MAT 118: Mathematical Thinking Fall 2015

General Information Homework Assignments
Tests (reviews and solutions)

General Information

In the course we will explore various applications of mathematics. The main objective is to develop your mathematical thinking and problem solving abilities. During the semester we will work on different real-life mathematical problems such as: determining a winner in elections, finding efficient route, studying population growth etc..

Instructor:

Artem Dudko, artem.dudko@stonybrook.edu
Lectures: MWF 9:00-9:53am, Harriman Hall 137
Office hours: W 10:00-12:00am, Math Tower 3114, and W 12:00-
1:00pm, Math Learning Center, Math Tower S-240A

Teaching assistants:

R01, W 5:30-6:23pm, Library N4072, Rayne Goldberg, rayne@math.stonybrook.edu
R02, M 1:00-1:53pm, Physics P127, Fangyu Zou, fangyu.zou@stonybrook.edu
R03, Th 1:00-1:53pm, Library N4072, Fangyu Zou
Textbook: Excursions in Modern Mathematics, by Peter Tannenbaum (8th edition, preferably)

Assignments: There will be weekly homework assignments (with a few exceptions) posted on the course web page due on Wednesday. You should hand in your assignments to the instructor at the end of Wednesday classes. Each homework will consist of several problems two or three of which will be graded (but you don't know which, so expected to do all of them). The first homework assignment will be due on September 7. Also, there will be also recommended problem sets. The focus of the course is on learning how to recognise, formulate and solve mathematical problems, therefore it is highly recommended that you work on recommended problems as well (even though it is not for grading).

Tests:

Midterm II: Monday, November 2, in class. TBA.
Midterm I: Monday, October 5, in class. It covers sections 1,2,3 and 5 of the course book. There will be 4 problems of the same type as homework problems and a few multiple choice type questions.
There will be a review session on Wednesday, September 30, 57pm in Melville Library W4525.
Last day of classes: Friday, December 4.
Final Exam: Wednesday, December 9, 8:30pm-11:00pm, Harriman 137 (the classroom). The review will be on Monday 3:30pm-5:30pm in the library building, W4550. For the final exam you need to know everything we learned after midterm 2 (6 problems +4 multiple choice questions for this part):
Credit card debt, Installment loans (Section 10.4); Fibonacci numbers, Golden ratio, Binet's formula, sum of the first Fibonacci numbers and their squares, Gnomons (Chapter 13); Sample spaces and events, Probability rules, Permutations and combinations, Equiprobable and Non-equiprobable spaces (Sections 16.1-16.3; notice that the topics of Odds and Expectations are not included in the final); and the following topics from the material covered by the midterms:
Plurality with Elimination method, Shapley-Shubik power and Method of Sealed Bids (2 problems);
Cheapest Link Algorithm, Exponential Growth Model and Compound Interest (2 problems).

Course grade is computed by the following scheme:
Homework: 20\%
Midterms: 40\%
Final Exam: 40\%

Letter grade cutoffs:

85-100 A
80-85 A-
75-80 B+
65-75 B
60-65 B-
55-60 C+
45-55 C
35-45 D
0-35 F

Information for students with disabilities

If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact Disability Support Services at (631) 632-6748 or
http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential.

Students who require assistance during emergency evacuation are
encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information go to the following website:
http://www.sunysb.edu/ehs/fire/disabilities.shtml

MAT 118 Homework assignments.

The exercises (unless stated otherwise) are from the course book "Excursions in modern mathematics", 8th edition, by Peter Tannenbaum. They can be found at the end of the corresponding chapter. Only 2-3 problems from each assignment will be graded, but you don't know which and are expected to do all of them. It is recommended that you read the corresponding chapters before doing the problems. Recommended problems are not for grading, but for practicing purposes.

HW1 (due on Wednesday, September 9):
Chapter 1, problems $3,13,23,33,43,53$.
Recommended problems: 7, 17, 27, 37, 47, 57.
HW2 (due on Wednesday, September 16):
Chapter 2, problems 2, 6, 12, 20 (a) and (d), 27, 29.
Recommended problems: 7, 13, 26, 30, 36.
HW3 (due on Wednesday, September 23):
Chapter 3, problems 2, 13, 15, 36, 43, 54.
Recommended problems: 4, 14, 18, 39, 44, 59.
HW4 (due on Wednesday, September 30):
Chapter 5, problems 4, 9, 14, 26, 29, 35.
Recommended problems: 8, 16, 19, 34, 37.
HW5 (due on Wednesday, October 14):
Chapter 6, problems 2, 11, 17, 19, 31, 33.
Recommended problems: 4, 6, 15, 23, 28.
HW6 (due on Wednesday, October 21):
Chapter 9, problems 2, 8, 12, 20.
Recommended problems: 5, 10, 13, 22.
HW7 (due on Friday, October 30):
Chapter 9, problems 26, 29, 38, 47, 54, 56.
Recommended problems: 24, 31, 40, 49, 58, 60.
Chapter 10 recommended problems: $3,6,13,21,26,32,33,34$
Remark: in problems 33 and 34 in case of investment compounded annually for a term which is not a whole number round it down, since a fraction of a year would not generate any interest.

HW8 (due on Wednesday, November 11):
Chapter 10, problems 38, 40, 51, 53.
Recommended problems: $36,47,52,56$.
HW9 (due on Friday, November 20):
Chapter 13, problems $4,18,35,45$ and the following
Problem A. Find the sum of the first 25 Fibonacci numbers.
Problem B. Draw a picture explaining why the sum of the squares of the first six Fibonacci numbers is equal to the product of the sixth and the sevenths Fibonacci numbers: $F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+F_{4}^{2}+F_{5}^{2}+F_{6}^{2}=F_{6} F_{7}$.
Recommended problems: 3, 13, 15, 37, 44 and the following
Problem C. Find the sum of the squares of the first 25 Fibonacci numbers.
HW10 (due on Monday, November 30):
Chapter 16, problems 1, 6, 14, 39, 41, 44.
Recommended problems: 3, 7, 16, 40, 45.

