a, b)

b

and clearly b divides lcm(a, b) by definition, so this final term is an integer and so ab
lcm(a,b)

divides a. Similarly ab
lcm(a,b) divides b. Hence ab

lcm(a,b) is a common factor of a and b, so by

definition ab
lcm(a,b) ≤ hcf(a, b), or equivalently ab ≤ lcm(a, b)hcf(a, b).



(c) Since hcf(a, b) is a factor of b, we see that

b

hcf(a, b)

is an integer, and so
ab

hcf(a, b)
= a

b

hcf(a, b)

is a multiple of a, with a similar argument showing it is also a multiple of b. It follows that

ab

hcf(a, b)
≥ lcm(a, b)

or equivalently
ab ≥ lcm(a, b)hcf(a, b).

It follows from the results of parts (b) and (c) that

ab = lcm(a, b)hcf(a, b).
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Problem 1. Decide whether the following linear diophantine equations have a solution. If they do
have a solution, find all such solutions to the equation.

(a) 442m + 255n = 17
(b) 924m + 560n = 84
(c) 532m + 285n = 27
(d) 3960m + 2541n = −132

Solution 1.

(a) From the previous homework we know that hcf(442, 255) = 17, and so the equation has a
solution. To find a particular solution, we reverse the Euclidean algorithm:

17 = 68− (51× 1)

= 68− ((187− (68× 2))× 1)

= (68× 3)− 187

= (((255− (187× 1))× 3)− 187

= (255× 3)− (187× 4)

= (255× 3)− ((442− (255× 1))× 4)

= (255× 7)− (442× 4).

To now find all solutions, we need to solve the homogenous equation 442m + 255n = 0.
Dividing through by hcf(442, 255) = 17, this means we need to solve

26m + 15n = 0,

which rearranges to

26m = −15n

Since 26 and 15 are coprime, we see that if n solves this equation then n = 26q for some
q ∈ Z. Replacing this into the equation, it follows then that m = −15q for the same q ∈ Z.
Hence the solutions of the homogenous equation are of the form

(m,n) = (−15q, 26q) for some q ∈ Z.

Combining this with our particular solution above, our total set of solutions is the set of
pairs (m,n)

(m,n) = (−4− 15q, 7 + 26q) for some q ∈ Z.



(b) This time we know that hcf(924, 560) = 28 and since 28 divides 84, the equation has a
solution. Again we can unpack the Euclidean algorithm to get

28 = 196− 168

= 196− (364− 196)

= (196× 2)− 364

= ((560− 364)× 2)− 364

= (560× 2)− (364× 3)

= (560× 2)− ((924− 560)× 3)

= (560× 5)− (924× 3).

So a particular solution to 924m + 560n = 84 is

924× (−9) + 560× 15 = 84.

We now solve the homogenous equation which, after dividing through by 28 = hcf(924, 560) is

33m + 20n = 0.

The set of solutions to this equation is given by pairs (m,n) = (−20q, 33q) where q ∈ Z. Hence our
solution set is

S = {(−9− 20q, 5 + 33q) | q ∈ Z}.
(c) We know that hcf(532, 285) = 19. Since 19 does not divide 27, this linear diophantine equation
has no solutions.

(d) We computed hcf(3960, 2541) = 33 and since −132 = 33 × (−4), a solution exists. Using our
calculations in the Euclidean algorithm, we end up with the particular solution

3960× (−34) + 2541× 53 = 33

and so a solution to the original equation is

3960× 136 + 2541× (−212) = −132.

We solve the (simplified) homogenous equation to get

120m + 77n = 0 ⇔ (m,n) = (−77q, 120q) for some q ∈ Z.

It follows that our solution set is

S = {(m,n) ∈ Z2 | m = 136− 77q and n = −212 + 120q for some q ∈ Z}.

Problem 2. Solve the linear diophantine equation

6m + 10n + 15p = 1.

by defining x = 3m + 5n and solving the resulting linear diophantine equation.

