
MAP-103: Proficiency Algebra (Summer-II
2018)
location: MoWeTh 6:00pm-8:15pm at Melville Library E-4310
office hour: Mo 4:30pm-5:30pm at Math Tower S-240A
email: jin-cheng.guu@stonybrook.edu
instructor: Jin-Cheng Guu

<- teaching  / general advice  / course information  / schedule and assignments / download links

General Advice

While quizzes may be tough, they are useful exercises that help make sure if we really learn/understand the subject. On
one hand, lets take it easy because there will be more quizzes and failing a single one affects little on your final grade.
On the other hand, however, please take it serious because wer need to build fluency and the foundation to move on.
Here, let me quote Thurston's word:

One feature of mathematics which requires special care in education is its height, that is, the extent to
which concepts build on previous concepts. Reasoning in mathematics can be very clear and certain,
and, once a principle is established, it can be relied on. This means it is possible to build conceptual
structures which are at once very tall, very reliable, and extremely powerful.

The structure is not like a tree, but more like a scaffolding, with many interconnected supports.
Once the scaffolding is solidly in place, it is not hard to build it higher, but it is impossible to build a
layer before previous layers are in place.

Course Information

While you can find the full course information in the course syllabus , here are some critical points:
No curving, no make-ups.
Calculators are not permitted during the quizzes, and the students are encouraged not to rely on calculators for
homework.
Homework will not be counted into your final grade. However, the quizzes will be counted, and whose content will
be very similar to the homework.
Quizzes will be given in each class (15 quizzes totally); each quiz has two parts. The first part (75%) will be similar
to the homework given last time, and the second part (25%) (open book) will be similar to the content of that class. 
Textbooks are not required. Please refer to the resources in the download links below. 
Distribution of Grades 
  10% Midterm (I) 

http://www.math.stonybrook.edu/~jcguu95/teaching/index.html
http://www.math.stonybrook.edu/~jcguu95/teaching.html


  10% Midterm (II) 
  10% Final 
  10% Participation 
  60% Quizzes 
Letter Grades 
  [00, 55): F 
  [55, 60): C-   [60,  65): C   [65, 70): C+ 
  [70, 75): B-   [75,  80): B   [80, 85): B+ 
  [85, 90): A-   [90, 100]: A 
Schedule of a lecture day 
  6:00 - 6:30pm:  Quiz     (Part I: review) 
  6:30 - 6:35pm:  Rest 
  6:35 - 7:05pm:  Lecture 
  7:05 - 7:10pm:  Rest 
  7:10 - 7:40pm:  Lecture 
  7:40 - 7:45pm:  Rest 
  7:45 - 8:15pm:  Quiz     (Part II: openbook) 

Schedule and Assignments

The following is a tentative schedule for the course. 

Week Date Topic(s) Covered Reading Homework

1

7/9
Mo

Numbers, Operations, Numerical Expressions
Variables, and Algebraic Expressions

Lecture 1,
2, 3 HW 1, 2, 3

7/11
We Addition, Multiplication, Subtraction, and Division Lecture 4,

5
HW 5: 9 - 14,

Review quiz 2-2

7/12
Th

Distributivity 
Powers

Lecture 6,
7 Review quiz 3-2

2

7/16
Mo

Powers Rules 
Polynomials

Lecture 8,
9 Review quiz 4-2

7/18
We

Operations with Polynomials 
Rational Expressions

Lecture
10, 11 Review quiz 5-2

7/19
Th

Operations with Rational Expressions 
Composing Algebraic Expressions

Lecture
12, 13 Prepare for midterm I

3

7/23
Mo Midterm I (Lecture 1 - 13) Review quiz 6-2

7/25
We

Equalities, Identities, and Equations 
Linear Equations and applications

Lecture
14, 15, 16 Review quiz 7-2

7/26
Th

Linear Inqualities 
Absolute Value

Lecture
17, 18 Review quiz 8-2



4

7/30
Mo Lines on a Plane Lecture

19, 20 Review quiz 9-2

8/1
We Linear Systems Lecture

21, 22, 23 Review quiz 10-2

8/2
Th Radicals (as Powers with Rational Exponents) Lecture

24, 25 Prepare for midterm II

5

8/6
Mo Midterm II (Lecture 14 - 25) Review quiz 11-2

8/8
We

Quadratic Equations, 
Equations Reducible to Quadratics

Lecture
26, 27,
28, 29

Review quiz 12-2

8/9
Th Parabolas Lecture

30 Review quiz 13-2

6

8/13
Mo Quadratic Inequalities Lecture

31 Prepare for the final

8/15
We Final (Lecture 26 - 31)

Download Links

Quiz and solutions 
Reading and Lecture Note  
Resources from an older course: 
Videos  / Homework  / Solutions  

http://www.math.stonybrook.edu/Videos/courses/?open=MAP103


MAP-103: Proficiency Algebra

Instructor: Jin-Cheng Guu (not a Professor)

Summer-II, Jul.09 - Aug.18, 2018

Office Hours: Check Online Classroom: Melville Library E4310
Office: Math Tower - S240A Course Web: Instructor’s Webpage
E-mail: jin-cheng.guu@stonybrook.edu Class Hours: Mo/We/Th 6:00-8:15pm

Course Description

The goal of the course is to build an algebraic foundation for pre-calculus/calculus
study. We will discuss basic number operations, exponents, polynomials, radicals,
and rational expressions. We will learn how to solve linear and quadratic equations,
draw graphs of linear and quadratic functions, solve linear systems in two variables,
solve linear and quadratic inequalities.

Note: This course is not for credit and does not count towards one’s cumulative GPA, but the grade does
appear on one’s transcript, counts towards the semester GPA, and counts towards credit enrollment. It
is necessary to pass this course with a grade of C or better to move onto MAT 118, 122, 123 or AMS 101
(you may also enter AMS 101 with a 2+ on the placement exam, but admittance into other courses mentioned
requires a 3 or a passing grade in MAP 103). This course does NOT satisfy the DEC C requirement but
does satisfy the S1 skills requirement.

Required Materials
• No textbooks are required.

• A pencil, an eraser, and some neat paper.

• Course lecture notes are available on the course webpage.

Prerequisites
• Level 2 on the mathematics placement examination or MAP-101.

• Skills of keeping your written work clean, neat, and organized.

Course Structure
Among the 18 days of class, there will be two midterms and a final. Also, quizzes will be given on every
other lecture day, and each quiz has two parts. The first part will be similar to the homework given
last time, and the second part (open book) will be similar to the content of that class. The following
is the schedule of a lecture day.

1

http://www.math.stonybrook.edu/phd-students-year
https://www.math.stonybrook.edu/~jcguu95/index.html
http://www.math.stonybrook.edu/~jcguu95/teaching/summerII2018-map103/syllabus/jin-cheng.guu@stonybrook.edu


MAP-103 Proficiency Algebra (Summer-II 2018)

• 6:00-6:30pm: Quiz (Part I: review)

• 6:30-6:35pm: Rest

• 6:35-7:05pm: Lecture

• 7:05-7:10pm: Rest

• 7:10-7:40pm: Lecture

• 7:40-7:45pm: Rest

• 7:45-8:15pm: Quiz (Part II: openbook)

Schedule and weekly learning goals
Check the course webpage.

Course Policies

No calculators
Calculators will not be permitted during the quizzes, and the students are encouraged not to rely on
calculators for homework / in class.

Grading Policy
• 10% Midterm (I)

• 10% Midterm (II)

• 10% Final

• 10% Class Performance

• 60% Quizzes (equally distributed to the 15 quizzes)

• Letter grade: [0,55) - F;

[55,60) - C-, [60,65) - C, [65,70) - C+;

[70,75) - B-, [75,80) - B, [80,85) - B+;

[85,90) - A-, [90,100] - A.

• No curving, no make-ups.

Math Learning Center (MLC)
The Math Learning Center is a place where you can get free tutoring help with any of your math concerns.
No appointment is required, just come in and ask for help. The MLC is located in the basement of the
Math Tower. Check the website: www.math.sunysb.edu/MLC/index.html.

Homework Assignments
Homework will be assigned each day, and the solutions are provided online. Notice that the homework
will not be counted in your final grade, but it will be very similar to the quizzes. Please come to
the office hour for help.

Attendance Policy
The instructor will never judge a student by her/his/their attendance. So please feel free to walk out
the classroom for a slight rest if it helps. Your classmates have their right to learn, so please do
not bother them.
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MAP-103 Proficiency Algebra (Summer-II 2018)

Academic integrity statement
Each student must pursue his or her academic goals honestly and be personally accountable for all submitted
work. Representing another person’s work as your own is always wrong. Faculty are required to report
any suspected instance of academic dishonesty to the Academic Judiciary. For more comprehensive information
on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary
website at www.stonybrook.edu/uaa/academicjudiciary

Disability support services (DSS) statement
If you have a physical, psychological, medical, or learning disability that may impact your course work,
please contact Disability Support Services (631) 6326748 or http://studentaffairs.stonybrook.edu/dss/.
They will de- termine with you what accommodations are necessary and appropriate. All information and
documentation is confidential. Students who require assistance during emergency evacuation are encouraged
to discuss their needs with their professors and Disability Support Services. For procedures and information
go to the following website: www.stonybrook.edu/ehs/fire/disabilities/asp.

Critical incident management
Stony Brook University expects students to respect the rights, privileges, and property of other people.
Faculty are required to report to the Office of Judicial Affairs any disruptive behavior that interrupts
their ability to teach, compromises the safety of the learning environment, and/or inhibits students’
ability to learn.
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Index of /~jcguu95/teaching/summerII2018-
map103/quiz

Name Last modified Size Description

Parent Directory  -  
map-103-quiz-1-solution.pdf 2018-07-11 14:43 66K  
map-103-quiz-1.pdf 2018-07-10 07:56 66K  
map-103-quiz-2-1-solution.pdf 2018-07-11 20:50 66K  
map-103-quiz-2-1.pdf 2018-07-11 20:50 65K  
map-103-quiz-2-2-solution.pdf 2018-07-11 20:50 65K  
map-103-quiz-2-2.pdf 2018-07-11 20:50 65K  
map-103-quiz-3-1-solution.pdf 2018-07-13 13:10 65K  
map-103-quiz-3-1.pdf 2018-07-13 13:10 65K  
map-103-quiz-3-2-solution.pdf 2018-07-13 13:10 65K  
map-103-quiz-3-2.pdf 2018-07-13 13:10 65K  
map-103-quiz-4-1-solution.pdf 2018-07-16 20:34 65K  
map-103-quiz-4-1.pdf 2018-07-16 20:34 65K  
map-103-quiz-4-2-solution.pdf 2018-07-16 20:35 65K  
map-103-quiz-4-2.pdf 2018-07-16 20:34 64K  
map-103-quiz-5-1-solution.pdf 2018-07-18 20:08 65K  
map-103-quiz-5-1.pdf 2018-07-18 20:08 64K  
map-103-quiz-5-2-solution.pdf 2018-07-18 20:08 67K  
map-103-quiz-5-2.pdf 2018-07-18 20:08 66K  
map-103-quiz-6-1-solution.pdf 2018-07-22 10:23 67K  
map-103-quiz-6-1.pdf 2018-07-22 10:23 66K  
map-103-quiz-6-2-solution.pdf 2018-07-22 10:23 68K  
map-103-quiz-6-2.pdf 2018-07-22 10:23 68K  
map-103-quiz-7-1-solution.pdf 2018-07-25 21:39 64K  
map-103-quiz-7-1.pdf 2018-07-25 21:39 64K  
map-103-quiz-7-2-solution.pdf 2018-07-25 21:39 64K  
map-103-quiz-7-2.pdf 2018-07-25 21:39 64K  

http://www.math.stonybrook.edu/~jcguu95/teaching/summerII2018-map103/


map-103-quiz-8-1-solution.pdf 2018-07-26 20:22 64K  
map-103-quiz-8-1.pdf 2018-07-26 20:22 64K  
map-103-quiz-8-2-solution.pdf 2018-07-26 20:23 71K  
map-103-quiz-8-2.pdf 2018-07-26 20:22 71K  
map-103-quiz-9-1-solution.pdf 2018-07-30 19:46 72K  
map-103-quiz-9-1.pdf 2018-07-30 19:46 71K  
map-103-quiz-9-2-solution.pdf 2018-08-01 16:03 63K  
map-103-quiz-9-2.pdf 2018-07-30 19:46 63K  
map-103-quiz-10-1-solution.pdf 2018-08-02 08:48 63K  
map-103-quiz-10-1.pdf 2018-08-02 08:48 63K  
map-103-quiz-10-2-solution.pdf 2018-08-02 16:05 63K  
map-103-quiz-10-2.pdf 2018-08-02 08:48 63K  
map-103-quiz-11-1-solution.pdf 2018-08-04 09:29 63K  
map-103-quiz-11-1.pdf 2018-08-04 09:29 62K  
map-103-quiz-11-2-solution.pdf 2018-08-04 09:28 64K  
map-103-quiz-11-2.pdf 2018-08-04 09:29 64K  
map-103-quiz-12-solution.pdf 2018-08-08 21:08 64K  
map-103-quiz-12.pdf 2018-08-08 21:08 63K  
map-103-quiz-13-1-solution.pdf 2018-08-10 22:14 64K  
map-103-quiz-13-1.pdf 2018-08-10 22:14 63K  
map-103-quiz-13-2-solution.pdf 2018-08-10 22:14 64K  
map-103-quiz-13-2.pdf 2018-08-10 22:14 63K  
map-103-quiz-14-1-solution.pdf 2018-08-14 09:19 64K  
map-103-quiz-14-1.pdf 2018-08-14 09:19 57K  
map-103-quiz-14-2-solution.pdf 2018-08-14 09:19 73K  
map-103-quiz-14-2.pdf 2018-08-14 09:19 69K  
map-103-quiz-final-solution.pdf 2018-08-16 21:13 73K  
map-103-quiz-final.pdf 2018-08-16 21:13 71K  
map-103-quiz-midterm-I-solution.pdf 2018-08-08 21:09 68K  
map-103-quiz-midterm-I.pdf 2018-08-08 21:09 68K  
map-103-quiz-midterm-II-solution.pdf 2018-08-08 21:09 73K  
map-103-quiz-midterm-II.pdf 2018-08-08 21:08 72K  