MAT 118: Mathematical Thinking Fall 2015

General Information
Homework Assignments
Tests (reviews and solutions)

Solutions

Midterm 1 Review
Midterm 1 Solutions
Midterm 2 Review
Midterm 2
Midterm 2 Solutions
Final Review

1) MAT 118 Midterm 1 review.

Sections 1,2,3 and 5 .
4 problems +4 multiple choice questions.

1. The Math of elections

Three elements: candidates, setters, ballots.
Ballots can be single-choice, preference or truncated preference.
we use preference ballots organized in a preference schedule
Four methods: plurality, Borda Cant, plurality -with elimination, pairwise Comparison.
Example Using each of the methods find the outcane of the elections given a preference schedule:

Number of voters	3	5	1	4
$18 t$	A	C	D	B
rind	B	A	C	D
3 rod	D	B	A	C
4 th	C	D	B	A

2) a) plurality method (number of ist Jotes)

$$
A: 3, C: 5, D: 1, B: 4
$$

ist is C, and is B, 3 nd is A, 4 th is D
b) Bonda Count

Number of vators	3	5	1	4
$18 t(4)$	$A(12)$	$C(20)$	$D(4)$	$B(6)$
2 nd (3)	$B(9)$	$A(15)$	$C(3)$	$D(12)$
$32 d(2)$	$D(6)$	$B(10)$	$A(2)$	$C(8)$
4 th (1)	$C(3)$	$D(5)$	$B(1)$	$A(4)$

$$
\begin{aligned}
& A!12+15+2+4=33 \\
& B: 9+10+1+16=36 \\
& C: 20+3+3+8=34 \\
& D: 6+5+4+12=27
\end{aligned}
$$

Ist is B, 2nd is $C, 3$ d is A, 4th is D
c) pairwise comparison:

	Count	wemper
$\overline{A \vee B}$	$9: 4$	A
$A \vee C$	$3: 10$	C
$A \vee D$	$8: 5$	A
$B \vee C$	$7: 6$	B
$B \vee D$	$12: 1$	B
$C \vee D$	$5: 8$	D

$A: 2, B: 2, C: 1, D: 1$
A, B thare ist and ind, C, D thare 3 rd and 4th
3) d) plurality with elimination.
list round: $A \cdot 3, C 15, D 11, B 14$
D has fewest \Rightarrow gets climinated, has

Number of voters	3	5	1	4
st	A	C	C	B
and	B	A	A	C
3 nd	C	B	B	A

and rand: $A: 3, C: 6, B: 4$
A has fewest \Rightarrow gets eliminated A has 3 el plan

Number of voters	3	5	1	4
lIst	B	C	C	B
and	C	B	B	C

$$
B: 7, \quad C 16
$$

B wins:
list B, and $C, 3$ de d A, 4 th D
4) Weighted sating

Basic elements: players, weights, quota

$$
p_{1}, p_{2}, \ldots p_{N} \quad w_{1}, w_{2}, \ldots w_{N} \quad g
$$

Weighed voting system

$$
\left[q: w_{1}, w_{2}, \ldots w_{N}\right]
$$

Terms to remember: dictator, veto power $\therefore V=w_{1}+w_{2}+\ldots+w_{N}$ the total number of votes.
Two method of computing the power of very player: Bawzhaf power and shapley- Shubik pouter

1. Bawzhaf power:

Important terms:
winning coalition, critical player, critical counts $B_{1}, B_{2}, \ldots B_{N}$, total critical count $T=B_{1}+B_{2}+\ldots+B_{N}$, Bawzhaf power indices $\beta_{1}=\frac{B_{1}}{T}, \beta_{2}=\frac{B_{2}}{T}, \ldots \beta_{N}=\frac{B_{N}}{T}$.
5) Example $[9: 7,4,4,1]$

Winning coalitions	Weight
$\left\{P_{1}, P_{2}\right\}$	11
$\left\{P_{1}, P_{3}\right\}$	11
$\left\{P_{1}, P_{2}, P_{3}\right\}$	15
$\left\{P_{1}, P_{2}, P_{4}\right\}$	12
$\left\{P_{1}, P_{3}, P_{4}\right\}$	12
$\left\{P_{2}, P_{3}, P_{4}\right\}:$	$B_{3}=3, B_{4}=1$
$B_{1}=5, B_{2}=3$,	B_{1}
$T=12$	
$B_{1}=\frac{5}{12}, \quad B_{2}=\beta_{3}=\frac{3}{12}=\frac{1}{4}, \quad B_{4}=\frac{1}{12}$.	

2. Thapley-thubik power

Dimportant terms:
sequential coalition, pivotal player, pisotulcounts $S S_{i}$, Shapley - Shubik power indices $b_{i}=\frac{S S_{i}}{N!}$, factorial of $N=1 \times 2.3+\ldots \times N$. 1 total number of sequential coalitions.
6) Example $[9,7,4,4]$

$$
\begin{aligned}
& \left\langle P_{1}, \underline{P}_{2}, P_{3}\right\rangle,\left\langle P_{1}, P_{3}, P_{2}\right\rangle,\left\langle P_{2}, P_{1}, P_{3}\right\rangle \\
& \left\langle P_{2}, P_{3}, P_{1}\right\rangle,\left\langle P_{3}, \underline{P}_{1}, P_{2}\right\rangle,\left\langle P_{3}, P_{2}, \underline{P_{1}}\right\rangle \\
& S S_{1}=4, \quad S S_{2}=S S_{3}=1 \\
& b_{1}=\frac{4}{6}=\frac{2}{3}, \quad b_{2}=b_{3}=\frac{1}{6}
\end{aligned}
$$

Fair-division games
Basic elements: the assets S, the players, the value systans, a fair division method. important terms: fair share, fair division, continuous and discrete fair division Consiclered three foir-division methods: Lone-Chaser, scaled Bids and method of Markers.