Solution 2. Using x = 3m + 5n, the equation becomes

2x + 15p = 1



We use the Euclidean algorithm on the pair (15, 2) to get

15 = 2× 7 + 1

2 = 1× 2

so that hcf(15, 2) = 1. Undoing this gives a particular solution

(x, p) = (−7, 1)

We now solve the homogenous equation 2x + 15p = 0, which is easily solved by (x, p) = (−15q, 2q)
for some q ∈ Z. So the full set of solutions to 2x + 15p = 1 is (x, p) = (−7− 15q, 1 + 2q) for some
q ∈ Z. We now need to solve the equation

3m + 5n = x = −7− 15q

for some q ∈ Z. In actual fact, we first solve 3m + 5n = −7, and then solve 3m + 5n = −15q. So
again we apply the Euclidean algorith to get

5 = 3× 1 + 2

3 = 2× 1 + 1

2 = 2× 1

from which we see (not that we didn’t know this before!) that hcf(5, 3) = 1, and this gives us a
particular solution

3× (−14) + 5× (7) = −7.

We now solve the equation 3m+5n = −15q. We could use our previous work on finding hcf(5, 3) = 1
to write down the solution

3× (−30q) + 5× (15q) = −15q

but perhaps it is easier to notice that a solution is given by

3× (−5q) + 5× (0q) = −15q.

We now solve the homogenous equation to see that

3m + 5n = 0 ⇔ (m,n) = (−5r, 3r) for some r ∈ Z.

Hence the solution set to 3m + 5n = −7− 15q is given by

(m,n) = (−14− 5q − 5r, 7 + 3r).

Combining this with our previous solution gives the solutions to 6m + 10n + 15p = 1 as the triples

(m,n, p) = (−14− 5q − 5r, 7 + 3r, 1 + 2q)

for integers q, r ∈ Z.

Problem 3. Solve, if possible, the following linear diophantine equations.

(a) 2m + 3n + 5p = 24
(b) 2m + 6n + 8p = 17
(c) 3m + 6n + 11p = 13
(d) 6m + 15n + 21p = 33

Solution 3. We use the same method as in Problem 2 to solve each of these equations. There are
other equally good methods.



(a) First we define x = 2m + 3n and so we need to solve x + 5p = 24. We apply the Euclidean
algorithm to get hcf(5, 1) = 1 (this takes only one step). We can write down the particular
solution (this is not the only one of course)

(x, p) = (−1, 5).

We now solve the homogenous equation x + 5p = 0, which has solutions (x, p) = (−5q, q)
for q ∈ Z, giving the general solution (x, p) = (−1−5q, 5+q). We now need to solve in turn
the equations 2m + 3n = −1 and 2m + 3n = −5q. Again hcf(3, 2) = 1 and we can write
down the respective particular solutions (m,n) = (1,−1) and (m,n) = (−q,−q), giving the
solution set (m,n) = (1− q,−1− q). The homogenous equation 2m + 3n = 0 is solved by
(m,n) = (−3r, 2r) for some r ∈ Z. Putting all this together means that we get the solution
set for 2m + 3n = −1− 5q is (for example)

(m,n) = (1− q − 3r,−1− q + 2r)

and so the solutions to the original equation are of the form

(m,n, p) = (1− q − 3r,−1− q + 2r, 5 + q)

for q, r ∈ Z.
(b) The highest common factor of 2, 6 and 8 is 2, but this does not divide 17. Hence there are

no solutions to this equation.
(c) Set x = m + 2n, so the new equation is 3x + 11p = 13. The Euclidean algorithm yields

11 = 3× 3 + 2

3 = 2× 1 + 1

2 = 1× 2

and so hcf(11, 3) = 1. Undoing the algorithm gives the particular solution (x, p) = (−13, 52)
(maybe you spotted the simpler solution (2,−3) — it is perfectly fine if you did) and the
homogenous equation is solved by (x, p) = (−11q, 3q) for some q ∈ Z. So we have the
general solution

(x, p) = (−13− 11q, 52 + 3q).