Index of /~jcguu95/teaching/summerII2018-
map103/old-resource/reading

Name Last modified Size Description

Parent Directory  -  
Lecture-01.pdf 2018-07-10 07:56 153K  
Lecture-02.pdf 2018-07-10 07:56 30K  
Lecture-03.pdf 2018-07-10 07:56 47K  
Lecture-04.pdf 2018-07-10 07:56 42K  
Lecture-05.pdf 2018-07-10 07:56 43K  
Lecture-06.pdf 2018-07-10 07:56 53K  
Lecture-07.pdf 2018-07-10 07:56 48K  
Lecture-08.pdf 2018-07-10 07:56 57K  
Lecture-09.pdf 2018-07-10 07:56 54K  
Lecture-10.pdf 2018-07-10 07:56 61K  
Lecture-11.pdf 2018-07-10 07:56 51K  
Lecture-12.pdf 2018-07-10 07:56 47K  
Lecture-13.pdf 2018-07-10 07:56 54K  
Lecture-14.pdf 2018-07-10 07:56 40K  
Lecture-15.pdf 2018-07-10 07:56 56K  
Lecture-16.pdf 2018-07-10 07:56 97K  
Lecture-17.pdf 2018-07-10 07:56 62K  
Lecture-18.pdf 2018-07-10 07:56 42K  
Lecture-19.pdf 2018-07-10 07:56 69K  
Lecture-20.pdf 2018-07-10 07:56 75K  
Lecture-21.pdf 2018-07-10 07:56 44K  
Lecture-22.pdf 2018-07-10 07:56 47K  
Lecture-23.pdf 2018-07-10 07:56 137K  
Lecture-24.pdf 2018-07-10 07:56 66K  
Lecture-25.pdf 2018-07-10 07:56 59K  
Lecture-26.pdf 2018-07-10 07:56 49K  



Lecture-27.pdf 2018-07-10 07:56 70K  
Lecture-28.pdf 2018-07-10 07:56 64K  
Lecture-29.pdf 2018-07-10 07:56 52K  
Lecture-30.pdf 2018-07-10 07:56 95K  
Lecture-31.pdf 2018-07-10 07:56 64K  



Index of /~jcguu95/teaching/summerII2018-
map103/old-resource/homework

Name Last modified Size Description

Parent Directory  -  
HW-01.pdf 2018-07-10 07:56 87K  
HW-02.pdf 2018-07-10 07:56 97K  
HW-03.pdf 2018-07-10 07:56 71K  
HW-04.pdf 2018-07-10 07:56 86K  
HW-05.pdf 2018-07-10 07:56 100K  
HW-06.pdf 2018-07-10 07:56 132K  
HW-07.pdf 2018-07-10 07:56 78K  
HW-08.pdf 2018-07-10 07:56 81K  
HW-09.pdf 2018-07-10 07:56 95K  
HW-10.pdf 2018-07-10 07:56 125K  
HW-11.pdf 2018-07-10 07:56 74K  
HW-12.pdf 2018-07-10 07:56 106K  
HW-13.pdf 2018-07-10 07:56 199K  
HW-14.pdf 2018-07-10 07:56 98K  
HW-15.pdf 2018-07-10 07:56 157K  
HW-16.pdf 2018-07-10 07:56 159K  
HW-17.pdf 2018-07-10 07:56 222K  
HW-18.pdf 2018-07-10 07:56 247K  
HW-20.pdf 2018-07-10 07:56 140K  
HW-21.pdf 2018-07-10 07:56 129K  
HW-22.pdf 2018-07-10 07:56 151K  
HW-23.pdf 2018-07-10 07:56 91K  
HW-24.pdf 2018-07-10 07:56 112K  
HW-25.pdf 2018-07-10 07:56 71K  
HW-26.pdf 2018-07-10 07:56 72K  
HW-27.pdf 2018-07-10 07:56 74K  



solution/ 2019-03-24 22:48 -  



Index of /~jcguu95/teaching/summerII2018-
map103/old-resource/homework/solution

Name Last modified Size Description

Parent Directory  -  
hw-sol-01.pdf 2018-07-10 07:56 44K  
hw-sol-02.pdf 2018-07-10 07:56 73K  
hw-sol-03.pdf 2018-07-10 07:56 42K  
hw-sol-04.pdf 2018-07-10 07:56 72K  
hw-sol-05.pdf 2018-07-10 07:56 43K  
hw-sol-06.pdf 2018-07-10 07:56 45K  
hw-sol-07.pdf 2018-07-10 07:56 44K  
hw-sol-08.pdf 2018-07-10 07:56 44K  
hw-sol-09.pdf 2018-07-10 07:56 43K  
hw-sol-10.pdf 2018-07-10 07:56 121K  
hw-sol-11.pdf 2018-07-10 07:56 41K  
hw-sol-12.pdf 2018-07-10 07:56 45K  
hw-sol-13.pdf 2018-07-10 07:56 43K  
hw-sol-14.pdf 2018-07-10 07:56 42K  
hw-sol-15.pdf 2018-07-10 07:56 73K  
hw-sol-16.pdf 2018-07-10 07:56 47K  
hw-sol-17.pdf 2018-07-10 07:56 89K  
hw-sol-18.pdf 2018-07-10 07:56 86K  
hw-sol-20.pdf 2018-07-10 07:56 74K  
hw-sol-21.pdf 2018-07-10 07:56 76K  
hw-sol-22.pdf 2018-07-10 07:56 75K  
hw-sol-23.pdf 2018-07-10 07:56 73K  
hw-sol-24.pdf 2018-07-10 07:56 75K  
hw-sol-25.pdf 2018-07-10 07:56 42K  
hw-sol-26.pdf 2018-07-10 07:56 44K  
hw-sol-27.pdf 2018-07-10 07:56 43K  



Index of /~jcguu95/teaching/summerII2018-
map103/quiz

Name Last modified Size Description

Parent Directory  -  
map-103-quiz-midterm-II.pdf 2018-08-08 21:08 72K  
map-103-quiz-midterm-II-solution.pdf 2018-08-08 21:09 73K  
map-103-quiz-midterm-I.pdf 2018-08-08 21:09 68K  
map-103-quiz-midterm-I-solution.pdf 2018-08-08 21:09 68K  
map-103-quiz-final.pdf 2018-08-16 21:13 71K  
map-103-quiz-final-solution.pdf 2018-08-16 21:13 73K  
map-103-quiz-14-2.pdf 2018-08-14 09:19 69K  
map-103-quiz-14-2-solution.pdf 2018-08-14 09:19 73K  
map-103-quiz-14-1.pdf 2018-08-14 09:19 57K  
map-103-quiz-14-1-solution.pdf 2018-08-14 09:19 64K  
map-103-quiz-13-2.pdf 2018-08-10 22:14 63K  
map-103-quiz-13-2-solution.pdf 2018-08-10 22:14 64K  
map-103-quiz-13-1.pdf 2018-08-10 22:14 63K  
map-103-quiz-13-1-solution.pdf 2018-08-10 22:14 64K  
map-103-quiz-12.pdf 2018-08-08 21:08 63K  
map-103-quiz-12-solution.pdf 2018-08-08 21:08 64K  
map-103-quiz-11-2.pdf 2018-08-04 09:29 64K  
map-103-quiz-11-2-solution.pdf 2018-08-04 09:28 64K  
map-103-quiz-11-1.pdf 2018-08-04 09:29 62K  
map-103-quiz-11-1-solution.pdf 2018-08-04 09:29 63K  
map-103-quiz-10-2.pdf 2018-08-02 08:48 63K  
map-103-quiz-10-2-solution.pdf 2018-08-02 16:05 63K  
map-103-quiz-10-1.pdf 2018-08-02 08:48 63K  
map-103-quiz-10-1-solution.pdf 2018-08-02 08:48 63K  
map-103-quiz-9-2.pdf 2018-07-30 19:46 63K  
map-103-quiz-9-2-solution.pdf 2018-08-01 16:03 63K  

http://www.math.stonybrook.edu/~jcguu95/teaching/summerII2018-map103/quiz/?C=N;O=A
http://www.math.stonybrook.edu/~jcguu95/teaching/summerII2018-map103/


map-103-quiz-9-1.pdf 2018-07-30 19:46 71K  
map-103-quiz-9-1-solution.pdf 2018-07-30 19:46 72K  
map-103-quiz-8-2.pdf 2018-07-26 20:22 71K  
map-103-quiz-8-2-solution.pdf 2018-07-26 20:23 71K  
map-103-quiz-8-1.pdf 2018-07-26 20:22 64K  
map-103-quiz-8-1-solution.pdf 2018-07-26 20:22 64K  
map-103-quiz-7-2.pdf 2018-07-25 21:39 64K  
map-103-quiz-7-2-solution.pdf 2018-07-25 21:39 64K  
map-103-quiz-7-1.pdf 2018-07-25 21:39 64K  
map-103-quiz-7-1-solution.pdf 2018-07-25 21:39 64K  
map-103-quiz-6-2.pdf 2018-07-22 10:23 68K  
map-103-quiz-6-2-solution.pdf 2018-07-22 10:23 68K  
map-103-quiz-6-1.pdf 2018-07-22 10:23 66K  
map-103-quiz-6-1-solution.pdf 2018-07-22 10:23 67K  
map-103-quiz-5-2.pdf 2018-07-18 20:08 66K  
map-103-quiz-5-2-solution.pdf 2018-07-18 20:08 67K  
map-103-quiz-5-1.pdf 2018-07-18 20:08 64K  
map-103-quiz-5-1-solution.pdf 2018-07-18 20:08 65K  
map-103-quiz-4-2.pdf 2018-07-16 20:34 64K  
map-103-quiz-4-2-solution.pdf 2018-07-16 20:35 65K  
map-103-quiz-4-1.pdf 2018-07-16 20:34 65K  
map-103-quiz-4-1-solution.pdf 2018-07-16 20:34 65K  
map-103-quiz-3-2.pdf 2018-07-13 13:10 65K  
map-103-quiz-3-2-solution.pdf 2018-07-13 13:10 65K  
map-103-quiz-3-1.pdf 2018-07-13 13:10 65K  
map-103-quiz-3-1-solution.pdf 2018-07-13 13:10 65K  
map-103-quiz-2-2.pdf 2018-07-11 20:50 65K  
map-103-quiz-2-2-solution.pdf 2018-07-11 20:50 65K  
map-103-quiz-2-1.pdf 2018-07-11 20:50 65K  
map-103-quiz-2-1-solution.pdf 2018-07-11 20:50 66K  
map-103-quiz-1.pdf 2018-07-10 07:56 66K  
map-103-quiz-1-solution.pdf 2018-07-11 14:43 66K  



Index of /~jcguu95/teaching/summerII2018-
map103/quiz

Name Last modified Size Description

Parent Directory  -  
map-103-quiz-1.pdf 2018-07-10 07:56 66K  
map-103-quiz-1-solution.pdf 2018-07-11 14:43 66K  
map-103-quiz-2-1-solution.pdf 2018-07-11 20:50 66K  
map-103-quiz-2-1.pdf 2018-07-11 20:50 65K  
map-103-quiz-2-2-solution.pdf 2018-07-11 20:50 65K  
map-103-quiz-2-2.pdf 2018-07-11 20:50 65K  
map-103-quiz-3-1.pdf 2018-07-13 13:10 65K  
map-103-quiz-3-1-solution.pdf 2018-07-13 13:10 65K  
map-103-quiz-3-2.pdf 2018-07-13 13:10 65K  
map-103-quiz-3-2-solution.pdf 2018-07-13 13:10 65K  
map-103-quiz-4-1.pdf 2018-07-16 20:34 65K  
map-103-quiz-4-1-solution.pdf 2018-07-16 20:34 65K  
map-103-quiz-4-2.pdf 2018-07-16 20:34 64K  
map-103-quiz-4-2-solution.pdf 2018-07-16 20:35 65K  
map-103-quiz-5-1-solution.pdf 2018-07-18 20:08 65K  
map-103-quiz-5-1.pdf 2018-07-18 20:08 64K  
map-103-quiz-5-2.pdf 2018-07-18 20:08 66K  
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Solution to Quiz 1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/09 7:45-8:45pm*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Select the answer that best completes the given statement.The are {...,−3,−2,−1, 0, 1, 2, 3, ...}:2. integers
Select the answer that best completes the given statement.The number √5 is a(n)3. irrational number
Select the answer that best completes the given statement.The number 57 is a(n)2. rational number
List the elements in the set {x|x is a natural number less than 2}.(Ignore this question.)
Subtract 11− 13 = −2
Subtract (simplify your answer) 76 −

(
−13

) = 96 = 32
Simplify the expression.

−14 (
−27

)
− 14 = −10

Simplify the expression. 4− [ (7− 6) + (9− 19) ] = 13
Simplify the expression. 4{−5 + 3 [3− 5 (−3 + 1)]} = 4× 34 = 136
Evaluate the expression when x = 5 and y = −6.5x − 3y = 5× 5− 3× (−6) = 25 + 18 = 43

1



Quiz 1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/09 7:45-8:45pm*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Select the answer that best completes the given statement.The are {...,−3,−2,−1, 0, 1, 2, 3, ...}:1. rational numbers2. integers3. natural numbers4. irrational numbers
Select the answer that best completes the given statement.The number √5 is a(n)1. natural number2. rational number3. irrational number4. whole number
Select the answer that best completes the given statement.The number 57 is a(n)1. natural number2. rational number3. irrational number4. whole number
List the elements in the set {x|x is a natural number less than 2}.(Use a comma to separate answers as needed.)

{ }

Subtract 11− 13 =
Subtract (simplify your answer) 76 −

(
−13

) =
Simplify the expression.