1. Lone-choeser works best for continuous fair division games.
Example peter, pail and Mary are dividing a chocolate-cheese cake worth $\$ 36$. Mary is a chaser peter diviols first
7)

1) peter

2) Peter

3)

peter
paul
paul

Mary
mary

$$
\$ 18+\$ 12=130
$$

8) 2. The method of sealed kids (discrete.) John and Ann inherited an apartment and a house

3. The method of markers (cliscrete when there are many similar value items, or continuous). Four friend dividing 15

$$
\begin{aligned}
& \text { coins } \\
& \text { - Ar Cf Db Ar By Db B3C3D3 } \\
& \text { BI }
\end{aligned}
$$

Divide (5), (12) and (13) zandauly.
9) strect-routing problems

Model using graphs
Basic elements: vertices and edges. Important terms: degree of a vertex, adjacent vertices, connected graph, simple graph, path, circuit, bridges (see more on p.149)
Important " methods
Euler's path, Euler circuit, Fleury's algorithm
Excomple

2

1. The following table shows the preference schedule for an election with four candidates ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D). Use the pairwise comparison method to find the complete ranking of the candidates.

Number of voters	5	4	7	3	2
1st	C	A	D	D	B
2nd	B	B	B	C	C
3rd	A	D	A	B	D
4th	D	C	C	A	A

pair	Count	Winner
$A \vee B$	4117	B
$A \vee C$	$11: 10$	A
$A \vee D$	$9: 12$	D
$B \vee C$	$13: 8$	B
$B \vee D$	$11: 10$	B
$C \vee D$	$7: 14$	D

Answer: 1 it is B, and is $D, 3$ ad is A, 4 th is C
2. Find the Banzhaf power distribution of the weighted voting system [11:6,5,3,2]. You can leave the answer in the form of a simple fraction (like $\frac{2}{7}$).

Winning coalition	Weight
$\left\{P_{1}, P_{2}\right\}$	11
$\left\{\underline{P}_{1}, \underline{P}_{2}, P_{3}\right\}$	14
$\left\{\underline{P}_{1}, \underline{P}_{2}, P_{4}\right\}$	13
$\left\{P_{1}, \underline{P}_{3}, P_{4}\right\}$	11
$\left\{\underline{P}_{1}, P_{2}, P_{3}, P_{4}\right\}$	16

Critical counts

$$
B_{1}=5, \quad B_{2}=3, \quad B_{3}=1, B_{4}=1
$$

Total count: $T=5+3+1+1=10$.
Answer Bawzhaf power indices:

$$
\beta_{1}=\frac{5}{10}=0.5, \quad \beta_{2}=\frac{3}{10}=0.3, \beta_{3}=\beta_{4}=\frac{1}{10}=0,1
$$

4
3. John and Rita are getting a divorce. They decide to split the house using the method of sealed bids. John's bid on the house is 400,000 . Rita's bid is 600,000 . Describe the outcome.

	John	Rita
Bid	400	600
Fair share	200	300
To(fram)	(200)	300
Shave of surplus	50	50
Final settlement	gets 250,000	gets house pays 250,000

Answer John gets 250,000, Rita gets the house and pays 250,000.
4. A security guard is hired to patrol the streets of a neighborhood. A schematic picture of the neighborhood is shown below (lines represent streets). Is it possible to find a route for security guard covering each segment of the street exactly one time? The route can start and end at different points. If there is such a route then find it.

Two add vertices, graph is connected. By Euler's theorem, there exists an Euler's path.
We Can find the path using Fleury's algorithm. Should Hurt from an odd vertex.

Example of such path \rightarrow

5. In each of the following multiple choice questions circle the correct answer.

1) The majority fairness criterion says that:
a) a candidate that beats each of the other candidates in a pairwise comparison should always be the winner;
(b) a candidate with more than half of first place votes should always be the winner;
c) there is no such fairness criterion;
d) plurality method is the best method to determine a winner in an election.
2) A sequential coalition is:
a) the Shapley-Shubik power of the weighted voting system;
b) a coalition which has the total number of votes sufficient to pass a motion;
c) a coalition which has a veto power;
(d) an ordered list of the players of a weighted voting system.
3) Which of the following statements is FALSE:
a) in a fair-division game with N players a share is called fair for a player P if its value for P is at least $\frac{1}{N}$ th of the total value of assets;
(b) if the set of assets can be divided in infinitely many ways and in arbitrarily small parts the fair division game is called indifferent;
c) a fair-division method guarantees that each player gets his/her fair share;
d) the method of markers is a discrete fair-division method.
4) Which statement is FALSE about a simple clique with 10 vertices (each of the vertices is connected by exactly one edge to each other):
a) it has no bridges;
(b) it has an Euler path;
c) it is connected;
d) the degree of each vertex is 9 .
1. Mat 118 , Fall 2015, Midterm?