We now solve the equation m + 2n = x = −13 − 11q. Using the Euclidean algorithm (or
another method) we find the solution (m,n) = (−1−q,−6−5q). The homogenous equation
is solved by (m,n) = (−2r, r) for r ∈ Z, giving the solution (m,n) = (−1−q−2r,−6−5q+r)
for q, r ∈ Z. Now we can write down the solution set for the original equation as

S = {(−1− q − 2r,−6− 5q + r, 52 + 3q) | q, r ∈ Z}.
(d) We write x = 2m+ 5n. This gives us 3x+ 21p = 33 which we may simplify to x+ 7p = 11.

Using our favourite method we find the solution (x, p) = (−3, 2) and the homogenous
equation is solved by (x, p) = (−7q, q), giving a general solution (x, p) = (−3 − 7q, 2 + q).
We now solve 2m + 5n = x = (−3− 7q), which yields a general solution (m,n) = (1− q −
5r,−1− q + 2r). Hence the general solution is

(m,n, p) = (1− q − 5r,−1− q + 2r, 2 + q)

for q, r ∈ Z.

As a side note, you can ponder how you may solve a diophantine equation with 4 variables, or
indeed a diophantine equation with n variables. How many free variabes would you expect if a
solution exists?



Problem 4. Let n > 1. Show that if there are no non-zero integer solutions to

xn + yn = zn

then there exists are no non-zero rational solutions. Hint: Maybe the contrapositive will help. . .

Solution 4. Suppose there exists a non-zero rational solution

(x, y, z) =

(
a1
b1

,
a2
b2

,
a3
b3

)
.

Then we have (
a1
b1

)n

+

(
a2
b2

)n

=

(
a3
b3

)n

.

Multiplying through to get a common denominator, we get(
a1b2b3
b1b2b3

)n

+

(
a2b1b3
b1b2b3

)n

=

(
a3b1b2
b1b2b3

)n

from which it follows that
(a1b2b3)n + (a2b1b3)n = (a3b1b2)n

is a non-zero integer solution to the problem.

Problem 4 concerns a very famous result you may have seen before, referred to as Fermat’s Last
Theorem. We of course know that (infinitely many) solutions exist when n = 2, and we call these
Pythagorean triples. But it was an open problem whether any non-trivial integer solutions exist
for n > 2. It was finally shown by Andrew Wiles in the late 20th Century that no solutions exist.
The simplicity of the statement and the difficulty of the proof is just one of the many intriguing
facets of mathematics!
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DUE IN CLASS ON 12/3

Problem 1. Solve the following linear congruences.

(a) 154x ≡ 24 mod 819
(b) 231x ≡ 147 mod 598
(c) 156x ≡ 42 mod 252
(d) 9x ≡ 0 mod 21

Solution 1.

(a) By using the Euclidean Algorithm, we see that hcf(154, 819) = 7. Since 7 does not divide
24, there are no solutions.

(b) First note that 231 and 147 are divisible by 3 and 3 does not divide 598, we can reduce this
problem to

77x ≡ 49 mod 598.

We now use the Euclidean Algorithm to compute hcf(77, 598):

598 = (77× 7) + 59

77 = (59× 1) + 18

59 = (18× 3) + 5

18 = (5× 3) + 3

5 = (3× 1) + 2

3 = (2× 1) + 1

which gives hcf(77, 598) = 1, and the equation certainly has a (unique!) solution. Now we
unpack the algorithm to get

233× 77− 30× 598 = 1

which gives the solution x = 233 to the linear congruence 77x ≡ 1 mod 598. Hence the
solution to 77x ≡ 49 mod 598 is x ≡ 233 ∗ 49 ≡ 55 mod 598. So our solution is x ≡ 55
mod 598.

(c) First we can reduce by dividing through by 6, which means we are looking for solutions to

26x ≡ 7 mod 42.

However, notice that hcf(26, 42) = 2, but this does not divide 7. Hence there are no
solutions to this linear congruence.

(d) The congruence can be reduced to

3x ≡ 0 mod 7

and then
x ≡ 0 mod 7

1



which yields the solutions x ≡ 0 mod 21, x ≡ 7 mod 21 and x ≡ 14 mod 21.

Problem 2.