−14 (
−27

)
− 14 =

Simplify the expression. 4− [ (7− 6) + (9− 19) ] =
Simplify the expression. 4{−5 + 3 [3− 5 (−3 + 1)]} =
Evaluate the expression when x = 5 and y = −6.5x − 3y =

1



Solution to Quiz 2-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/11 6:00-6:30pm*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Select the answer that best completes the given statement.The number √4 is a(n)2. rational number
Select the answer that best completes the given statement.The number 47 is a(n)2. rational number
Product (−4)(−1)(−8) = (−1)(−1)(−1) · 4 · 8 = −32
Divide

−10
−5 = (−1) · 10(−1) · 5 = 105 = 2

Subtract (simplify your answer)

−45 −
(
− 715

) = −45 + (−1) ((−1) 715
) = −1215 + ( 715

) = −515 = −13
Subtract (simplify your answer)76 −

(
−13

) = 76 + (−1) ((−1)13
) = 76 + (13

) = 76 + (26
) = 96 = 32

Simplify the expression.

−14 (
−27

)
− 14 = (−1)(−1)14 · 27 − 14 = 2 · 2− 14 = −10

Simplify the expression.4{−5 + 3 [3− 5 (−3 + 1)]} = 4{−5 + 3 [3 + (−1) · 5 · (−2)]} = 4{−5 + 3 [3 + 10]} = 4(−5 + 3 · 13) = 4 · (−34) = −136
Simplify the expression.

12 · 4− 75 + 13 · 9 = 2− 75 + 3 = −58
Evaluate the expression when x = 25 and y = −6.

√
x

y − y
x = √25

−6 − (−1) · 625 = 5
−6 + 625 = 5 · 25

−6 · 25 + 6 · 625 · 6 = −125150 + 36150 = −89150

1



Quiz 2-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/11 6:00-6:30pm*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Select the answer that best completes the given statement.The number √4 is a(n)1. negative number2. rational number3. irrational number
Select the answer that best completes the given statement.The number 47 is a(n)1. natural number2. rational number3. irrational number4. whole number
Product (−4)(−1)(−8) =
Divide

−10
−5 =

Subtract (simplify your answer)

−45 −
(
− 715

) =
Subtract (simplify your answer) 76 −

(
−13

) =
Simplify the expression.

−14 (
−27

)
− 14 =

Simplify the expression. 4{−5 + 3 [3− 5 (−3 + 1)]} =
Simplify the expression.

12 · 4− 75 + 13 · 9 =
Evaluate the expression when x = 25 and y = −6.

√
x

y − y
x =

1



Solution to Quiz 2-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/11 7:45-8:15pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Choose the fraction(s) equivalent to 1
5 (select all that apply).

b. 1
5

d. −1
−5

Choose the fraction(s) equivalent to 8
−(p+r) (select all that apply).

a. − 8
p+r c. −8

p+r

Choose the fraction(s) equivalent to −8r
−9s (select all that apply).

d. − 8r
−9s

Add

1 + 2 + 3 + · · ·+ 50 = (1 + 50) · 50
2 = 51 · 25 = 1275

Multiply
4 · 53 · 25 = 4 · 25 · 53 = 100 · 53 = 5300

Find the reciprocal of π

π−1 = 1
π

Give an example to establish why subtraction is not commutative.
1− 2 6= 2− 1

Give an example to establish why subtraction is not associative.
(1− 1)− 1 6= 1− (1− 1)

Give an example to establish why division is not commutative.
1÷ 2 6= 2÷ 1

Give an example to establish why division is not associative.
(1÷ 2)÷ 2 6= 1÷ (2÷ 2)

1



Quiz 2-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/11 7:45-8:15pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Choose the fraction(s) equivalent to 1
5 (select all that apply).

a. 1
−5 b. 1

5
c. −1

5 d. −1
−5

Choose the fraction(s) equivalent to 8
−(p+r) (select all that apply).

a. − 8
p+r b. 8

p+r
c. −8

p+r d. −8
−(p+r)

Choose the fraction(s) equivalent to −8r
−9s (select all that apply).

a. − 8r
9s b. −8r

9s
c. 8r

−9s d. − 8r
−9s

Add
1 + 2 + 3 + · · · + 50 =

Multiply
4 · 53 · 25 =

Find the reciprocal of π

Give an example to establish why subtraction is not commutative.

Give an example to establish why subtraction is not associative.

Give an example to establish why division is not commutative.

Give an example to establish why division is not associative.

1



Solution to Quiz 3-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/12 6:00-6:30pm*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Choose the fraction(s) equivalent to 8

p+r (select all that apply).

b. 8
p+r d. −8

−(p+r)
Choose the fraction(s) equivalent to −8r

−9s (select all that apply).
d. − 8r

−9s

Add 437 + 13999 + 33 + 1 = 14470
Evaluate 4 · 53 · 25 = 5300
Evaluate (−1)(−2)(−3)(−4)(−5) = −120
Evaluate

(−1)(−2) · −3
−4 · (−5) = −152

Evaluate

2 ÷ 1 · 32 · 4 = 163
Evaluate

−42 = −16
Find the value of the expression (

− 110
)3 = − 11000

Give an example to establish why division is not associative.[See the solution to quiz 2-2.]

1



Quiz 3-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/12 6:00-6:30pm*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Choose the fraction(s) equivalent to 8

p+r (select all that apply).

a. − 8
p+r b. 8

p+rc. −8
p+r d. −8

−(p+r)
Choose the fraction(s) equivalent to −8r

−9s (select all that apply).
a. − 8r9s b. −8r9sc. 8r

−9s d. − 8r
−9s

Add 437 + 13999 + 33 + 1 =
Evaluate 4 · 53 · 25 =
Evaluate (−1)(−2)(−3)(−4)(−5) =
Evaluate

(−1)(−2) · −3
−4 · (−5) =

Evaluate

2 ÷ 1 · 32 · 4 =
Evaluate

−42 =
Find the value of the expression (

− 110
)3 =

Give an example to establish why division is not associative.

1



Quiz 3-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/12 7:45-8:15pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Compute
25 × 9 = 25 × (10 − 1) = 250 − 25 = 225 17 × 19 = 17 × (20 − 1) = 17 × 20 − 17 = 340 − 17 = 323

Clear the parenthesis in the expression
−3(−x − y − z) = 3x + 3y + 3z −x(−5 + 2y) = 5x − 2xy

Expansion (clear the parenthesis)
(a+b) · (a+b) = a2 +ab+ba+b2 = a2 +2ab+b2 (a+b+ c) · (x +y) = ax +ay+bx +by+ cx + cy

Simplify the followings by combining similar terms
5(ab − 3) + ab + 18 − b2 = 6ab − b2 + 3 −(n + 1) + (2n − 2) = n − 3

8k − (4k − 18) = 4k + 18 1
3 (27x − 18) − 1

4 (20x − 3y) = (9x − 6) − (5x − 3y
4 ) = 4x + 3y

4 − 6

Factor
7b + 21ab = 7b(1 + 3a) x3y + 2x2y2 = xy(x2 + 2xy)

Compute
2−5

3−7 × 3−2

23 = 37

25 × 1
23·32 = 37

28·32 = 35

28

Compute
4−2 = 1

16 4−1 = 1
4 40 = 1 41 = 4 42 = 16

Compute
(−4)−2 = 1

16 (−4)−1 = −1
4 (−4)0 = 1 (−4)1 = −4 (−4)2 = 16

Compute
(−1)−2 = 1 (−1)0 = 1 (−1)3 = −1 (−1)6 = 1 (−1)777 = −1

Compute
(−3)777 + 3777 = (−1)777 · 3777 + 3777 = (−1) · 3777 + 3777 = 0

1



Quiz 3-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/12 7:45-8:15pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Compute
25 × 9 = 17 × 19 =

Clear the parenthesis in the expression
−3(−x − y − z) = −x(−5 + 2y) =

Expansion (clear the parenthesis)
(a + b) · (a + b) = (a + b + c) · (x + y) =

Simplify the followings by combining similar terms
5(ab − 3) + ab + 18 − b2 = −(n + 1) + (2n − 2) =

8k − (4k − 18) = 1
3 (27x − 18) − 1

4 (20x − 3y) =

Factor
7b + 21ab = x3y + 2x2y2 =

Compute
2−5

3−7 × 3−2

23 =

Compute
4−2 = 4−1 = 40 = 41 = 42 =

Compute
(−4)−2 = (−4)−1 = (−4)0 = (−4)1 = (−4)2 =

Compute
(−1)−2 = (−1)0 = (−1)3 = (−1)6 = (−1)777 =

Compute
(−3)777 + 3777 =

1



Solution to Quiz 4-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/16 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Compute
25 × 9 = 25 × (10 − 1) = 250 − 25 = 225 17 × 19 = 17 × (20 − 1) = 17 × 20 − 17 = 340 − 17 = 323

Clear the parenthesis in the expression
−3(−x − y − z) = 3x + 3y + 3z −x(−5 + 2y) = 5x − 2xy

Expansion (clear the parenthesis)
(a+b) · (a+b) = a2 +ab+ba+b2 = a2 +2ab+b2 (a+b+ c) · (x +y) = ax +ay+bx +by+ cx + cy

Simplify the followings by combining similar terms
5(ab − 3) + ab + 18 − b2 = 6ab − b2 + 3 −(n + 1) + (2n − 2) = n − 3

8k − (4k − 18) = 4k + 18 1
3 (27x − 18) − 1

4 (20x − 3y) = (9x − 6) − (5x − 3y
4 ) = 4x + 3y

4 − 6

Factor
7b + 21ab = 7b(1 + 3a) x3y + 2x2y2 = xy(x2 + 2xy)

Compute
2−6

3−7 × 3−2

23 = 37

26 × 1
23·32 = 37

29·32 = 35

29

Compute
4−2 = 1

16 4−1 = 1
4 40 = 1 41 = 4 42 = 16

Compute
(−4)−2 = 1

16 (−4)−1 = −1
4 (−4)0 = 1 (−4)1 = −4 (−4)2 = 16

Compute
(−1)−2 = 1 (−1)0 = 1 (−1)3 = −1 (−1)6 = 1 (−1)777 = −1

Compute
(−7)777 + 7777 = (−1)777 · 7777 + 7777 = (−1) · 7777 + 7777 = 0

1



Quiz 4-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/16 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Compute
25 × 9 = 17 × 19 =

Clear the parenthesis in the expression
−3(−x − y − z) = −x(−5 + 2y) =

Expansion (clear the parenthesis)
(a + b) · (a + b) = (a + b + c) · (x + y) =

Simplify the followings by combining similar terms
5(ab − 3) + ab + 18 − b2 = −(n + 1) + (2n − 2) =

8k − (4k − 18) = 1
3 (27x − 18) − 1

4 (20x − 3y) =

Factor
7b + 21ab = x3y + 2x2y2 =

Compute
2−6

3−7 × 3−2

23 =

Compute
4−2 = 4−1 = 40 = 41 = 42 =

Compute
(−4)−2 = (−4)−1 = (−4)0 = (−4)1 = (−4)2 =

Compute
(−1)−2 = (−1)0 = (−1)3 = (−1)6 = (−1)777 =

Compute
(−7)777 + 7777 =

1



Solution to Quiz 4-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/16 7:45-8:15pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Compute
((−2)3)2 = (−2)3·2 = (−2)6 = (−1)6 · 26 = 64 ((−2)3)−2 = (−2)−6 = 1

(−2)6 = 1
26 = 1

64

Simplify the expression
((−x3)2) · x−6 = (−1)2x3·2 · x−6 = x6−6 = 1

Simplify the expression
x3 · x−8 · x4 = x3−8+4 = x−1 = 1

x

Simplify the expression
a4b−2

a−2b2 = a4+2

b2+2 = a6

b4

Show
For every negative integer n, show that an · bn = (ab)n:

an · bn = 1
a−n · b−n = 1

a · · · a · 1
b · · · b = 1

ab · · · 1
ab = ( 1

ab )−n = (ab)n

Show
For every positive integer n, show that an

bn = (a
b )n:

an

bn = a · · · a
b · · · b = a

b · · · a
b = (ab )n

Write the polynomial in standard form and indicate its degree
2x2 − x3 + 3x4 + 1 − 5x2 + 6x6 = 6x6 + 3x4 − x3 − 3x2 + 1, degree = 6

Write the polynomial in standard form and indicate its degree
(x + 2)(3x + 1)(1 − x) = (3x2 + 7x + 2)(1 − x) = (3x2 + 7x + 2) − x(3x2 + 7x + 2)

= (3x2 + 7x + 2) − (3x3 + 7x2 + 2x) = −3x3 − 4x2 + 5x + 2; degree = 3

Write the polynomial in standard form and indicate its degree
x(−x(−2x + 1) + 4) − 1 = x(2x2 − x + 4) − 1 = 2x3 − x2 + 4x − 1, degree = 3

Choose the one that is not a polynomial
(a) x + 1

x2

Choose the one that is not a polynomial
(c) x2 + 3x

2x2

1



Quiz 4-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/16 7:45-8:15pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Compute
((−2)3)2 = ((−2)3)−2 =

Simplify the expression
((−x3)2) · x−6 =

Simplify the expression
x3 · x−8 · x4 =

Simplify the expression
a4b−2

a−2b2 =

Show
For every negative integer n, show that an · bn = (ab)n.

Show
For every positive integer n, show that an

bn = (a
b )n.