Recur
Section 5.4 Eulbrizing and
Semi-Eulerizing graphs
Def 1) Eulerization is the process of adding edges to a graph to make all vertices even.
2) Seni-Eulerization is the process of adding edges to a graph to make all vertices except tub wen.
If initially the graph 'lass.not have an Euler cycle (or path) that is it has odd vertices (more than two add vertices) to find an optimal circuit (o rpath) visiting all edges Eulerize (or semi-Eulerize) the graph first. Then use the Fleury's algorith ""don't born your bridges behind you").
Example Find an optimal a) path, b) circuit visiting every edge of the graph

2. Sdution there are 6 odd vertices.
a) Need to Seni-Eubriz
 first. Add cadges to make the number of add vertices equal to two (as shown).
Minimal number of extra vertices is 2 . On the
new graph find an Euler path using the Fleury's algorithm (start at an odd vertex)

b) Meed to Eulerize (make all vertices even), then find an Euler circuit. Minimal number of edges to add is 3 .
 start cuber circuit anywther
3. Section 6: Traveling Salesman Problem
Elements:

- A troubler
- a set of N sites
- A set of costs

Solution of a TSP is a -tour that starts and ends at a site and visits all the other sites ones. An optimal solution is a tour of minimal total cost.
Hamilton path is a path visiting all the vertices of the graph exactly ones.
Hamilton circuit is a circuit visiting all the vertices of the graph excoctly ones.
Complete graph K_{N} is a graph in which each two vertices are connected by an edge

Ks

properties of K_{N} :

- degree of every vertex is $N-1$
- number of edges is $\frac{N(N-1)}{2}$
- number of Hamilton paths is N !
- number of Hamilton circuits is $(N-1)$?

4 algorithms for boeing TSP

- Exact algorithm, Bunte-force (comparing values of all possible hamilton circuits) Approximate algorithms:
- Nearest-neighbor algorithm (NNA) (start from aningsertex, coach step go .to the "nearest "one)
- Repetitive nearest-neighber algorithm (RNNA) (use NNA starting from each vertex, chaos the cheapest route)
- Cheapest-link algorithm (CLA) (construct the path from cheapest links not violating the partial-circuit or three-cdge rule).
Example Use the Brute -force algorithin to find the shortest route visiting 4 cities (A, B, C, D) starting and ending at B.

$\frac{\text { Eduction }}{\text { calculate the length }}$ til calculate the lengths.

$$
\begin{aligned}
& 7 B, A, C, D, B: 8+7+8+4=27 \\
& T B, A, D, C, B: 8+5+8+10=31 \\
& =B, C, A, B, B: 10+7+5+4=26 \\
& B, C, D, B, B: 31 \\
& B, D, A, C, B: 26 \\
& B, D, C, A, B: 27
\end{aligned}
$$

5. Answer (B, C, A, D, B (or B, D, A, C, B), total. length 26.
Example given prices, of getting between cities A, B, C, D, E final à cheap route starting and ending at D and i siting all cities using! a) NNA starting at A
b) RNNA,
c) $C L A$

	A	B	C	D	E
A	2	20	35	10	60
B	20	$/$	25	30	50
C	35	25	2	20	45
D	10	30	20	D	50
E	60	50	45	50	

Solution a) From A the cheapest is getting to $D(10)$, from D to $C(20)$, from C to $B(25)$, from B we can go only to E
 (50) sire all other cities are Sisited, and then come back to A (60). A, D, C, B, E, A total vest 165 Rewrite starting at D : D answer
$6 . b)$
Hamilton circuit

$$
\begin{aligned}
& A \xrightarrow{10} D \xrightarrow{20} C \xrightarrow{25} B \xrightarrow{50} A \stackrel{60}{ } A: 165 \\
& B \xrightarrow{20} A \xrightarrow{10} D \xrightarrow{20} C \xrightarrow{45} E \xrightarrow{50} B: \quad 145 \\
& C \xrightarrow{20} D \xrightarrow{10} A \xrightarrow{20} B \xrightarrow{50}=\xrightarrow{45} C: 145 \\
& D \xrightarrow{10} A \xrightarrow{20} B \xrightarrow{25} C \xrightarrow{45} E \xrightarrow{50} D: \quad 150 \\
& E \xrightarrow{45} C \xrightarrow{20} D \xrightarrow{10} A \xrightarrow{20} B \xrightarrow{50} E: \quad 145
\end{aligned}
$$

B, A, D, C, E, B is the least expensive: 145 .
Rewrite starting at D :
censer: D, C, E, B, A, D. Total cost 145 .
C) The cheapest link is $A D$ (10). Next cheapest are $A B$ hal $C D$
 (both 20). Dick one, then another (as soon as three-colge and partial circuit mules are not violated). Next heapest is $B C(25)$, but we cant pick it sine this would velate a-partial circuit. In fact, there is only one way to complete the circuit: by adding edges EB and EC (50 and 45):
7. Writing this path starting at D gives D, A, B, E, C, D cor its reversal $D, C, E, B, A, D)$ of total cost 145 .
ansuter: D, C, E, B, A, D. Total cost 145
Relative error of a tour
If C is the total cost of a given tour and opt is the total cost of the optimed tour the relative error is $\varepsilon=\frac{C-o p t}{O p_{p} t}$
In the example above infect the optima t tour has cost $O_{p} t=145$. The RNNA and CLA give optimal tours (relative vorar is zero). But NNA starting at A gives at our which costs 16.5 and has a relative order

$$
\varepsilon=\frac{165-145}{145}=0.14=14 \%
$$

8.