(a) What is the final digit of 32014?
(b) What is the final digit of 732014?
(c) What is the final digit of 22014?
(d) What is the final digit of 1462014?

Solution 2.
(a) It is easy to check that 34 ≡ 1 mod 10, and so it follows that

32014 ≡ 32012 × 32 ≡ (34)503 × 32 ≡ 1503 × 9 ≡ 9 mod 10.

(b) Since 3 ≡ 73 mod 10, the solution is the same as the above: 732014 ≡ 9 mod 10.
(c) This time, we note that we have the following sequence

21 ≡ 2 mod 10, 22 ≡ 4 mod 10, 23 ≡ 8 mod 10, 24 ≡ 6 mod 10, 25 ≡ 2 mod 10, . . .

and the pattern repeats, so that 24n+1 ≡ 2 mod 10. Then we can compute

22014 ≡ 22013 × 2 ≡ 2(4×503)+1 × 2 ≡ 2× 2 ≡ 4 mod 10.

(d) 1462014 ≡ (2× 3)2014 ≡ 22014 × 32014 ≡ 4× 9 ≡ 36 ≡ 6 mod 10.

Problem 3. Compute the inverse of 204 modulo 367. Using this, solve the following linear con-
gruences.

(a) 204x ≡ 4 mod 367
(b) 204x ≡ 11 mod 367
(c) 204x ≡ 99 mod 367
(d) 204x ≡ 9 mod 367

Solution 3. We begin by finding the inverse of 204 modulo 367, which requires us to solve 204x ≡ 1
mod 367. To do this, we use the method of linear diophantine equations to convert the problem to
finding x, y ∈ Z solving

204x + 367y = 1.

Of course, we use the Euclidean Algorithm to first find hcf(204, 367).

367 = (204× 1) + 163

204 = (163× 1) + 41

163 = (41× 3) + 40

41 = (40× 1) + 1

Hence hcf(204, 367) = 1 (as the question implied, since otherwise an inverse would not exist). We
now unpack the algorithm to find x, which will be the inverse of 204. The solution we find is x = 9
(and y = 5, but this is not important for the linear congruence case). We can now solve the linear
congruences in the question.



(a) 204x ≡ 4 mod 367⇔ 9× 204x ≡ 9× 4 mod 367⇔ x ≡ 36 mod 367.
(b) 204x ≡ 11 mod 367⇔ 9× 204x ≡ 9× 11 mod 367⇔ x ≡ 99 mod 367.
(c) 204x ≡ 99 mod 367⇔ 9× 204x ≡ 9× 99 mod 367⇔ x ≡ 891 ≡ 157 mod 367.
(d) 204x ≡ 4 mod 367⇔ 9× 204x ≡ 9× 9 mod 367⇔ x ≡ 81 mod 367.

Problem 4. Prove that the Fibonacci number un is divisible by 3 if and only if n is divisible by 4.

Solution 4. We consider the first few terms in the Fibonacci sequence.

1 ≡ 1 mod 3

1 ≡ 1 mod 3

2 ≡ 2 mod 3

3 ≡ 0 mod 3

5 ≡ 2 mod 3

8 ≡ 2 mod 3

13 ≡ 1 mod 3

21 ≡ 0 mod 3

34 ≡ 1 mod 3

55 ≡ 1 mod 3

We see that in general, since the pattern will repeat, uk+8n ≡ uk mod 3 for 1 ≤ k ≤ 8 (this can
be checked by a simple but laborious induction argument on n). Since u4 ≡ 0 mod 3 and u8 ≡ 0
mod 3, but uk 6≡ 0 mod 3 for k = 1, 2, 3, 5, 6, 7, the statement follows.



PRACTICE QUESTIONS FOR MIDTERM I - SOLUTIONS
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Question 1. Use a truth table to show that P is equivalent to (not P )⇒ C, where C is a contra-
diction.

Solution 1. Note that the contradiction C is always false, by definition.

P (not P ) C (not P )⇒ C
T F F T
F T F F

Since the bold rows agree, the two statements are logically equivalent.