Write the polynomial in standard form and indicate its degree
2x2 − x3 + 3x4 + 1 − 5x2 + 6x6 = , degree =

Write the polynomial in standard form and indicate its degree
(x + 2)(3x + 1)(1 − x) = , degree =

Write the polynomial in standard form and indicate its degree
x(−x(−2x + 1) + 4) − 1 = , degree =

Choose the one that is not a polynomial
(a) x + 1

x2 (b) x+3
2

(c) x + 1
5 (d) x(x(−2x + 1) + 4) − 1

Choose the one that is not a polynomial
(a) 3 (b) x + 1

x · x2

(c) x2 + 3x
2x2 (d) x2 + 3x

1



Solution to Quiz 5-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/18 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Compute
((−2)3)2 = (−2)3·2 = (−2)6 = (−1)6 · 26 = 64 ((−2)3)−2 = (−2)−6 = 1

(−2)6 = 1
26 = 1

64

Simplify the expression
((−x3)2) · x−6 = (−1)2x3·2 · x−6 = x6−6 = 1

Simplify the expression
x3 · x−8 · x4 = x3−8+4 = x−1 = 1

x

Simplify the expression
a4b−2

a−2b2 = a4+2

b2+2 = a6

b4

Simplify the expression
a6b−2

a−4b2 = a10

b4

Simplify the expression
[(−1)(−1)](−1) = −1

Write the polynomial in standard form and indicate its degree
2x2 − x3 + 3x4 + 1 − 5x2 + 6x6 = 6x6 + 3x4 − x3 − 3x2 + 1, degree = 6

Write the polynomial in standard form and indicate its degree
(x + 2)(3x + 1)(1 − x) = (3x2 + 7x + 2)(1 − x) = (3x2 + 7x + 2) − x(3x2 + 7x + 2)

= (3x2 + 7x + 2) − (3x3 + 7x2 + 2x) = −3x3 − 4x2 + 5x + 2; degree = 3

Write the polynomial in standard form and indicate its degree
x(−x(−2x + 1) + 4) − 1 = x(2x2 − x + 4) − 1 = 2x3 − x2 + 4x − 1, degree = 3

Choose the one that is not a polynomial
(a) x + 1

x2

Choose the one that is not a polynomial
(c) x2 + 3x

2x2

1



Quiz 5-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/18 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Compute
((−2)3)2 = ((−2)3)−2 =

Simplify the expression
((−x3)2) · x−6 =

Simplify the expression
x3 · x−8 · x4 =

Simplify the expression
a4b−2

a−2b2 =

Simplify the expression
a6b−2

a−4b2 =

Simplify the expression
[(−1)(−1)](−1) =

Write the polynomial in standard form and indicate its degree
2x2 − x3 + 3x4 + 1 − 5x2 + 6x6 = , degree =

Write the polynomial in standard form and indicate its degree
(x + 2)(3x + 1)(1 − x) = , degree =

Write the polynomial in standard form and indicate its degree
x(−x(−2x + 1) + 4) − 1 = , degree =

Choose the one that is not a polynomial
(a) x + 1

x2 (b) x+3
2

(c) x + 1
5 (d) x(x(−2x + 1) + 4) − 1

Choose the one that is not a polynomial
(a) 3 (b) x + 1

x · x2

(c) x2 + 3x
2x2 (d) x2 + 3x

1



Solution to Quiz 5-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/18 7:45-8:15pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Addition and subtraction
Let p = x3 − 4x2 + x − 1, and q = x3 + 4x2 − 3x + 1. Compute

p + q = 2x3 − 2x

p− q = −8x2 + 4x − 2

Multiplication
Let p = x−1, and q = −x2−3x+1. Compute p·q = −(x−1)(x2+3x−1) = −[(x3+3x2−x)−(x2+3x−1)] = −x3−2x2+4x−1

Compute
(2x + 3)2 = 4x2 + 12x + 9 (2x − 3)2 = 4x2 − 12x + 9

(2x + 3)(2x − 3) = 4x2 − 9 (a + b)2 = a2 + 2ab + b2

Factor out a monomial
5x3 + 4x2 = x2(5x + 4)

2x3 + 10x2 − 4x = x(2x2 + 10x − 4)

Evaluation and substitution of a polynomial
Let p(x) = −2x2 + 5x . Find

p(3) = −18 + 15 = −3 p(a) = −2a2 + 5a

p(a− 1) = −2(a− 1)2 + 5(a− 1) = −2(a2 − 2a + 1) + (5a− 5) = −2a2 + 9a− 7

p(a2) = −2(a2)2 + 5(a2) = −2a4 + 5a2

Evaluate of a rational expression
Find the value of the expression x2+5

x−3 for x = 3. x2+5
x−3 |x=3 = 9+5

3−3 : not defined (divided by 0)!

Substitution of a rational expression

Find the value of the expression x2+5
x−3 for x = a− 1. x2+5

x−3 |x=a−1 = (a−1)2+5
(a−1)−3 = a2−2a+6

a−4

Simplify the expression by cancellation.
x2−4
x2+2x = (x+2)(x−2)

(x+2)x = x−2
x

Evaluation (simplification makes it easier)
Evaluate x2−4

x2+2x for x = 17: x−2
x |x=17 = 15

17 .

Evaluation (is it well-defined?)
Evaluate x2−4

x2+2x for x = −2: not defined (divided by 0)!

1



Quiz 5-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/18 7:45-8:15pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Addition and subtraction
Let p = x3 − 4x2 + x − 1, and q = x3 + 4x2 − 3x + 1. Compute

p + q =

p− q =

Multiplication
Let p = x − 1, and q = −x2 − 3x + 1. Compute p · q =

Compute
(2x + 3)2 = (2x − 3)2 =

(2x + 3)(2x − 3) = (a + b)2 =

Factor out a monomial
5x3 + 4x2 =

2x3 + 10x2 − 4x =

Evaluation and substitution of a polynomial
Let p(x) = −2x2 + 5x . Find

p(3) = p(a) =

p(a− 1) = p(a2) =

Evaluate of a rational expression
Find the value of the expression x2+5

x−3 for x = 3. x2+5
x−3 |x=3 =

Substitution of a rational expression
Find the value of the expression x2+5

x−3 for x = a− 1. x2+5
x−3 |x=a−1 =

Simplify the expression by cancellation.
x2−4
x2+2x = [Hint: use (a2 − b2) = (a + b)(a− b).]

Evaluation (simplification makes it easier)
Evaluate x2−4

x2+2x for x = 17: .

Evaluation (is it well-defined?)
Evaluate x2−4

x2+2x for x = −2: .

1



Solution to Quiz 6-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/19 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Addition and subtraction
Let p = x3 − 4x2 + x − 1, and q = x3 + 4x2 − 3x + 1. Compute

p + q = 2x3 − 2x

p− q = −8x2 + 4x − 2

Multiplication
Let p = x−1, and q = −x2−3x+1. Compute p·q = −(x−1)(x2+3x−1) = −[(x3+3x2−x)−(x2+3x−1)] = −x3−2x2+4x−1

Compute
(2x − 3)2 = 4x2 − 12x + 9 (2x + 3)(2x − 3) = 4x2 − 9

Factor out a monomial
2x3 + 10x2 − 4x = x(2x2 + 10x − 4)

Evaluation and substitution of a polynomial
Let p(x) = −2x2 + 5x . Find

p(3) = −18 + 15 = −3 p(a− 1) = −2(a− 1)2 + 5(a− 1) = −2(a2 − 2a + 1) + (5a− 5) = −2a2 + 9a− 7

Evaluate of a rational expression
Find the value of the expression x2+5

x−3 for x = 3. x2+5
x−3 |x=3 = 9+5

3−3 : not defined (divided by 0)!

Substitution of a rational expression

Find the value of the expression x2+5
x−3 for x = a− 1. x2+5

x−3 |x=a−1 = (a−1)2+5
(a−1)−3 = a2−2a+6

a−4

Simplify the expression by cancellation.
x2−9
x2+3x = (x+3)(x−3)

(x+3)x = x−3
x

Evaluation (simplification makes it easier)
Evaluate x2−4

x2+2x for x = 18: x−2
x |x=18 = 8

9 .

Evaluation (is it well-defined?)
Evaluate x2−4

x2+2x for x = −2: not defined (divided by 0)!

1



Quiz 6-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/19 6:00-6:30
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Addition and subtraction
Let p = x3 − 4x2 + x − 1, and q = x3 + 4x2 − 3x + 1. Compute

p + q =

p− q =

Multiplication
Let p = x − 1, and q = −x2 − 3x + 1. Compute p · q =

Compute
(2x − 3)2 = (2x + 3)(2x − 3) =

Factor out a monomial
2x3 + 10x2 − 4x =

Evaluation and substitution of a polynomial
Let p(x) = −2x2 + 5x . Find

p(3) = p(a− 1) =

Evaluate of a rational expression
Find the value of the expression x2+5

x−3 for x = 3. x2+5
x−3 |x=3 =

Substitution of a rational expression
Find the value of the expression x2+5

x−3 for x = a− 1. x2+5
x−3 |x=a−1 =

Simplify the expression by cancellation.
x2−9
x2+3x =

Evaluation (simplification makes it easier)
Evaluate x2−4

x2+2x for x = 18: .

Evaluation (is it well-defined?)
Evaluate x2−4

x2+2x for x = −2: .

1



Solution to Quiz 6-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/19 7:45-8:15
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Simplify the expression
x+1

16−x2 · x−4
x2+x = −1

x(x+4)

Simplify the expression
x2

x2−2x+1 ÷ x3

x−1 = 1
x(x−1)

Present the following as a single fraction
x3−x2−1

x − x2 = −x2−1
x

Perform the operations and simplify the resulting expression
1

x2−2x+1 + 1
x2−1 = 2x

(x−1)2(x+1)

Perimeter and area of a rectangle
In a rectangle, one side is x feet long. The other side is y feet longer. Compose an algebraic expression in terms of x and
y for the perimeter and the area of the rectangle. Perimeter = 4x + 2y (feet). Area = x(x + y) (feet2).

Counting money
Jin receives some coins as a street performer. He saves one quarter and n dimes everyday in his piggy bank.
1. Compose an algebraic expression for the total amount of money in the piggy bank after d days in terms of n and d:
25d + 10nd (cents).
2. How many dimes does Jin have to save if he plans to save $195 in 300 days: 4 dimes.

Counting money
Jin works in a fast food restaurant, the wage being $x per hour. He pays his rent daily, which amounts to $30. If he moves
into a flat with the monthly rent being $750, how much time could he save from not working monthly? Express the answer
in terms of x: 150

x (hours). Evaluate the answer at x = 10: 15 (hours).

Counting money
Suppose the inflation rate is 3% per year, the market pays you 7% per year, and the other factors do not affect. How much
should Jin invest in the market so that he does not have to work for his $x annual expense? Express the answer in terms
of x: $25x . Evaluate the answer at x = 22000: $550000.

Uniform motion
Jin drives from Lawrence to a friend’s house in Kansas City, the total distance being 40 miles. For the last 10 miles, he has
to slow down to x miles per hour. At least how fast should he drive before slowing down in order to be there in an hour?
Express the answer in terms of x: 30

1− 10
x

(miles per hour).

Uniform motion
Jin drives from Chicago to Stony Brook, the total distance being 840 miles. He wants to drive as slow as possible. He also
wants to be there in two days, while he can only drive for 6 hours a day. What is the slowest average speed possible for
him in order to fulfill all of his wishes: 70 (miles per hour).

1



Quiz 6-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/19 7:45-8:15
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Simplify the expression
x+1

16−x2 · x−4
x2+x

Simplify the expression
x2

x2−2x+1 ÷ x3

x−1

Present the following as a single fraction
x3−x2−1

x − x2

Perform the operations and simplify the resulting expression
1

x2−2x+1 + 1
x2−1

Perimeter and area of a rectangle
In a rectangle, one side is x feet long. The other side is y feet longer. Compose an algebraic expression in terms of x and y
for the perimeter and the area of the rectangle. Perimeter = . Area = .

Counting money
Jin receives some coins as a street performer. He saves one quarter and n dimes everyday in his piggy bank.
1. Compose an algebraic expression for the total amount of money in the piggy bank after d days in terms of n and d:

.
2. How many dimes does Jin have to save if he plans to save $195 in 300 days: ?

Counting money
Jin works in a fast food restaurant, the wage being $x per hour. He pays his rent daily, which amounts to $30. If he moves
into a flat with the monthly rent being $750, how much time could he save from not working monthly? Express the answer
in terms of x: . Evaluate the answer at x = 10: .

Counting money
Suppose the inflation rate is 3% per year, the market pays you 7% per year, and the other factors do not affect. How much
should Jin invest in the market so that he does not have to work for his $x annual expense? Express the answer in terms
of x: . Evaluate the answer at x = 22000: .

Uniform motion
Jin drives from Lawrence to a friend’s house in Kansas City, the total distance being 40 miles. For the last 10 miles, he has
to slow down to x miles per hour. At least how fast should he drive before slowing down in order to be there in an hour?
Express the answer in terms of x: .

Uniform motion
Jin drives from Chicago to Stony Brook, the total distance being 840 miles. He wants to drive as slow as possible. He also
wants to be there in two days, while he can only drive for 6 hours a day. What is the slowest average speed possible for
him in order to fulfill all of his wishes?

1



Solution to Quiz 7-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/25 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Clear the parenthesis
(x − 1)(x + 1)(x2 + 1) = x4 − 1

Simplify the expression
x+1

16−x2 · x−4
x2+x = −1

x(x+4)

Simplify the expression
x

16−x2 · x−4
x2+x = −1

(x+1)(x+4)

Simplify the expression
x2

x2−2x+1 ÷ x3

x−1 = 1
x(x−1)

Simplify the expression
x2

x2+4x+4 ÷ x3

x+2 = 1
x(x+2)

Present the following as a single fraction
x3−x2−1

x − x2 = −x2−1
x

Present the following as a single fraction
x3−x2−1

x + x = x3−1
x

Perform the operations and simplify the resulting expression
1

x2−2x+1 + 1
x2−1 = 2x

(x−1)2(x+1)

Perform the operations and simplify the resulting expression
1

x2−4x+4 + 1
x2−4 = 2x

(x+2)(x−2)2

Perimeter and area of a rectangle
In a rectangle, one side is x feet long. The other side is y feet longer. Compose an algebraic expression in terms of x and
y for the perimeter and the area of the rectangle. Perimeter = 4x + 2y (feet). Area = x(x + y) (feet2).

1



Quiz 7-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/25 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Clear the parenthesis
(x − 1)(x + 1)(x2 + 1) =

Simplify the expression
x+1

16−x2 · x−4
x2+x =

Simplify the expression
x

16−x2 · x−4
x2+x =

Simplify the expression
x2

x2−2x+1 ÷ x3

x−1 =

Simplify the expression
x2

x2+4x+4 ÷ x3

x+2 =

Present the following as a single fraction
x3−x2−1

x − x2 =

Present the following as a single fraction
x3−x2−1

x + x =

Perform the operations and simplify the resulting expression
1

x2−2x+1 + 1
x2−1 =

Perform the operations and simplify the resulting expression
1

x2−4x+4 + 1
x2−4 =

Perimeter and area of a rectangle
In a rectangle, one side is x feet long. The other side is y feet longer. Compose an algebraic expression in terms of x and y
for the perimeter and the area of the rectangle. Perimeter = . Area = .