Section 9 :population growth models

Sequences

$$
A_{1}, A_{2}, A_{3}, A_{4}, \ldots
$$

Cam be described by"

- explanation in words
- several terms $A_{1}, A_{2}, A_{3}, A_{4}, \ldots$
- recursive formula
- general formula
ascample
$A_{n}=\frac{1}{a}$ is the general formula describing the sequence of inverse positive integers. First several terms:

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots
$$

Recursive formula:

$$
A_{n+1}=\frac{1}{\frac{1}{A_{n}}+1}=\frac{A_{n}}{A_{n}+1}, \quad A_{1}=1
$$

Linear growth model means that in each generation the population changes by a constant amount d.

- $p_{0}, p_{0}+d, p_{0}+2 d, p_{0}+3 d, \ldots$
- Recursive formula: $P_{n+1}=P_{n}+d$
- General formula $P_{n}=P_{0}+n \cdot d$ d is called a common difference

9. The sequence p_{n} is called an arithmetic sequence.
Example The population of the town of smallville was 50,000 in 1990 and reached 110,000 in 2002. Assuming linear growth what was the population of smallville in 1995?
Solution Let P_{n} be the population in the ye o of $1990+h$ Then:
in $1990: h^{2} 0, P_{0}=50,000$

$$
\text { in } 2002 \mathrm{sn}=12, P_{12}=110,000
$$

Wont to find: in $1995: n=5, P_{5}=$?
We know: $P_{n}=P_{0}+n \cdot d$

$$
\begin{aligned}
& P_{12}=p_{0}+12 \cdot d \\
& 110,000=50,000+12 d \\
& 60,000=12 d \\
& 5,000=d
\end{aligned}
$$

Thus, $P_{5}=P_{0}+5 d=50,000+5.5,000=$

$$
75,000
$$

Answer 55,000
arithmetic sum formula:

$$
P_{0}+P_{1}+\ldots+P_{n-1}=\frac{P_{0}+P_{n-1}}{2} \cdot n
$$

10 Escomple Each resident of smallville pays fixed \$2000 tax per year for tours. renaration. How much tax the town collected form 1990 to 2002 inclusively?
Solution 1990: $2000 P_{0}$

$$
\begin{gathered}
1991: 2000 P_{1} \\
1: 2000 P_{12} \\
2002: 2
\end{gathered}
$$

In total: $2000 \cdot\left(P_{0}+P_{1}+P_{2}+\ldots+P_{12}\right)$. Jo us the arithmetic sum formula!

$$
\begin{aligned}
& P_{n-1}=P_{12}, r-1=12, n=13 \\
& P_{0}+P_{1}+\ldots+P_{12}=\frac{P_{0}+P_{12}}{2} \cdot 13= \\
& \frac{50,000+110,000}{2} \cdot 13=1,040,000
\end{aligned}
$$

Total tare: 2,000.1,040,000 $=$ $\$ 2,080 \mathrm{mln}$
answer \$2,080 min
11. Exponential irourth model means that. in each generation the population growth by the same constant factor R.

- $P_{0}, R_{0}, R^{2} P_{0}, R^{3} P_{0}$,
- Recursive formula: $P_{n}=R P_{n-1}$
- General formula: $P_{n}=R^{n} P_{0}$ R is called the common ration. The sequence is called a geometric sequence
Growth rate $r=\frac{Y-X}{x}$ end value
popoulation sequence is exponential if the growth rate is constant. Then

$$
r=R-1 \text { and } \quad P_{n}=(r+1)^{n} P_{0}
$$

Example An epidencic of new decease started in 1950. In February there were 50 infected individerals. In march the number of new infected was 75 . assuming exponential growth approximate the number of new infected in November of 1950.
Lalution Let P_{n} be the number of new infected n months after February 1950.
12. Then $P_{0}=50, P_{1}=75$. Expenential grawth means $P_{n}=R^{n} P_{0} . \quad n=1$!

$$
\begin{aligned}
& P_{1}=R P_{0}, \\
& 75=50 R, \quad R=\frac{75}{50}=1.5 .
\end{aligned}
$$

Thus, $P_{n}=(1.5)^{n} .50$.
In November, 9 months aftor Tebruary, the number of new infected is

$$
P_{9}=(1.5)^{9} \cdot 50 \approx 1922
$$

Ansubers 1922 new infoited
Geometric sum formula:

$$
\begin{aligned}
& \text { metric sum formula: } \\
& \left.P_{0}+P_{0} R+P_{0} R^{2} \ldots+P_{0} R^{n-1}=\frac{R^{n}-1}{k-1} P_{0}\right]
\end{aligned}
$$

In the prections excomple, what's the Catul number of infected' fron' Tanuary to Norember? Lolution $P_{0}=50, R=1.5, P_{0} R^{n-1}=(1.5)^{9} .50$ thus, $n-1=9, n=10$

$$
\begin{aligned}
& \text { lus), } n-1=9 \quad n=10 \\
& 50+50 \cdot 1.5+50 \cdot(1.5)^{2}+\ldots+50 \cdot(1.5)^{9}=\frac{1.5^{10}-1}{1.5-1} \cdot 502 \\
& 5,667
\end{aligned}
$$

Consuin 5,667
13. Lagistic growth model

Elewents' maximal carrying capocity C, p-Salue of the population $p_{n}=\frac{P_{v}}{C}$, giavth parameter R. For lagistic granth model in u-th generation the grouth rotio is propportional to R and the "elbow rodm" $1-p_{n}$.