Question 2. Use a truth table to show that P ⇒ Q and (P or Q)⇔ Q are equivalent.

Solution 2.

P Q P ⇒ Q (P or Q) (P or Q)⇒ Q (P or Q)⇐ Q (P or Q)⇔ Q
T T T T T T T
T F F T F T F
F T T T T T T
F F T F T T T

Again, since the bold columns agree, the two statements are logically equivalent.

Question 3. Prove that if x ∈ R and x2 ≥ 5x then x ≥ 5 or x ≤ 0.

Solution 3. Proof. Suppose x2 ≥ 5x and assume x > 0 (if x ≤ 0 we are done). Since x > 0, we
can multiply both sides of the first inequality to get x ≥ 5. �

Question 4. Prove that if a ∈ R then one of
√

5− a and
√

5 + a is irrational.

Solution 4. Let a ∈ R. Suppose, to obtain a contradiction, that both
√

5 − a and
√

5 + a are
rational. Then the sum (

√
5− a) + (

√
5 + a) =

√
5 is a sum of rational numbers and so is rational.

But
√

5 is irrational. This is a contradiction, so we conclude one of
√

5 − a and
√

5 + a must be
irrational.

1



Question 5. Show for all n ∈ N that
n∑

i=1

1

i(i+ 1)
=

n

n+ 1
.

Solution 5. Proof. We proceed by induction on n. First the base case. If n = 1 then we get

1∑
i=1

1

i(i+ 1)
=

1

1(2)
=

1

2
.

Now, for the inductive step, suppose the formula holds for some k ≥ 1. Then

k+1∑
i=1

1

i(i+ 1)
=

k∑
i=1

1

i(i+ 1)
+

1

(k + 1)(k + 2)

=
k

k + 1
+

1

(k + 1)(k + 2)

=
k(k + 2) + 1

(k + 1)(k + 2)

=
(k + 1)2

(k + 1)(k + 2)

=
k + 1

k + 2

Hence, the formula holds by induction. �

Question 6. Show for all n ∈ N that n3 − n is divisible by 3.

Solution 6. Proof. We proceed by induction on n. First, note that for n = 1, we have n3 − n =
13 − 1 = 0, and 0 is divisible by 3. Now for the inductive step, assume that for some k ≥ 1, the
statement holds. So now consider

(n+ 1)3 − (n+ 1) = (n3 + 3n2 + 3n+ 1)− (n+ 1) = n3 + 3n2 + 2n = (n3 − n) + 3(n2 + n)

This last expression is the sum of two things which are divisible by 3, and so is divisible by 3. Hence
the statement holds by induction. �

Question 7. Let A,B,C be sets. Show that A \ (B \ C) = (A \B) ∪ (A ∩ C).

Solution 7. Proof.

A \ (B \ C) = A ∩ (B \ C)c

= A ∩ (B ∩ Cc)c

= A ∩ (Bc ∪ C)

= (A ∩Bc) ∪ (A ∩ C)

= (A \B) ∪ (A ∩ C).

�



Question 8. Prove that if X is a universal set and A,B ⊆ X, then A ⊆ B ⇔ Bc ⊆ Ac.

Solution 8. Proof. This is actually very simple. Recall that A ⊆ B means

x ∈ A =⇒ x ∈ B.

Now, this is equivalent to its contrapositive, which is

x /∈ B =⇒ x /∈ A

which is the statement Bc ⊆ Ac. �

Question 9. Write the negation of ∀x ∈ N, ∃ y ∈ N, y = x − 1. Is the original statement true?
Prove or give a counterexample.

Solution 9. The negation to this statement is

∃x ∈ N, ∀ y ∈ N, y 6= x− 1.

The original statement is false (and so the negation is true). To see this, take x = 1 ∈ N. Then
there is no element y of N such that y = x− 1, since 1 is the smallest element of N.

Question 10. Let C be the set of circles in R2: that is C = {C ⊂ R2 | C is a circle}. Also, define
R : C → R by R(C) = “Radius of C”. For each of the following statements, either prove them or
give a counterexample.