1



Solution to Quiz 7-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/25 7:45-8:15
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Select all that apply.
(a) x = x + 2 is always false.
(c) (x + 1)2 − 1 = x(x + 2) is always true.

Select all that apply.
(a) x + y = 1 has infinitely many solutions.
(b) x2 = 0 has only one solution.
(d) x + 1 = 0 has only one solution.

Prove the identity
(x − 1)3 = (x − 1)(x2 − 2x + 1) = x3 − 3x2 + 3x − 1.

Find all solutions to the equation.
x + 2 = 3x ⇔ x = 1

Find all solutions to the equation.
3x − 1 = 5 + x ⇔ x = 3

Find all solutions to the equation.
2x + 3 = 4x + 5⇔ x = −1

Find all solutions to the equation.
9x − 5 = 5 + 109x ⇔ x = − 1

10

Find all solutions to the equation.
2
3x − 5 = 1

6x + 9⇔ x = 28

Perimeter of a triangle
In a rectangle, one side is 6 feet longer than the other side. Suppose the perimeter is 24 feet. Find the lengths of the sides:
2(x + (x + 6)) = 24, so x = 3 and x + 6 = 9, the lengths being 3 and 9 feet.

Angles in a triangle
In a triangle, two angles are same, and the third angle is twice as large as the others. Find the angles: x + x + 2x = 180,
so x = 45 and 2x = 90, the angles being 45, 45, 90 degrees.

1



Quiz 7-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/25 7:45-8:15
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Select all that apply.
(a) x = x + 2 is always false.
(b) x + 2 = 5 is always false.
(c) (x + 1)2 − 1 = x(x + 2) is always true.
(d) x2 − y2 = (x − y)2 is always true.

Select all that apply.
(a) x + y = 1 has infinitely many solutions.
(b) x2 = 0 has only one solution.
(c) x2 = 1 has only one solution
(d) x + 1 = 0 has only one solution.

Prove the identity
(x − 1)3 = x3 − 3x2 + 3x − 1.

Find all solutions to the equation.
x + 2 = 3x ⇔ x =

Find all solutions to the equation.
3x − 1 = 5 + x ⇔ x =

Find all solutions to the equation.
2x + 3 = 4x + 5⇔ x =

Find all solutions to the equation.
9x − 5 = 5 + 109x ⇔ x =

Find all solutions to the equation.
2
3x − 5 = 1

6x + 9⇔ x =

Perimeter of a triangle
In a rectangle, one side is 6 feet longer than the other side. Suppose the perimeter is 24 feet. Find the lengths of the sides:

.

Angles in a triangle
In a triangle, two angles are same, and the third angle is twice as large as the others. Find the angles: .

1



Solution to Quiz 8-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/26 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Select all that apply.
(a) x = x + 2 is always false.

Select all that apply.
(a) x + y = 1 has infinitely many solutions.
(c) x2 = 1 has only two solutions.
(d) x + 1 = 0 has only one solution.

Prove the identity
(x − 1)3 = (x − 1)(x2 − 2x + 1) = x3 − 3x2 + 3x − 1.

Find all solutions to the equation.
x + 2 = 3x ⇔ x = 1

Find all solutions to the equation.
3x − 1 = 5 + x ⇔ x = 3

Find all solutions to the equation.
2x + 3 = 4x + 5⇔ x = −1

Find all solutions to the equation.
9x − 5 = 5 + 109x ⇔ x = − 1

10

Find all solutions to the equation.
2
3x − 5 = 1

6x + 9⇔ x = 28

Perimeter of a triangle
In a rectangle, one side is 8 feet longer than the other side. Suppose the perimeter is 24 feet. Find the lengths of the sides:
2(x + (x + 8)) = 24, so x = 2 and x + 8 = 10, the lengths being 2 and 10 feet.

Angles in a triangle
In a triangle, two angles are same, and the third angle is three times as large as the others. Find the angles: x+x+3x = 180,
so x = 36 and 3x = 108, the angles being 36, 36, 108 degrees.

1



Quiz 8-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/26 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Select all that apply.
(a) x = x + 2 is always false.
(b) x + 2 = 5 is always false.
(c) (x + 1)2 − 1 = x(x + 2) is always false.
(d) x2 − y2 = (x − y)2 is always true.

Select all that apply.
(a) x + y = 1 has infinitely many solutions.
(b) x2 = 0 has only two solutions.
(c) x2 = 1 has only two solutions.
(d) x + 1 = 0 has only one solution.

Prove the identity
(x − 1)3 = x3 − 3x2 + 3x − 1.

Find all solutions to the equation.
x + 2 = 3x ⇔ x =

Find all solutions to the equation.
3x − 1 = 5 + x ⇔ x =

Find all solutions to the equation.
2x + 3 = 4x + 5⇔ x =

Find all solutions to the equation.
9x − 5 = 5 + 109x ⇔ x =

Find all solutions to the equation.
2
3x − 5 = 1

6x + 9⇔ x =

Perimeter of a triangle
In a rectangle, one side is 8 feet longer than the other side. Suppose the perimeter is 24 feet. Find the lengths of the sides:

.

Angles in a triangle
In a triangle, two angles are same, and the third angle is three times as large as the others. Find the angles: .

1



Solution to Quiz 8-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/26 7:45-8:15
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Solve the inequality.
x − 4 6 5 : x 6 9.

Solve the inequality.
3x − 1 > 5 + x : x > 3.

Solve the inequality.
−3x < 6⇔ x > −2.

Solve the inequality.
− 1

3x + 4 > x ⇐ x < 3.

Solve the system.
x − 2 6 4 and −x + 2 < 4 : −2 < x 6 6.

Absolute value
Calculate | − 6 + |2− 3|| = | − 6 + 1| = | − 5| = 5.

Absolute value
Solve the equation: |2x| = 2⇔ x = ±1.

Absolute value
Solve the equation: |3x − 3| = 3⇔ x = 0 or 2.

Absolute value
Solve the inequality: |x − 1| < 2⇔ −1 < x < 3.

Absolute value
Solve the inequality: |1− x| > 5⇔ x > 6 or x 6 −4.

1



Quiz 8-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/26 7:45-8:15
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Solve the inequality.
x − 4 6 5 : .

Solve the inequality.
3x − 1 > 5 + x : .

Solve the inequality.
−3x < 6 : .

Solve the inequality.
− 1

3x + 4 > x : .

Solve the system.
x − 2 6 4 and −x + 2 < 4 : .

Absolute value
Calculate | − 6 + |2− 3|| = .

Absolute value
Solve the equation: |2x| = 2⇔ x = .

Absolute value
Solve the equation: |3x − 3| = 3⇔ x = .

Absolute value
Solve the inequality: |x − 1| < 2⇔ .

Absolute value
Solve the inequality: |1− x| > 5⇔ .

1



Solution to Quiz 9-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/30 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Solve the inequality.
x − 4 6 5 : x 6 9.

Solve the inequality.
−3x − 1 > 5 + x : x 6 −3

2 .

Solve the inequality.
−3x < 9⇔ x > −3.

Solve the inequality.
− 1

3x + 4 > x ⇐ x < 3.

Solve the system.
x − 2 6 4 and −x + 2 < 4 : −2 < x 6 6.

Absolute value
Calculate | − 9 + |2− 3|| = | − 9 + 1| = | − 8| = 8.

Absolute value
Solve the inequality: |1− x| > 5⇔ x > 6 or x 6 −4.

Absolute value
Solve the equation: |2x| = 2⇔ x = ±1.

Absolute value
Solve the equation: |3x − 3| = 3⇔ x = 0 or 2.

Absolute value
Solve the inequality: |x − 1| < 2⇔ −1 < x < 3.

1



Quiz 9-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/30 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Solve the inequality.
x − 4 6 5 : .

Solve the inequality.
−3x − 1 > 5 + x : .

Solve the inequality.
−3x < 9 : .

Solve the inequality.
− 1

3x + 4 > x : .

Solve the system.
x − 2 6 4 and −x + 2 < 4 : .

Absolute value
Calculate | − 9 + |2− 3|| = .

Absolute value
Solve the inequality: |1− x| > 5⇔ .

Absolute value
Solve the equation: |2x| = 2⇔ x = .

Absolute value
Solve the equation: |3x − 3| = 3⇔ x = .

Absolute value
Solve the inequality: |x − 1| < 2⇔ .

1



Solution to Quiz 9-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/30 7:45-8:15
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Draw the line y = 3, and indicate its slope and intercepts.
Slope = 0
x−intercept = (not defined)
y−intercept = 3

Draw the line x = −3, and indicate its slope and intercepts.
Slope = (not defined)
x−intercept = −3
y−intercept = (not defined)

Draw the line x + y = 1, and indicate its slope and intercepts.
Slope = −1
x−intercept = 1
y−intercept = 1

Draw the line y = 3x + 2, and indicate its slope and intercepts.
Slope = 3
x−intercept = − 2

3
y−intercept = 2

Draw the line 3x + 4y + 2 = 0, and indicate its slope and intercepts.
Slope = − 3

4
x−intercept = − 2

3
y−intercept = − 1

2

Find the linear equation of a given line.
The line that passes through (1, 0) and (0, −2): y = 2x − 2

Find the linear equation of a given line.
The line that passes through (1, 0) and (2, 3): y = 3x − 3

Find the linear equation of a given line.
The line that passes through (1, 0) with slope = 3: y = 3x − 3

Find the linear equation of a given line.
The line that passes through (1, 0) and is parallel to the line y = 2x + 3: y = 2x − 2

Find the linear equation of a given line.
The line that passes through (0, 0) and is perpendicular to the line y = 2x + 3: y = − 1

2x

1



Quiz 9-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/30 7:45-8:15
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Draw the line y = 3, and indicate its slope and intercepts.
Slope =
x−intercept =
y−intercept =

Draw the line x = −3, and indicate its slope and intercepts.
Slope =
x−intercept =
y−intercept =

Draw the line x + y = 1, and indicate its slope and intercepts.
Slope =
x−intercept =
y−intercept =

Draw the line y = 3x + 2, and indicate its slope and intercepts.
Slope =
x−intercept =
y−intercept =

Draw the line 3x + 4y + 2 = 0, and indicate its slope and intercepts.
Slope =
x−intercept =
y−intercept =

Find the linear equation of a given line.
The line that passes through (1, 0) and (0, −2):

Find the linear equation of a given line.
The line that passes through (1, 0) and (2, 3):

Find the linear equation of a given line.
The line that passes through (1, 0) with slope = 3:

Find the linear equation of a given line.
The line that passes through (1, 0) and is parallel to the line y = 2x + 3:

Find the linear equation of a given line.
The line that passes through (0, 0) and is perpendicular to the line y = 2x + 3:

1



Solution to Quiz 10-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/01 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Draw the line y = 3x + 2, and indicate its slope and intercepts.
Slope = 3
x−intercept = − 2

3
y−intercept = 2

Draw the line 3x + 4y + 2 = 0, and indicate its slope and intercepts.
Slope = − 3

4
x−intercept = − 2

3
y−intercept = − 1

2

Draw the line y = 3, and indicate its slope and intercepts.
Slope = 0
x−intercept = (not defined)
y−intercept = 3

Draw the line x = −3, and indicate its slope and intercepts.
Slope = (not defined)
x−intercept = −3
y−intercept = (not defined)

Draw the line x + y = 1, and indicate its slope and intercepts.
Slope = −1
x−intercept = 1
y−intercept = 1

Find the linear equation of a given line.
The line that passes through (1, 0) with slope = 3: y = 3x − 3

Find the linear equation of a given line.
The line that passes through (1, 0) and is parallel to the line y = 2x + 3: y = 2x − 2

Find the linear equation of a given line.
The line that passes through (0, 0) and is perpendicular to the line y = 2x + 3: y = − 1

2x

Find the linear equation of a given line.
The line that passes through (1, 0) and (0, −2): y = 2x − 2

Find the linear equation of a given line.
The line that passes through (1, 0) and (2, 3): y = 3x − 3

1



Quiz 10-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/01 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Draw the line y = 3x + 2, and indicate its slope and intercepts.
Slope =
x−intercept =
y−intercept =

Draw the line 3x + 4y + 2 = 0, and indicate its slope and intercepts.
Slope =
x−intercept =
y−intercept =

Draw the line y = 3, and indicate its slope and intercepts.
Slope =
x−intercept =
y−intercept =

Draw the line x = −3, and indicate its slope and intercepts.
Slope =
x−intercept =
y−intercept =

Draw the line x + y = 1, and indicate its slope and intercepts.
Slope =
x−intercept =
y−intercept =

Find the linear equation of a given line.
The line that passes through (1, 0) with slope = 3:

Find the linear equation of a given line.
The line that passes through (1, 0) and is parallel to the line y = 2x + 3:

Find the linear equation of a given line.
The line that passes through (0, 0) and is perpendicular to the line y = 2x + 3:

Find the linear equation of a given line.
The line that passes through (1, 0) and (0, −2):

Find the linear equation of a given line.
The line that passes through (1, 0) and (2, 3):

1



Solution to Quiz 10-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/01 7:45-8:15*A problem worths 20 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Draw the lines, indicate the amount of solutions, and solve the system if any.{

x = 2
y = −4 ((2, −4) is the only solution. The graph is omitted.)

Draw the lines, indicate the amount of solutions, and solve the system if any.{
x − 3y = 2
y = 2 ((8, 2) is the only solution. The graph is omitted.)

Draw the lines, indicate the amount of solutions, and solve the system if any.{
−2x + 3y = 82x − y = 0 ((2, 4) is the only solution. The graph is omitted.)

Draw the lines, indicate the amount of solutions, and solve the system if any.{
−2x + y = 3
−4x + 2y = 0 (There are no solutions. The graph is omitted.)

Draw the lines, indicate the amount of solutions, and solve the system if any.{
−2x + y = 3
−4x + 2y = 6 (There are infinitely many solutions. The graph is omitted.)