- Recursise fornuela: $p_{n+}=R\left(1-p_{n}\right) \cdot p_{n}$ is called the logistic equation.
Escomple N 59 p. 289
$R=2.8, p_{0}=0.15$. Find $p_{1}, p_{2}, \ldots p_{1}$,
describe thenser. lescribe the behowion.
$\begin{aligned} \text { Solution } P & =R\left(1-p_{0}\right) p_{0}=2.8 \cdot(1-0.357) \cdot 0.35 z \approx 0.6427,\end{aligned}$

$$
\begin{aligned}
& p_{2}=R\left(i-p_{1}\right) p_{1}=2.8 \cdot 11 \\
& \text { ". Sulues sequence: } \\
& p-15429,0.6428, \\
& 0.15,0.357,0.6427,0.6428,0.6429,0 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { p-Sulues seg. } \\
& 0.15,0.357,0.6427,0.6429,0.6428, \\
& 0.6429,0.6428,0.6429,0.6428,0.6429,0.6428
\end{aligned}
$$

Sulitching between 0.6428 and 0.6429 . The two uimbers we sery clase. Likely, the pSulue stubilizes at some Sulue between 0.6428 and 0.6429.
ansuser 1 vubilizes at some number clase to 0.6429 .
14. Other types of behavior passible for Logistic model:

- two -cycle behavior (swithehing between two sulues starting from same generation)
- four - cycle behavior ($11-114$ values $11-11$)
- randan behavior (no pattern)

MAT 118 FALL 2015 MIDTERM II

NAME :
ID :
RECITATION : (M, W or Th)

THERE ARE 4 PROBLEMS, 16 POINTS EACH AND 4 MULTIPLE CHOICE QUESTION, 9 POINTS EACH SHOW YOUR WORK
DO NOT TEAR-OFF ANY PAGE
NO NOTES NO CELLS ETC.
ON YOUR DESK: ONLY test, pen, pencil, calculator, eraser and student ID

1		16 pts
2		16 pts
3		16 pts
4		16 pts
5		36 pts
Total		100 pts

1. Eulerize the following graph and find an optimal circuit covering each edge of the initial graph at least once.

2. Distances between 5 villages (A, B, C, D and E) are given in a table. Find an effective route visiting all the villages and coming back to the initial city using the Nearest Neighbor Algorithm starting at A. Find the total length of this route.

	A	B	C	D	E
A	x	7	5	3	4
B	7	x	6	6	5
C	5	6	x	2	4
D	3	6	2	x	3
E	4	5	4	3	x

3. Consider a population of rabbits in a forest that grows according to a linear growth model. If there were 400 rabbits in the beginning of 2000 and 500 rabbits in the beginning of 2004 how many rabbits were there in the beginning of 2015?
4. Suppose you purchase a 5 year U.S. savings bond with an APR of 5%. The face value of the bond is $\$ 6,000$. Find the purchase price of the bond.
5. In each of the following multiple choice questions circle the correct answer.
1) Semi-eulerization is:
a) the process of adding additional vertices to the graph so that all the edges except two are even;
b) finding the shortest route visiting at least half of all edges;
c) the process of adding additional edges to the graph so that all the vertices except two are even;
d) a method of solving the Traveler Salesman Problem.
2) Which of the following is FALSE about Hamilton paths and circuits:
a) any Hamilton circuit is a Hamilton path;
b) a complete graph with N vertices has N ! Hamilton paths;
c) disconnected graphs do not have Hamilton paths;
d) any Hamilton path is a Hamilton circuit.
3) Which of the following is TRUE about population growth models:
a) in the logistic growth model animal population may alternate cyclically between two different levels of population;
b) in the exponential growth model the population is always growing;
c) in the linear growth model the population is always decreasing;
d) in the logistic growth model the growth rate is constant (does not depend on the generation).
4) Among the following statements choose the one which describes simple interest most accurately:
a) the interest rate is applied both to the principal value P and to the previously accumulated interest;
b) it is always applied once per year;
c) this is the only type of interest used in savings accounts;
d) the interest rate is applied only to the principal value P.

N 1

Eulerizing means making all Sertices wen. There are two add Sertices. Sufficient to add one edge joining them. Then an Euler circuit on a new graph will be an optimal circuit for the initial one. Inch circuit can be found using Fleury's algorithms. start at any vertex.

N2. Fiom A go to the clasest, D Fom D to rext closest: C
Fiom C to nesct closest: E.
Fran E it remains to Sisit only B.
From B back to A

$$
A, D, C, E, B, A
$$

Sotal length $3+2+4+5+7=21$
Cuswer: A, D, C, E, B, A, length 21

N3 In 2000: $\quad P_{0}=400$
In 2004: $P_{4}=500$
Linear growth means

$$
P_{n}=P_{0}+n d
$$

When $n=4$:

$$
\begin{aligned}
P_{4} & =p_{0}+4 d \\
500 & =400+4 d \\
4 d & =100 \\
d & =\frac{100}{4}=25:
\end{aligned}
$$

Thus, $P_{n}=P_{0}+n \cdot d=400+n \cdot 25$
In $2015: n=15$

$$
P_{15}=400+25 \cdot 15=775
$$

Answer: 775

N4. Bonds use simple interest. If P is the purchase price, F is the face value, r is the interest rate and t is the term then $F=P(1+r \cdot t)$. The decimal value of 5% is $r=\frac{5}{100}=0.05$. Thus

$$
\begin{aligned}
& 6000=P \cdot(1+0.05 \cdot 5)=P \cdot 1.25 \\
& p=\frac{6000}{1.25}=4.800
\end{aligned}
$$

Answer: \$4.800
$N \begin{array}{ll}5 & 1) \\ 0\end{array}$
2) (a) 02 (d)
3) (a) 02
(d)
4) (d)