(i) ∀C1 ∈ C, ∀C2 ∈ C, C1 ∩ C2 = ∅.
(ii) ∃x ∈ R,∀C ∈ C, R(C) = x.
(iii) ∀C ∈ C, ∃x ∈ Z, R(C) = x.

Solution 10.

(i) This is false. Consider the circle C1 with equation x2 + y2 = 1 and the circle C2 with
equation (x− 2)2 + y2 = 1. Then (1, 0) ∈ C1 ∩ C2.

(ii) This is false. Let x ∈ R. Then for r 6= x, consider the circle C given by the equation
x2 + y2 = r2. Then R(C) = r 6= x.

(iii) This is false. Consider the circle C with equation x2 + y2 = π2. Then R(C) = π /∈ Z.

Question 11. Give an example of a map f : N→ N which is an injection but not a surjection.

Solution 11. There are many options here. For example, f(n) = 2n is an injection but not a
surjection. To show this, note that if f(n) = r = f(m), then 2n = r = 2m, and so n = m.
Furthermore, there does not exist n such that f(n) = 3, since 3 is odd.

Question 12. Give an example of a map f : N→ N which is a surjection but not an injection.



Solution 12. Again, there are many options here. For example, define

f(n) =

{
5 if n = 1

n− 1 if n > 1

Then f is a surjection since for all n ∈ N, we have f(n + 1) = n. However, it is not an injection
since f(1) = 5 = f(6).

Question 13. Let f : X → Y and g : Y → Z. If f is an injection and g ◦ f is an injection, must
g be an injection? Prove or give a counterexample.

Solution 13. This is false. Let X = {1, }, Y = {a, b} and Z = {z}. Now define f by f(1) = a,
and g by g(a) = g(b) = z. Clearly f is an injection (since X contains only one element) and
g ◦ f : X → Z is defined by g ◦ f(1) = z, so is also an injection. However, g is not an injection, since
g(a) = g(b).

Question 14. Let f : X → Y and g : Y → Z. If f is a surjection and g ◦ f is a surjection, must g
be a surjection? Prove or give a counterexample.

Solution 14. This is true. Indeed, we don’t actually need the condition on f being a surjection!

Proof. Suppose g is not a surjection. Then there exists z ∈ Z such that there is no y ∈ Y with
g(y) = y. But then there cannot exists x ∈ X such that g(f(x)) = z, since otherwise f(x) ∈ Y and
so cannot map to z by our assumption. Hence our assumption that g was not a surjection is false
and so g must be a surjection. �

Please let me know if you find any mistakes in this document! Best of luck to
everyone for the Midterm!
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Question 1. Express the following recurring decimals as rational numbers.

(a) 2.71828
(b) 2.34567
(c) 1.2345 + 2.419

Solution 1.

(a) We have

a = 2.71828 = 2.71 + 0.00828

and so

1000a = 2718.28 + 0.00828.

Hence

999a = 2715.57 =
271557

100
and so

a =
271557

99900
.

(b) We have

b = 2.34567 = 2.345 + 0.00067

and so

100b = 234.567 + 0.00067.

Simple arithmetic then gives

b =
232222

99000
.

(c) There are two ways of computing this. We could work out the fraction for each term
separately, then add them, or we can compute the recurring fraction corresponding to this
sum. We follow the second method - you can check the first method leads to the same
solution. So first we compute

c = 1.2345 + 2.419 = 3.6537 = 3.65 + 0.0037

which gives

100c = 365.37 + 0.0037.

Now a simple computation gives

c =
36172

9900
.

1



Question 2. Show that if A and B are finite sets, then if A ⊂ B we have

minB ≤ minA

Solution 2. This is very easy. Let b0 = minB and a0 = minA. By definition we have b0 ≤ b for
all b ∈ B. Since A ⊂ B it follows that b0 ≤ a for all a ∈ A and so in particular since a0 ∈ A we
have b0 ≤ a0.

Question 3. Let X and Y be finite sets with |X| < |Y |. Show there does not exist a surjection
φ : X → Y .