1



Quiz 10-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/01 7:45-8:15*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Draw the lines, indicate the amount of solutions, and solve the system if any.{

x = 2
y = −4

Draw the lines, indicate the amount of solutions, and solve the system if any.{
x − 3y = 2
y = 2

Draw the lines, indicate the amount of solutions, and solve the system if any.{
−2x + 3y = 82x − y = 0

Draw the lines, indicate the amount of solutions, and solve the system if any.{
−2x + y = 3
−4x + 2y = 0

Draw the lines, indicate the amount of solutions, and solve the system if any.{
−2x + y = 3
−4x + 2y = 6

1



Solution to Quiz 11-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/02 6:00-6:30pm*A problem worths 20 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Draw the lines, indicate the amount of solutions, and solve the system if any.{

−2x + 3y = 33x + 2y = 6 (( 1213 , 2113 ) is the only solution. The graph is omitted.)

Draw the lines, indicate the amount of solutions, and solve the system if any.{
−2x + y = 3
−4x + 2y = 6 (There are infinitely many solutions. The graph is omitted.)

Draw the lines, indicate the amount of solutions, and solve the system if any.{
x − 3y = 2
y = 2 ((8, 2) is the only solution. The graph is omitted.)

Draw the lines, indicate the amount of solutions, and solve the system if any.{
−2x + 3y = 82x − y = 0 ((2, 4) is the only solution. The graph is omitted.)

Draw the lines, indicate the amount of solutions, and solve the system if any.{
−2x + y = 3
−4x + 2y = 0 (There are no solutions. The graph is omitted.)

1



Quiz 11-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/02 6:00-6:30pm*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Draw the lines, indicate the amount of solutions, and solve the system if any.{

−2x + 3y = 33x + 2y = 6

Draw the lines, indicate the amount of solutions, and solve the system if any.{
−2x + y = 3
−4x + 2y = 6

Draw the lines, indicate the amount of solutions, and solve the system if any.{
x − 3y = 2
y = 2

Draw the lines, indicate the amount of solutions, and solve the system if any.{
−2x + 3y = 82x − y = 0

Draw the lines, indicate the amount of solutions, and solve the system if any.{
−2x + y = 3
−4x + 2y = 0

1



Solution to Quiz 11-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/02 7:45-8:15*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Compute
√32 = 3,

√(−3)2 = 3,
√
−32 = (not defined),−√32 = −3

Simplify the following expressions
√5 · √125 = 25, √21 · √3 = 3√7
Simplify the following expressions√ 2112 = √72 , √

−21
−12 = √72

Simplify the following expressions
26−√5 = 2(6+√5)31 , √7−26−√7 = (√7−2)(6+√7)29 = −5+4√729 ,

Simplify the following expressions
√7(√21−√35) = 7(√3−√5)
Compute
√64 = 8, 3√64 = 4, 4√64 = 2√2, 6√64 = 2
Compute
√
−64 = (not defined), 3√−64 = −4, 4√−64 = (not defined), 6√64 = 2

Compute
5√4 · 5√8 = 2
Compute
27 43 = 81, 27 −43 = 181 , 27 4

−3 = 181 , 27 −4
−3 = 81

Compute
2 74 · 2 47 · 2 −12 = 2 5128 .

1



Quiz 11-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/02 7:45-8:15*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Compute
√32 = ,

√(−3)2 = ,
√
−32 = ,−

√32 =
Simplify the following expressions
√5 · √125 = , √21 · √3 =
Simplify the following expressions√ 2112 = , √

−21
−12 =

Simplify the following expressions
26−√5 = , √7−26−√7 = ,

Simplify the following expressions
√7(√21−√35) =
Compute
√64 = , 3√64 = , 4√64 = , 6√64 =
Compute
√
−64 = , 3√−64 = , 4√−64 = , 6√64 =

Compute
5√4 · 5√8 =
Compute
27 43 = , 27 −43 = , 27 4

−3 = , 27 −4
−3 =

Compute
2 74 · 2 47 · 2 −12 =

1



Solution to Quiz 12 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/08 7:45-8:15
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Solve the equation.
x2 = 1⇔ x = 1,−1

Solve the equation.
x2 = −1⇔ x = (no solution)

Solve the equation.
x2 − 4 = 0⇔ x = 2,−2

Solve the equation.
4x2 − 9 = 0⇔ x = 3

2 , −3
2

Solve the equation.
2x2 − 9 = 0⇔ x = 3√

2 , −3√
2

Solve the equation.
x2 + 6x + 9 = 0⇔ x = −3

Solve the equation.
(x − 3)(x − 4)(x + 7

2 ) = 0⇔ x = 3, 4, −7
2

Factor the polynomial if possible
2x2 − 11x − 21 = (2x + 3)(x − 7)

Factor the polynomial if possible
x2 + x − 1 = (x − −1+

√
5

2 )(x − −1−
√

5
2 )

Factor the polynomial if possible
x2 + x + 1 is not factorizable because b2 − 4ac < 0.

1



Quiz 12 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/08 7:45-8:15
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Solve the equation.
x2 = 1⇔ x =

Solve the equation.
x2 = −1⇔ x =

Solve the equation.
x2 − 4 = 0⇔ x =

Solve the equation.
4x2 − 9 = 0⇔ x =

Solve the equation.
2x2 − 9 = 0⇔ x =

Solve the equation.
x2 + 6x + 9 = 0⇔ x =

Solve the equation.
(x − 3)(x − 4)(x + 7

2 ) = 0⇔ x =

Factor the polynomial if possible
2x2 − 11x − 21 =

Factor the polynomial if possible
x2 + x − 1 =

Factor the polynomial if possible
x2 + x + 1 =

1



Solution to Quiz 13-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/09 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Solve the equation.
x2 = 16⇔ x = 4,−4

Solve the equation.
2x2 − 9 = 0⇔ x = 3√

2 ,
−3√

2

Solve the equation.
x2 − 6x + 8 = 0⇔ x = 2, 4

Solve the equation.
x2 − 6x + 9 = 0⇔ x = 3

Solve the equation.
(x − 3)(x − π)(x + 7

2 ) = 0⇔ x = 3, π, −7
2

Solve the equation.
x2 = −1⇔ x = (no solution)

Solve the equation.
4x2 − 9 = 0⇔ x = 3

2 ,
−3
2

Factor the polynomial if possible
3x2 + 2x − 21 = (3x − 7)(x + 3)

Factor the polynomial if possible
x2 + x − 1 = (x − −1+

√
5

2 )(x − −1−
√

5
2 )

Factor the polynomial if possible
x2 + x + 1 is not factorizable because b2 − 4ac < 0.

1



Quiz 13-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/09 6:00-6:30pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Solve the equation.
x2 = 16⇔ x =

Solve the equation.
2x2 − 9 = 0⇔ x =

Solve the equation.
x2 − 6x + 8 = 0⇔ x =

Solve the equation.
x2 − 6x + 9 = 0⇔ x =

Solve the equation.
(x − 3)(x − π)(x + 7

2 ) = 0⇔ x =

Solve the equation.
x2 = −1⇔ x =

Solve the equation.
4x2 − 9 = 0⇔ x =

Factor the polynomial if possible
3x2 + 2x − 21 =

Factor the polynomial if possible
x2 + x − 1 =

Factor the polynomial if possible
x2 + x + 1 =

1



Solution to Quiz 13-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/09 7:45-8:15
*A problem worths 50 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Draw the parabola y = x2 − 9, indicate all its intercepts, vertex, and axis of symmetry
The parabola is

y = (x + 3)(x − 3).

x-intercepts: (3, 0), (−3, 0)
y-intercepts: (0, −9)
vertex = (0, −9)
axis of symmetry: x = 0

Draw the parabola y = −2x2 + 11x + 21, indicate all its intercepts, vertex, and axis of symmetry
The parabola is

y = −(2x + 3)(x − 7) = −2(x2 − 11
2 x) + 21 = −2(x − 11

4 )2 + (21 + 2 · 112

42 ) = −2(x − 11
4 )2 + (289

8 ).

x-intercepts: = (−3
2 , 0), (7, 0)

y-intercepts: = (0, 21)
vertex = ( 11

4 , 289
8 )

axis of symmetry: x = 11
4

1



Quiz 13-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/09 7:45-8:15
*A problem worths 50 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Draw the parabola y = x2 − 9, indicate all its intercepts, vertex, and axis of symmetry
x-intercepts =
y-intercepts =
vertex =
axis of symmetry:

Draw the parabola y = −2x2 + 11x + 21, indicate all its intercepts, vertex, and axis of symmetry
x-intercepts =
y-intercepts =
vertex =
axis of symmetry:

1



Solution to Quiz 14-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/13 6:00-6:30pm
*A problem worths 50 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Draw the parabola y = x2 + 9, indicate all its intercepts, vertex, and axis of symmetry
The parabola has no roots because ”b2 − 4ac < 0”.
x-intercepts: none.
y-intercepts: (0, 9)
vertex = (0, 9)
axis of symmetry: x = 0

Draw the parabola y = 3x2 + 5x + 2, indicate all its intercepts, vertex, and axis of symmetry
The parabola is

y = (3x + 2)(x + 1) = 3(x2 + 5
3x) + 2 = 3(x + 5

6)2 + (2 − (56 )2) = 3(x + 5
6)2 + 47

36 .

x-intercepts: = (−2
3 , 0), (−1, 0)

y-intercepts: = (0, 2)
vertex = (− 5

6 , 47
36 )

axis of symmetry: x = − 5
6

1



Quiz 14-1 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/13 6:00-6:30pm
*A problem worths 50 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Draw the parabola y = x2 + 9, indicate all its intercepts, vertex, and axis of symmetry
x-intercepts =
y-intercepts =
vertex =
axis of symmetry:

Draw the parabola y = 3x2 + 5x + 2, indicate all its intercepts, vertex, and axis of symmetry
x-intercepts =
y-intercepts =
vertex =
axis of symmetry:

1



Solution to Quiz 14-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/13 7:45-8:15
*A problem worths 25 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Solve the quadratic inequality
x2 − 4x + 3 > 0⇔ x < 1 or x > 3.

Solve the quadratic inequality
x2 + 4x + 4 6 0⇔ x = −2

Solve the quadratic inequality
x2 + 4x + 4 < 0⇔ (no solution).

Solve the quadratic inequality
x2 + x + 1 > 0⇔ x ∈ R

A letter to all:

Congratulations! The course is almost done! This is not at all an easy one, especially it was condensed into a 6-week
course. The first moment when I read the syllabus, I thought that was absolutely crazy. I could not have learnt that fast,
so how then should I teach this course? When I turned to someone who has taught MAP-103, they brought bad news to
me and wished me good luck. However, you guys are so different, and I really appreciate all the efforts you made.

For those who do not have to deal with math course, congrats! For those who still have to, I wish you good luck and
would like to share the trick about learning (at least for math) again: try to find the most basic principles not just for the
tests but for math itself. This really helps improve your math. As far as I know, no one good at math I know does NOT
use this trick! So I guess that is the ultimate secret of learning math. Though you’ll find it hard in the beginning, it will
become easier and easier every time you try.

I was not that kind of math genius, so I really understand the pain of math; however, every time when I got the ah-ha
moment, I feel so rewarding. So I sincerely hope this course did not only bring you painful memories, but also some of the
ah-ha moments. Guess this is the very most I can do, and I hope I did.

To be honest, this is the first time I teach on stage, and you guys made me enjoy it. Anyways, thank you all very much!
I feel grateful! Wish you have a good rest of the summer.

Best, Jin

1



Quiz 14-2 (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/13 7:45-8:15
*A problem worths 25 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Solve the quadratic inequality
x2 − 4x + 3 > 0⇔

Solve the quadratic inequality
x2 + 4x + 4 6 0⇔

Solve the quadratic inequality
x2 + 4x + 4 < 0⇔

Solve the quadratic inequality
x2 + x + 1 > 0⇔

1



Solution to Final (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/15 6:00-7:00pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Solve the equation.
(x − 3

√
3)(x − π)(x + 7

2 ) = 0⇔ x = 3
√

3, π, −7
2

Factor the polynomial if possible
3x2 + 2x − 21 = (3x − 7)(x + 3)

Factor the polynomial if possible
x2 + x − 1 = (x − −1+

√
5

2 )(x − −1−
√

5
2 )

Factor the polynomial if possible
x2 + 0.8x + 1 is not factorizable because b2 − 4ac < 0.

The Vertex of the parabola y = −2x2 + 11x + 21 is vertex = (11
4 ,

289
8 )

The Vertex of the parabola y = 3x2 + 5x + 2 is vertex = (−5
6 ,

47
36 )

Solve the quadratic inequality
x2 − 4x + 3 > 0⇔ x < 1 or x > 3.

Solve the quadratic inequality
x2 + 4x + 4 6 0⇔ x = −2

Solve the quadratic inequality
x2 + 4x + 4 < 0⇔ (no solution).

Solve the quadratic inequality
x2 + x + 1 > 0⇔ x ∈ R

1



Final (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/15 6:00-7:00pm
*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better to
leave a choice problem blank if you are not certain of your answer.