1 Fibonacci numbers and the Golden ratio
Basic facts

$$
\text { asic } 1,1,2,3,5,8,13,21,34, \ldots
$$

- $F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n-1} \leftarrow$ recursive formula
$\left.F_{n}=\left[\left(\frac{\sqrt{5}+1}{2}\right)^{n} / \sqrt{5}\right]\right] \leftrightarrow$ Binct's formula
- $\frac{F_{n+1}}{F_{n}}$ approaches the golden ratio $\varphi \frac{\sqrt{5}+1}{2}$ when n grows.
Excample Find F_{13} a) using the recursive formula; b) using Benet's formula.
Solution a) $1,1,2,3,5,8,13,21,34$

$$
\begin{array}{lll}
1 & \hat{1} \\
F_{1} & F_{2} & F_{3}
\end{array}
$$

$$
\hat{F}_{8} \hat{F}_{9}
$$

$$
\begin{aligned}
& F_{10}=F_{9}+F_{8}=21+34=55 \\
& F_{14}=F_{10}+F_{9}=55+34=89 \\
& F_{12}=F_{11}+F_{10}=89+55=144 \\
& F_{13}=F_{12}+F_{11}=144+89=233 .
\end{aligned}
$$

b)

$$
\begin{aligned}
& F_{13}=\left[\left[\left(\frac{\sqrt{5}+1}{2}\right)^{13} / \sqrt{5}\right]\right] \\
& \left(\frac{\sqrt{5}+1}{2}\right)^{13} / \sqrt{5}=232.9991402 \ldots \\
& \text { Round to the nearest inter }
\end{aligned}
$$

Round to the nearest integer: $F_{13}=233$
2. Sum of the first n Fibonacci numbers:

$$
F_{1}+F_{2}+\ldots+F_{n}=F_{n+2}-1
$$

sum of the squares of the first n Fibonacci numbers:

$$
F_{1}^{2}+F_{2}^{2}+\ldots+F_{n}^{2}=F_{n} \cdot F_{n+1}
$$

illustration:

$$
\begin{aligned}
& F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+F_{4}^{2}+F_{5}^{2}=F_{5} \cdot F_{6} \\
& 1^{2}+1^{2}+2^{2}+3^{2}+5^{2}=5 \cdot 8
\end{aligned}
$$

$$
\left.\begin{array}{|c|}
\hline 5 \\
\hline 3\left[\frac{11}{2}\right. \\
\hline
\end{array}\right\} 8
$$

Example a) Find the sum of the first 17 Fibonacci numbers; b) find the sum of the squares of the first 17 Fibanaci numbers.
3. Dolution a) $F_{1}+F_{2}+\ldots+F_{17}=F_{19}-1$

$$
F_{19}=\left[\left[\left(\frac{\sqrt{5} \pi}{2}\right)^{19} / \sqrt{5}\right]\right]=4181
$$

Thin, $F_{1}+F_{2}+\ldots+F_{17}=4180$
b)

$$
\begin{aligned}
& F_{1}^{2}+F_{2}^{2}+\ldots+F_{17}^{2}=F_{17} \cdot F_{18} \\
& F_{17}=\left[\left\lfloor\left(\frac{\sqrt{5}+1}{2}\right)^{17} / \sqrt{5}\right]\right]=1597 \\
& F_{18}=\left[\left\lfloor\left(\frac{\sqrt{5}+}{2}\right)^{18} / \sqrt{5}\right]\right]=2584 \\
& F_{1}^{2}+F_{2}^{2}+\ldots+F_{17}^{2}=1597.2584= \\
& 4126648
\end{aligned}
$$

$$
\frac{B}{S}=\frac{B+S}{B}, \quad \varphi=\frac{B}{S} \text { is }
$$

the Golden ratio. It ratisfies

$$
\varphi^{2}=\varphi+1
$$

Gololen atio value: $\varphi=\frac{\sqrt{5}+1}{2}$ appnoximate salue: $\varphi \approx 1.618$
4.

Example show that $\varphi^{4}=3 \varphi+2$.
solution $\varphi^{4}=\varphi \cdot \varphi \cdot \varphi \cdot \varphi=\varphi^{2} \cdot \varphi^{2}$

$$
\begin{aligned}
& \varphi^{4}=(\varphi+1)(\varphi+1)=\varphi^{2}+\varphi+\varphi+1 \\
& \varphi^{4}=\varphi^{2}+2 \varphi+1=(\varphi+1)+(2 \varphi+1) \\
& \varphi^{4}=3 \varphi+2
\end{aligned}
$$

Gnomons
If a figwn C. mitably attached to figure A produces a new figure similar to A then 6 called a gnomon to A.

Examples

Related to Golden ratio:
3) Fiangle with angles $36^{\circ}, 72^{\circ}, 72^{\circ}$
 Ratio of sides is $\frac{b}{a}=\varphi$
5.
4) Golden rectangle (ratio of sides is the golden ratio).

$$
\frac{B}{s}=\varphi
$$

Example Find the values of x and y do that 6 is a gnomon to the smaller triangle

Lo $\frac{3+y}{5}=\frac{x}{4}=\frac{5}{3}$. Thus,

$$
\begin{aligned}
& x=4 \cdot \frac{5}{3}=\frac{20}{3} \\
& 3+y=5 \cdot \frac{5}{3}=\frac{25}{3} \\
& y=\frac{25}{3}-3=\frac{25-9}{3}=\frac{16}{3} \\
& 20 \quad y=\frac{16}{3}
\end{aligned}
$$

answer $x=\frac{20}{3}, y=\frac{16}{3}$.
6. probability theory

Basic elements!

- Random experiment
- Sample space $=$ set of passible outcomes
- Events = subsets of the simple space

Example Soccer penalties.
Tour players shooting after match penalties Describe the sample pace and the event that a) no one scored; b) at least three players scored.