Solution 3. Suppose there exists a surjection φ : X → Y . Then there exists a right inverse
g : Y → X of φ. By definition, we have f(g(y)) = y for all y ∈ Y . Suppose that g(y1) = g(y2).
Then since y1 = f(g(y1)) = f(g(y2)) = y2, it follows that g is an injection. But this mean we have
an injection g : Y → X whilst |Y | > |X|. This is a contradiction to the pigeonhole principle.

Question 4. Let X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4, y5}.
(a) How many maps are there f : X → Y ?
(b) How many maps are there f : Y → X?
(c) What is |{f ∈ Fun(X,Y ) | y4 /∈ imf}|?

Solution 4.

(a) |Fun(X,Y )| = |Y ||X| = 54 = 625.
(b) |Fun(Y,X)| = |X||Y | = 45 = 1024.
(c) We can consider this set to be the set of functions Fun(X, {y1, y2, y3, y5}), which has cardi-

nality 44 = 256.

Question 5. Suppose we pick 17 elements from the set N32. Show that we must have picked a
pair of integers whose sum is 33.

Solution 5. We note there are 16 pairs in N32 whose sum adds up to 33. These are {1, 32}, {2, 31},
. . . , {15, 18}, {16, 17}. Since we pick 17 elements, the pigeonhole principle ensures that one of these
pairs will have both elements picked, and so there exists a pair of integers whose sum adds to 33.

Question 6. Four people visit a restaurant and each choose one meal from a choice of seven on
the menu.

(a) How many possible combinations are there if we record who chose which dish?
(b) How many possible combinations are there if we do not record who chose each dish?
(c) How many possible combinations are there if we record who chose which dish and each

person chose a different dish from everyone else?



Solution 6. (a) This can be thought of as the set of functions from a four element set to a
seven element set. Thus the number of possible combinations is 74 = 2401.

(b) This is a bit trickier, since repetitions are possible. We identify the menu with the set
Y = {y1, y2, y3, y4, y5, y6, y7}. Then all the possible combinations we are considering are
of the form (yi1 , yi2 , yi3 , yi4 , ) where i1 ≤ i2 ≤ i3 ≤ i4. So each choice corresponds to a
quadruple (i1, i2, i3, i4) with i1 ≤ i2 ≤ i3 ≤ i4. We now consider the bijection φ from
4-tuples to P4(N10) given by

φ((i1, i2, i3, i4)) = {i1, i2 + 1, i3 + 2, i4 + 3}.

Since |P4(N10)| = 10!
6!4! = 210, it follows that the total number of combinations is also 210.

(c) This can be thought of as the set of injections from a four element set to a seven element
set. The cardiality of this is 7× 6× 5× 4 = 840.

Question 7. Suppose X ∩ Y = ∅. Show that the function

f :

k⋃
i=0

Pi(X)× Pk−i(Y )→ Pk(X ∪ Y )

given by f(A,B) = A ∪B is a bijection. From this, deduce that(
m+ n

k

)
=

n∑
i=0

(
m

i

)(
n

k − i

)
.

Solution 7. Suppose f(A,B) = f(C,D). Then since X ∩ Y = ∅, we see that A = f(A,B) ∩X =
f(C,D) ∩ X = C and a similar argument shows B = D. Hence f is surjective. Now suppose
Z ∈ Pk(X ∪ Y ). Define A = Z ∩X and B = Z ∩ Y . Then f(A,B) = Z, so f is surjective and so f
is a bijection.

Now suppose that |X| = m and |Y | = n. Then the cardinality of Pk(X ∪ Y ) is
(
m+n
k

)
. On the

other hand, since
k⋃

i=0

Pi(X)× Pk−i(Y )

is a disjoint union, with each term having cardinality
(
m
i

)(
n

k−i
)

by the multiplication principle, we
get ∣∣∣∣∣

k⋃
i=0

Pi(X)× Pk−i(Y )

∣∣∣∣∣ =

n∑
i=0

(
m

i

)(
n

k − i

)
by the addition principle. The bijection from the first paragraph then shows that(

m+ n

k

)
=

n∑
i=0

(
m

i

)(
n

k − i

)
as required.