ID: Name:

Solve the equation.
(x − 3

√
3)(x − π)(x + 7

2 ) = 0⇔ x =

Factor the polynomial if possible
3x2 + 2x − 21 =

Factor the polynomial if possible
x2 + x − 1 =

Factor the polynomial if possible
x2 + 0.8x + 1 =

The Vertex of the parabola y = −2x2 + 11x + 21 is =

The Vertex of the parabola y = 3x2 + 5x + 2 is vertex =

Solve the quadratic inequality
x2 − 4x + 3 > 0⇔

Solve the quadratic inequality
x2 + 4x + 4 6 0⇔

Solve the quadratic inequality
x2 + 4x + 4 < 0⇔

Solve the quadratic inequality
x2 + x + 1 > 0⇔

1



Solution to Midterm I (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/23 6:30-8:15pm*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.ID: Name:
Simplify the expression 76 −

(
−13

) = 96 = 32
−14 (

−27
)
− 14 = −10

Simplify the expression 4− [ (7− 6) + (9− 19) ] = 134{−5 + 3 [3− 5 (−3 + 1)]} = 4× 34 = 136
Add and multiply

1 + 2 + 3 + · · ·+ 50 = (1 + 50) · 502 = 51 · 25 = 12754 · 53 · 25 = 4 · 25 · 53 = 100 · 53 = 5300
Choose the fraction(s) equivalent to −8r

−9s (select all that apply).
d. − 8r

−9s

Expansion (clear the parenthesis)(a+b) · (a+b) = a2 +ab+ba+b2 = a2 +2ab+b2 (a+b+ c) · (x +y) = ax +ay+bx +by+ cx + cy

Compute(−4)−2 = 116 (−4)−1 = −14 (−4)0 = 1 (−4)1 = −4 (−4)2 = 16
Simplify the expression

x3 · x−8 · x4 = x3−8+4 = x−1 = 1
x

a4b−2
a−2b2 = a4+2

b2+2 = a6
b4

Write the polynomial in standard form and indicate its degree(x + 2)(3x + 1)(1− x) = (3x2 + 7x + 2)(1− x) = (3x2 + 7x + 2)− x(3x2 + 7x + 2)= (3x2 + 7x + 2)− (3x3 + 7x2 + 2x) = −3x3 − 4x2 + 5x + 2; degree = 3
x(−x(−2x + 1) + 4)− 1 = x(2x2 − x + 4)− 1 = 2x3 − x2 + 4x − 1, degree = 3
MultiplicationLet p = x−1, and q = −x2−3x+1. Compute p·q = −(x−1)(x2+3x−1) = −[(x3+3x2−x)−(x2+3x−1)] = −x3−2x2+4x−1(2x + 3)(2x − 3) = 4x2 − 9
Substitution of a rational expression

Find the value of the expression x2+5
x−3 for x = a− 1. x2+5

x−3 |x=a−1 = (a−1)2+5(a−1)−3 = a2−2a+6
a−4

Bonus: Simplify the expression
x+116−x2 · x−4

x2+x = −1
x(x+4)

1



Midterm I (MAP-103 Proficiency Algebra Summer-II 2018) 2018/07/23 6:30-8:15pm*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Simplify the expression 76 −

(
−13

) =
−14 (

−27
)
− 14 =

Simplify the expression 4− [ (7− 6) + (9− 19) ] =4{−5 + 3 [3− 5 (−3 + 1)]} =
Add and multiply 1 + 2 + 3 + · · ·+ 50 =4 · 53 · 25 =
Choose the fraction(s) equivalent to −8r

−9s (select all that apply).
a. − 8r9s b. −8r9sc. 8r
−9s d. − 8r

−9s

Expansion (clear the parenthesis)(a + b) · (a + b) = (a + b + c) · (x + y) =
Compute(−4)−2 = (−4)−1 = (−4)0 = (−4)1 = (−4)2 =
Simplify the expression

x3 · x−8 · x4 =
a4b−2
a−2b2 =

Write the polynomial in standard form and indicate its degree(x + 2)(3x + 1)(1− x) = , degree =
x(−x(−2x + 1) + 4)− 1 = , degree =
MultiplicationLet p = x − 1, and q = −x2 − 3x + 1. Compute p · q =(2x + 3)(2x − 3) =
Substitution of a rational expression
Find the value of the expression x2+5

x−3 for x = a− 1. x2+5
x−3 |x=a−1 =

Bonus: Simplify the expression
x+116−x2 · x−4

x2+x

1



Solution to Midterm II (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/06 6:00-8:15pm*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Select all that apply.(a) x = x + 2 is always false.(c) (x + 1)2 − 1 = x(x + 2) is always true.
Find all solutions to the equation.
23x − 5 = 16x + 9⇔ x = 28
Solve the inequality.
−3x < 6⇔ x > −2.
|1− x| > 5⇔ x > 6 or x 6 −4.
Draw the line 3x + 4y + 2 = 0, and indicate its slope and intercepts.Slope = − 34
x−intercept = − 23
y−intercept = − 12
Find the linear equation of a given line.The line that passes through (1, 0) and is parallel to the line y = 2x + 3: y = 2x − 2
Solve the linear system.{
−2x + 3y = 82x − y = 0 ((2, 4) is the only solution.)

Solve the linear system.{
−2x + y = 3
−4x + 2y = 6 (There are infinitely many solutions.)

Solve the linear system.{
−2x + 3y = 33x + 2y = 6 (( 1213 , 2113 ) is the only solution.

Simplify the following expressions
26−√5 = 2(6+√5)31 , √7−26−√7 = (√7−2)(6+√7)29 = −5+4√729 , √7(√21−√35) = 7(√3−√5))

Compute
27 43 = 81, 27 −43 = 181 , 27 4

−3 = 181 , 27 −4
−3 = 81, 2 74 · 2 47 · 2 −12 = 2 5128 .

1



Midterm II (MAP-103 Proficiency Algebra Summer-II 2018) 2018/08/06 6:00-8:15pm*A problem worths 10 points. If you answer a choice problem incorrectly, 5 points will be taken away. So it is better toleave a choice problem blank if you are not certain of your answer.
ID: Name:
Select all that apply.(a) x = x + 2 is always false.(b) x + 2 = 5 is always false.(c) (x + 1)2 − 1 = x(x + 2) is always true.(d) x2 − y2 = (x − y)2 is always true.
Find all solutions to the equation.
23x − 5 = 16x + 9⇔ x =
Solve the inequality.
−3x < 6 : .
|1− x| > 5⇔ .
Draw the line 3x + 4y + 2 = 0, and indicate its slope and intercepts.Slope =
x−intercept =
y−intercept =
Find the linear equation of a given line.The line that passes through (1, 0) and is parallel to the line y = 2x + 3:
Solve the linear system.{
−2x + 3y = 82x − y = 0

Solve the linear system.{
−2x + y = 3
−4x + 2y = 6

Solve the linear system.{
−2x + 3y = 33x + 2y = 6

Simplify the following expressions
26−√5 = , √7−26−√7 = , √7(√21−√35) =

Compute
27 43 = , 27 −43 = , 27 4

−3 = , 27 −4
−3 = , 2 74 · 2 47 · 2 −12 =

1
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Lecture 1

Numbers and Operations
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Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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From chaos to harmony

For many of us, mathematics is a messy jumble of incomprehensible formulas:,
just the way musical scores are for someone who can’t read music.

Both formulas and scores hide meaning and harmony.

2 / 8

What this course is about

This a proficiency course in Algebra.

We will learn the basics of algebraic literacy:

• how to read, understand and manipulate algebraic expressions,

• how to solve simple equations and inequalities,

• how to visualize formulas by drawing graphs.

Enjoy the course!
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What Algebra studies

• Numbers: 1,
5

7
, −27.4, 0,

√
2, π, . . .

• Operations with numbers:
addition 1 + 2 = 3 ,
subtraction 3− 1 = 2 ,
multiplication 3 · 2 = 6 ,
division 6÷ 3 = 2 ,
exponentiation 23 = 8 ,
taking the radical

√
49 = 7 ,

and their combinations −5 + 23 · (3−
√
4) = 3 .

Often numbers are denoted by symbols (letters):
a, b, c, . . . , x, y, z, A, B, C, . . . , X, Y, Z, α, β, γ, . . .

Symbols are connected by operations into formulas:

1 + 2x , x− 3y , x2 − x+ 1 , x1,2 =
−b±

√
b2 − 4ac

2a
, . . .

4 / 8

Numbers

Positive integers: 1, 2, 3, 4, 5, . . .

Integers: ...− 5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, . . .

Rational numbers are quotients
p

q
, where p and q are integers and q 6= 0 .

For example,
1

2
,

2

1
,

6

3
,
−4

7
are rational numbers.

Any integer is a rational number. For example, 3 =
3

1
.

Irrational numbers are numbers which cannot be represented as a quotient of two integers.

For example,
√
2 , 3

√
5 ,

√
2 +

√
3 , π .

5 / 8
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Decimal presentations

Rational numbers can be represented as decimals:

9

2
= 4.5,

1

3
= 0.333 . . . = 0.3

Any rational number is presented as either a finite decimal, like
9

2
= 4.5 or

7

8
= 0.875 ,

or a repeating decimal, like
1

3
= 0.333 . . . = 0.3 or

168

11
= 15.272727 . . . = 15.27 .

Irrational numbers also have decimal representations. They are infinite and not repeating.

For example,
√
2 = 1.41421356 . . . and π = 3.14159265 . . . .

6 / 8

Real numbers and the real line

Both rational and irrational numbers are called real numbers.

Real numbers live on the real line:

0 1 2 3 4 5 6 7−1−2−3−4−5−6−7

1

2−1.75−4.3
√
2 π

7 / 8
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Summary

In this lecture, we have learned

�✓ what this course is about
�✓ what Algebra studies (numbers, operations, formulas)
�✓ what kinds of numbers we are going to deal with

(integers, rational and irrational numbers)
�✓ what is a decimal representation of a number
�✓ what real numbers are
�✓ what the real line is

8 / 8
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Lecture 2

Numerical Expressions
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Numerical expressions

A numerical expression consists of
numbers, symbols of operations and parentheses,

and describes an algorithm (a set of instructions) for calculation.

For example, 3− 8÷ 4 · (1 + 2) .

The result of the calculation is called the value of the numerical expression.
The process of calculation is called evaluation.

In this lecture we will learn how to evaluate a numerical expression.
For example, here is the evaluation of the numerical expression given above:

3− 8÷ 4 · (1 + 2) =
3− 8÷ 4 · 3 =
3− 2 · 3 =
3− 6 =
−3.

In particular, we will learn in which order to perform the arithmetic operations.
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Without parentheses

Multiplication and division have to be done before addition and subtraction,
if the formula does not contain parentheses.

By this rule, 1 + 2 · 3 = 1 + 6 = 7 .

If the formula contains several multiplications and divisions(and still no parentheses),
the multiplications and divisions are performed in order from left to right.

For example, 6÷ 3 · 5 = 6÷ 3 · 5 = 2 · 5 = 10 ,

6÷ 3 + 4 · 5 = 6÷ 3 + 4 · 5 = 2 + 4 · 5 = 2 + 20 = 22 .

Additions and subtractions are done after all multiplications and divisions, also from left to right:

5− 4÷ 2 + 3 · 2÷ 6 = 5− 4÷ 2 + 3 · 2 ÷ 6 = 5− 2 + 1 = 5− 2 + 1 = 3 + 1 = 4 .

3 / 7
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Two kinds of parentheses

In expressions, parentheses play two different roles.

• First, they help describe the order of operations:

(1 + 2) · 3 = 3 · 3 = 9 .

Notice that the expression above without parentheses has a different value:

1 + 2 · 3 = 1 + 6 = 7 .

• Second, parentheses have to surround a negative number,

when the number comes after the sign of an arithmetic operation, as in

2 + (−3) , or 2 · (−3) .
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Parentheses around a negative number

Parentheses around a negative number do not matter for the order of operations.

If all parentheses in a formula are of that kind,

then calculations should be performed as if there were no parentheses:

first, all multiplications and divisions from left to right,

then all additions and subtractions from left to right:

(−4)÷ 2 + 3 · (−5) = (−4)÷ 2 + 3 · (−5) = −2 + (−15) = −17 .

5 / 7
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Parentheses rule

If a formula contains parentheses which surround more than one number, then

1. find the innermost parentheses of this kind,

2. evaluate the formula within the parentheses,

3. and continue if needed.

For example,
(3− 1) · (1 + 4÷ (3− 5)) =

2 · (1 + 4÷ (3 − 5)) =
2 · (1 + 4÷ (−2)) =
2 · (1 + (−2)) =
2 · (−1) =
−2 .

6 / 7

Summary

In this lecture, we have learned

�✓ what a numerical expression is
�✓ what the value and evaluation of a numerical expression are
�✓ how parentheses are used in a numerical expression
�✓ in which order arithmetic operations are performed

7 / 7
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Variables and Algebraic Expressions
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Variables

A variable is a letter representing a number.

Why do we need letters?

• Some numbers are special,
but don’t have any convenient representation, like π .

• Some numbers are given by a formula, which is too bulky to deal with,

like the golden ratio ϕ =
1 +

√
5

2
.

• Sometimes we don’t know the number, but want to find it.
For example, when we are solving the equation 2x+ 1 = 7 .

• Sometimes we want to express a relationship between quantities,
like d = v · t , where d is distance, v is speed and t is time.

Variables for numbers are like names (or nicknames) for people.
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Algebraic expressions

We already know (from Lecture 2) that a numerical expression

consists of numbers, symbols for operations and parentheses,
and describes an algorithm for calculation.

For example, 1 · 2− 3 · (1 + 2)÷ 4 is a numerical expression.

An algebraic expression (or simply “an expression”)
consists of numbers, variables, symbols for operations and parentheses,

and becomes a numerical expression when we substitute (plug in)
a numerical value for each variable.

Example 1. 3 · x− 4 · (x+ 1) is an algebraic expression. It involves the numbers 3, 4, 1 , the variable
x , and the operations multiplication, addition and subtraction. How many operations are there in this
expression? Four.

Example 2. x · y − 5 · (x+ y)

4
is an algebraic expression. It involves the numbers 5, 4 , the variables

x, y , and the operations multiplication, division, addition and subtraction. How many operations are
there in this expression? Five.

3 / 10
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When can the multiplication dot be omitted?

It is customary not to write the multiplication dot in front of a variable or parenthesis:

a · b is written as ab ,

2 · x is written as 2x ,

but the dot has to be present in x · 2 and 2 · 2 ,
a · (b+ c) is written as a(b+ c) ,

(a+ b) · (c+ d) is written as (a+ b)(c+ d) .

4 / 10

Evaluation of expressions

An algebraic expression becomes a numerical expression
if we substitute (plug in) a numerical value for each variable.

For example, if we plug x = 2 into the expression 3x− 4(x+ 1) , we get

3x− 4(x+ 1)

∣

∣

∣

∣

∣

x=2

= 3 · 2− 4(2 + 1) ,

which is a numerical expression. Its value is

3 · 2− 4(2 + 1) = 6− 4 · 3 = 6− 12 = −6 .