Solution G for goal. Moor missed. The in an outcome can be written as for symbols Goo M
Sample space $=\{G G 6 G, G G G M$ GK MG, GGMM,...

$$
\text { MMMM }\}=\text { all possible } 4 \text {-tuples of } G \text { and } M \text {. }
$$

Ie total $2 \cdot 2 \cdot 2 \cdot 2=2^{4}=16$ outcomes

$$
N=16
$$

cents

$$
\begin{aligned}
& \text { Gents } \\
& E_{1}=\text { vo one seared }=\{M M M M\} \quad k_{1}=1
\end{aligned}
$$

$E_{2}=a t$ least three goals $=$

$$
\begin{aligned}
& \{G 66 M, G 6 M 6, G M G 6, M G 66, G G G G\} \\
& k_{2}=5
\end{aligned}
$$

7. Equiprobable space are equal.
probabilities of all outcomes

$$
\operatorname{Pr}(E)=\frac{k}{N}
$$

Example Assume that in the precious example probability that each plays scores is 50%. What is the probability that a) wo one scores; b) at least three plougors ont of 4 score.
Solution a) $\operatorname{Pr}\left(E_{1}\right)=\frac{k_{1}}{N}=\frac{1}{16}$
b) $\operatorname{Pr}\left(E_{2}\right)=\frac{k_{2}}{N}=\frac{5}{16}$

Rules of probability:

- Complement of Eand F are complementary events then $\operatorname{Pr}(E)=1-\operatorname{Pr}(F)$
- Additivity of E and F are dijyoint events then $\operatorname{Pr}(E$ or $F)=\operatorname{Pr}(E)+\operatorname{Pr}(F)$
- Multiplication of E and F are independent events then $\operatorname{Pr}(E$ and $F)=\operatorname{Pr}(E) \cdot \operatorname{Pr}(F)$
Example on the precious example What is the probability that at least two players will miss?
Solution $F=$ at least two players willine 11 is the opposite to E_{2}

8. Fand E_{2} are complementary

$$
\begin{aligned}
& \operatorname{Pr}(F)=1-\operatorname{Pr}\left(E_{2}\right) \\
& \operatorname{Pr}(F)=1-\frac{5}{16}=\frac{11}{16}
\end{aligned}
$$

Example Assume that each of the players in fact has 70% chance to scare. What is the probability that, at least three of four willssore in this case?
Solution Scoring or missing for different players are independent vents. $\operatorname{Pr}(G)=0.7, \operatorname{Pr}(M)=0.3$

$$
\begin{aligned}
& E_{2}=\{666 M, 66 M 6,6 M 66, M 666, G 666\} \\
& \operatorname{Pr}\left(E_{2}\right)=\operatorname{Pr}(666 M)+\operatorname{Pr}(66 M 6)+\ldots+\operatorname{Pr}(6666)
\end{aligned}
$$

adolitiverty wee
By multiplication tile

$$
\begin{aligned}
& \text { Br y mitiplicatcon } \operatorname{Pr}(666 \mathrm{M})=\operatorname{Pr}(6) \cdot \operatorname{Pr}(6) \cdot \operatorname{Pr}(6) \cdot \operatorname{Pr}(M)= \\
& \quad 0.7 \cdot 0.7 \cdot 0.7 \cdot 0.3=0.1029
\end{aligned}
$$

Similarly, $\operatorname{Pr}(66 M 6)=\operatorname{Pr}(G M 66)=$

$$
\operatorname{Pr}(M G 66)=0.1029
$$

But $\operatorname{Pr}(G 666)=0.7 \cdot 0.7 \cdot 0.7 \cdot 07=0.2401$

$$
\begin{aligned}
& \operatorname{But} \operatorname{Pr}(6666) \\
& \operatorname{Pr}\left(E_{2}\right)=4 \cdot 0.1029+0.2401=0.6517
\end{aligned}
$$

9.

Combinations and permutations
permutation is an ordered selection of r objects from a set of r objects
combination is an unordered selection of r objects far a set of n objects.
Number of permutations:

$$
\begin{aligned}
& \text { Number of peccuntations: } \\
& { }_{n} P_{r}=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-r+1)=\frac{n!}{(n-r)!} \\
& { }_{n} C_{r}=\frac{{ }^{n} P_{r}}{r!}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Example a lottery ticket has a random 7 - digit number (which is allowed to start from 0). You win if all digitsare different (eg5817632020192587are withing, but 2910713 and 6722298 are not). What are the chances to win?
Solution Sample space $S=$ all. sevendigit numbers from 0000000 to 9999999

$$
N=10^{7}
$$

Event E - numbers with different digits. $E=$ permutations of 7 digits from a total of 10 .
10.

$$
\begin{aligned}
& k={ }_{10} P_{7}=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4=604800 \\
& \operatorname{Pr}(E)=\frac{k}{N}=\frac{604800}{10000000}=0.06048
\end{aligned}
$$

11. Installment loans

Amortization formula for monthly payment M on a loan with principle P, annual percentage rate r paid over T monthly installments

$$
M=P \cdot \frac{p(1+p)^{\top}}{(1+p)^{\top}-1}
$$

where $P=\frac{r}{12}$ is the monthly interest rate
Example Buying a house for $\$ 500,000$ final ling. for 27 years at 4% APR. Waw much will be paid in total?
Solution $r=4 \%=0.04$

$$
\begin{aligned}
& \frac{\text { nation }}{} \quad r=4 \%=0.04 \\
& P=500,000, \quad p=\frac{r}{12}=\frac{0.04}{12}=0.00333 \\
& T=2712=324 \\
& M=500000 \cdot \frac{0.00333 \cdot 1.00333^{324}}{1.00333^{324}-1}=2562.38
\end{aligned}
$$

Total payment

$$
T \cdot M=324.2562 .38 \approx 830211
$$