Question 8. Which of the following sets are countably infinite?



• C
• {a

√
2 + b

√
3 + c

√
5 | a, b, c ∈ Q}

• {πm + en | m,n ∈ Z}
• Fun(N, {0, 1})
• The set of circles in the plane with rational centers and rational radii.

Solution 8.

• C is not countable, since R ⊂ C and R is uncountable.
• This set is countable. There is the bijection from this set to Q3 given by φ(a

√
2 + b

√
3 +

c
√

5) = (a, b, c). Since Q3 is countable, the original set is also countable.
• This time there is a bijection from the original set to Z2 given by φ(πm + en) = (m,n).
• The set Fun(N, {0, 1}) can be identified with the set of characteristic functions (see ear-

lier homeworks) on N, which itself can be identified with the set P(N) via the bijection
which maps the set A ⊂ N to the function χA. Since P(N) is not countable, neither is
Fun(N, {0, 1}).

• This set can be identified with the set Q3. Let C be the circle with center (q1, q2) and radius
q3, and define φ(C) = (q1, q2, q3). This is a bijection, and so the original set is countable.

Question 9.

(a) Let a < b and c < d. Show that the map f : [a, b]→ [c, d] given by

f(x) =
(b− x)c

b− a
+

(x− a)d

b− a
is a bijection. Deduce that any two closed intervals have the same cardinality.

(b) Show that all intervals containing more than one point has the same cardinality. (Hint: it
is not necessary to find an explicit bijection to do this).

(c) Show that all intervals containing more than one point has the same cardinality as R.

Solution 9.

(a) There are a number of ways to show that f is a bijection. First we can write down the
inverse

f−1(y) =
(d− y)a

d− c
+

(y − c)b
d− c

.

Alternatively, we can use calculus to show that f is a continuous increasing function, and
therefore is both injective and surjective. Finally, we could just check injectivity and sur-
jectivity from the formula. Note that f is just a linear function whose graph is the line
between (a, c) and (b, d). Since f is a bijection, it follows that all closed intervals have the
same cardinality.

(b) Let 〈x, y〉 be any interval, with 〈∈ { ( , [ } and 〉 ∈ { ) , ] }. Then [a, b] ⊂ 〈x, y〉 ⊂ [c, d]
for some a, b, c, d ∈ R. The inclusion ι : 〈x, y〉 → [c, d] is an injection. Moreover, since
|[a, b]| = |[c, d]| from part (a), there is a bijection φ : [c, d]→ [a, b]. Then if i : [a, b]→ 〈x, y〉
is the inclusion, the composition i ◦ φ is an injection from [c, d] to 〈x, y〉. Thus, by the
Cantor-Schröder-Bernstein Theorem, we have |〈x, y〉| = |[c, d]|.

(c) It remains to show that there is a bijection from some interval 〈a, b〉 ⊂ R to R. The map

tan−1 :
(
−π

2
,
π

2

)
→ R



is a good example.

Question 10. By considering the map f : [0, 1)× [0, 1)→ [0, 1), defined by

f((0.a1a2, . . . an . . . , 0.b1b2 . . . bn . . .)) = 0.a1b1a2b2 . . . anbn . . .

(and using the expansion ending in recurring 0s if there is a choice) deduce that |R× R| = |R|.

Solution 10. Since neither 0.a1a2, . . . an . . . nor 0.b1b2 . . . bn . . . end in recurring 9s, it follows that
0.a1b1a2b2 . . . anbn . . . also does not end in recurring 9s. Suppose

f((0.a1a2, . . . an . . . , 0.b1b2 . . . bn . . .)) = f((0.a′1a
′
2, . . . a

′
n . . . , 0.b

′
1b
′
2 . . . b

′
n . . .)).

Since the image does not end in recurring 9s, then by checking each decimal place, we see that
ai = a′i and bj = b′j for each i and j. This means that f is an injection from R × R to R. On the
other hand, the projection onto the first coordinate from R to R×R is also an injection. Thus, by
the Cantor-Schröder-Bernstein theorem, we have |R× R| = |R|.