This process is called evaluation at x = 2 .

A numerical expression is a special kind of algebraic expression.

A numerical expression is an algebraic expression which contains no variables.

5 / 10
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An expression as a program

An expression may be understood as a program

(or algorithm, or set of instructions) describing a calculation.

For example, the expression 3x+ 1 represents the following procedure:

x
multiply by 3

−−−−−−−−→ 3x
add 1

−−−−−−−−→ 3x+ 1.

For each value of the variable x (for each input), this program delivers an output, which is called the
value of the expression 3x+ 1 .

3x+ 1

output

input
x

3x+ 1

6 / 10

Evaluating an expression is running the program

When we evaluate an expression at a number, we run the corresponding program.

For example, to evaluate the expression 3x+ 1 at the number 2 ,
we need to plug x = 2 into 3x+ 1 :

3x+ 1

output

input

2

7
We denote this evaluation as follows:

3x+ 1

∣

∣

∣

∣

∣

x=2

= 3 · 2 + 1 = 7 .

7 / 10

4



Examples of evaluations

Example 1. Evaluate the expression
2x− 1

x+ 1
at x = −3 .

Solution.

2x− 1

x+ 1

∣

∣

∣

∣

∣

x=−3

=
2(−3)− 1

(−3) + 1
=

−6− 1

−2
=

−7

−2
=

7

2
.

Example 2. Find the value of the expression 3(x− 1) + 2y at x = 1 , y = −2 .

Solution.

3(x− 1) + 2y

∣

∣

∣

∣

∣

x=1, y=−2

= 3(1− 1) + 2(−2) = 3 · 0− 4 = 0− 4 = −4 .
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Why algebraic expressions are important

Algebraic expressions and operations with them are fundamentally involved in all parts of Algebra.

So far, we have met only the simplest of them.

Later in the course we will study more complex expressions and operations.

Fluency in operating with algebraic expressions is crucial for your success in the course.

9 / 10
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Summary

In this lecture, we have learned

�✓ what a variable is
�✓ what an algebraic expression is
�✓ how to evaluate an expression at a number
�✓ how to understand an expression as a program
�✓ why algebraic expressions are important

10 / 10
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Properties of operations

Addition and multiplication are basic arithmetic operations.

They share two useful properties.

These properties are

• commutativity

• associativity

In this lecture, we will study these properties

and learn how to make use of them.

2 / 10

Commutativity of addition

When adding two numbers, the order of the numbers doesn’t matter.

For example, 2 + 3 = 3 + 2 .

This property of addition can be written using variables:

a+ b = b+ a for any a and b

Since a and b can represent any numbers, this formula represents infinitely many equalities.
For example, if a = 8 and b = 5 , then a+ b = b+ a becomes

8 + 5 = 5 + 8 .
If a = x and b = 5 , then a+ b = b+ a becomes

x+ 5 = 5 + x .

This property of addition is called commutativity.

3 / 10
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Commutativity of multiplication

Multiplication is also commutative.

When multiplying two numbers, the order of the numbers doesn’t matter.

For example, 2 · 3 = 3 · 2 .
This property is expressed using variables as follows:

a · b = b · a for any a and b

Since a and b represent any numbers, this formula represents infinitely many equalities.

For example, if a = 4 and b = 7 , then a · b = b · a becomes
4 · 7 = 7 · 4 ,

if a = 2 and b = x , then a · b = b · a becomes
2 · x = x · 2 .

4 / 10

Associativity of addition

When we add three numbers, the result does not depend on the order of operations:

(1 + 2) + 3 = 3 + 3 = 6
1 + (2 + 3) = 1 + 5 = 6 .

That is, (1 + 2) + 3 = 1 + (2 + 3) .

In general,

(a+ b) + c = a+ (b+ c) for any a , b and c

This property of addition is called associativity.

Associativity helps to make calculations easier. Compare:

428 + 13999 + 1 = (428 + 13999) + 1 = 14427 + 1 = 14428 and

428 + 13999 + 1 = 428 + (13999 + 1) = 428 + 14000 = 14428 .

5 / 10
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Associativity of multiplication

Multiplication is also associative:

(ab)c = a(bc) for any a , b and c

Associativity of multiplication is useful:

53 · 25 · 4 = 53 · (25 · 4) = 53 · 100 = 5300.

In the next examples, both associativity and commutativity are used:

5 · 97 · 20 = (5 · 97) · 20 = (97 · 5) · 20 = 97 · (5 · 20) = 97 · 100 = 9700,

2x · 3y = 2(x · 3)y = 2(3x)y = (2 · 3)xy = 6xy.

6 / 10

When can we leave out parentheses?

Due to associativity,
when we perform either additions only, or multiplications only,
the result does not depend on the order of operations:

((1 + 2) + 3) + 4 = (1 + (2 + 3)) + 4 = 1 + ((2 + 3) + 4)
((2 · 3) · 4) · 5 = (2 · (3 · 4)) · 5 = 2 · ((3 · 4) · 5) .

Therefore, we do not use parentheses in a formula
which involves additions only or multiplications only, like this

1 + 2 + 3 + 4 , 2 · 3 · 4 · 5
Moreover, due to commutativity, the order of numbers doesn’t matter:

1 + 2 + 3 + 4 = 2 + 3 + 4 + 1 = 4 + 2 + 1 + 3 = . . .

2 · 3 · 4 · 5 = 2 · 3 · 5 · 4 = 4 · 2 · 5 · 3 = . . .

Recall that if both addition and multiplication are present,
then the order does matter: (1 + 2) · 3 6= 1 + 2 · 3

7 / 10
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Special numbers: 0 and 1

a+ 0 = a for any a

Numbers a and −a are called opposite to each other.

For example,−2 is opposite to 2 , and 2 is opposite to −2 .

a+ (−a) = 0 for any a

The product of any number by 0 equals 0 :

a · 0 = 0 for any a

The product of any number by 1 equals this number:

a · 1 = a for any a

8 / 10

Reciprocals

Numbers a and b are called reciprocals if a · b = 1 .

For example, 2 and
1

2
are reciprocals, since 2 · 1

2
= 1 .

Numbers a and
1

a
are reciprocals for any non-zero a .

a · 1
a
= 1 for any non-zero a

0 has no reciprocal, because there is no number b such that 0 · b = 1 .
Indeed, 0 · b = 0 for any b .

9 / 10
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Summary

In this lecture, we have learned

�✓ commutativity of addition: a+ b = b+ a

�✓ commutativity of multiplication: ab = ba

�✓ associativity of addition: (a+ b) + c = a+ (b+ c)
�✓ associativity of multiplication: (ab)c = a(bc)
�✓ when parentheses are not needed
�✓ identities involving 0 and 1: a+ 0 = a, a · 1 = a, a · 0 = 0
�✓ opposite numbers
�✓ reciprocal numbers

10 / 10
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Subtraction is the opposite of addition

Subtraction is the operation which is opposite to addition:

3

+2

5

−2

This means that (3 + 2)− 2 = 3 and (5− 2) + 2 = 5.

Recall that numbers a and −a are called opposite to each other.
For example,−2 is opposite to 2 , and 2 is opposite to −2 .

Subtraction of a number is addition of its opposite:

5− 2 = 5 + (−2) = 3 and 5− (−2) = 5 + 2 = 7 .

Therefore, we can express any subtraction as addition of the opposite quantity:

a− b = a+ (−b) for any a, b .
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No commutativity for subtraction

We know that addition is commutative: a+ b = b+ a for any a, b .

Subtraction is not commutative: it is not true that a− b = b− a unless a = b .

Indeed, take a = 1 and b = 2 . Then a− b = 1− 2 = −1 ,
but b− a = 2− 1 = 1 .

In general, a− b and b− a are opposite to each other: b− a = −(a− b).

So subtraction is not commutative.
But expressing subtraction a− b in terms of addition a+ (−b) ,

we may apply the commutativity of addition to get:
a− b = a+ (−b) = −b+ a for any a, b .

3 / 10
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No associativity for subtraction

We know that addition is associative:

(a+ b) + c = a+ (b+ c) for any a, b, c .

Subtraction is not associative:
(a− b)− c 6= a− (b− c) .

For example, if a = 3 , b = 1 and c = 1 , then

(a− b)− c = (3− 1)− 1 = 2− 1 = 1 ,
but a− (b− 1) = 3− (1− 1) = 3− 0 = 3 .

So subtraction is not associative.
But expressing subtraction (a− b)− c in terms of addition (a+ (−b)) + (−c) ,

we may apply the associativity of addition to get:
(a− b)− c = (a+ (−b)) + (−c) = a+ ((−b) + (−c)) = a+ (−b− c) .

Recall that a− b− c has to be understood as (a− b)− c .

4 / 10

Division is the opposite of multiplication

Division is the operation which is opposite to multiplication:

3

×2

6

÷2
This means that (3 · 2)÷ 2 = 3 and (6÷ 2) · 2 = 6.

Recall that numbers a and 1/a are called reciprocals.
For example, 2 and 1/2 are reciprocals.

Division by a non-zero number is multiplication by its reciprocal:

6÷ 2 = 6 · 1
2
= 3 and 6÷ 1

2
= 6 · 2 = 12 .

(Keep in mind that the reciprocal of
1

2
is 2 .)

In general: a÷ b = a · 1
b

for any a and non-zero b .

5 / 10
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Negative one

The reciprocal of −1 is −1 , that is
1

−1
= −1 . Indeed, (−1)(−1) = 1 .

Sometimes negative one is slightly hidden: −a = (−1)a .

It is helpful to keep this in mind.

For example,
−a

−b
=

a

b
, because

−a

−b
=

(−1)a

(−1)b
=

a

b
.

Another example:
a

−b
=

a

(−1)b
=

1

−1

a

b
= (−1)

a

b
= −a

b
=

−a

b
.

6 / 10

Why division by zero does not make sense

Let us try to divide some number, say 1 , by 0 .
We do not know what result will be. Let us call it x : 1÷ 0 = x .

1

÷0

x

×0

If 1÷ 0 = x , then x is a number such that x · 0 = 1 .
Which is impossible since x · 0 = 0 for any x.

Never divide by zero! It doesn’t make sense.

7 / 10
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No commutativity for division

We know that multiplication is commutative: ab = ba for any a, b .

Division is not commutative:
in general, it is not true that a÷ b = b÷ a .

For example, if a = 2 and b = 1 , then a÷ b = 2÷ 1 = 2 ,

but b÷ a = 1÷ 2 =
1

2
.

The expressions a÷ b and b÷ a are reciprocal to each other.

Indeed, a÷ b = a · 1
b

and b÷ a = b · 1
a
. Therefore

(a÷ b)(b÷ a) =

(

a · 1
b

)

·
(

b · 1
a

)

= a

(

1

b
· b
)

1

a
= a · 1 · 1

a
= a · 1

a
= 1

In fractional notation, this may be written as
b

a
=

1

a/b
.
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No associativity for division

We know that multiplication is associative:

(ab)c = a(bc) for any a, b, c .

Division is not associative: (a÷ b)÷ c 6= a÷ (b÷ c) .

Or, in fractional notation,
a/b

c
6= a

b/c
.

For example, if a = 8 , b = 4 and c = 2 , then

(a÷ b)÷ c = (8÷ 4)÷ 2 = 2÷ 2 = 1 ,
but a÷ (b÷ c) = 8÷ (4÷ 2) = 8÷ 2 = 4 .

So division is not associative.

But expressing division (a÷ b)÷ c in terms of multiplication

(

a · 1
b

)

· 1
c
,

we may apply the associativity of multiplication to get:

(a÷ b)÷ c =

(

a · 1
b

)

· 1
c
= a ·

(

1

b
· 1
c

)

= a · 1

b · c = a÷ (b · c) .

9 / 10
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Summary

In this lecture, we have learned that

�✓ subtraction is the opposite of addition
�✓ subtraction can be expressed as addition of the opposite: a− b = a+ (−b)
�✓ subtraction is neither commutative nor associative
�✓ division is the opposite of multiplication

�✓ division can be expressed as multiplication by the reciprocal: a÷ b = a · 1
b

�✓ division by zero does not make sense

�✓ division is neither commutative nor associative

10 / 10
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Properties of operations

There are five important properties of the basic arithmetic operations of addition and multiplication.

These properties are

• commutativity of addition and multiplication

• associativity of addition and multiplication

• distributivity of multiplication over addition.

Commutativity and associativity (which we studied in Lecture 4)
refer either to addition or multiplication.

Distributivity connects addition and multiplication.

2 / 14

Distributivity of multiplication over addition

Multiplication distributes over addition :

a(b+ c) = ab+ ac for any a , b and c

Example 1. If a = 2, b = 3, c = 4, then the distributive property reads
2(3 + 4) = 2 · 3 + 2 · 4.

Distributivity means that
we may calculate the value of the expression 2(3 + 4) in two different ways:

2(3 + 4) = 2 · 7 = 14 or 2 · 3 + 2 · 4 = 6 + 8 = 14.
Which way is better (easier, faster)? The first one!

Example 2. Calculate the value of the expression 25(4 + 10) .
Direct calculation gives

25(4 + 10) = 25 · 14 =? (need calculator?)
If we use distributivity instead, then

25(4 + 10) = 25 · 4 + 25 · 10 = 100 + 250 = 350.

Distributivity gives us a choice. Use it!

3 / 14
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Distributivity with variables

Example 3. If in the distributive formula a(b+ c) = ab+ ac

we put a = 2, b = x, c = 3y, then we get

2(x+ 3y) = 2x+ 2 · 3y = 2x+ 6y.

Example 4. Eliminate the parentheses in the expression x(1− 2y) .

In order to eliminate the parentheses, we need to distribute x over 1− 2y :

x(1− 2y) = x(1 + (−2y)) =
x · 1 + x(−2y) = x+ x(−2)y = x+ (−2)xy = x− 2xy.

This problem may be solved faster! Because multiplication distributes over subtraction, too.

4 / 14

Distributivity over subtraction

Distributivity is valid for subtraction also:

a(b− c) = ab− ac for any a , b and c

Indeed, since b− c = b+ (−c) , we have
a(b− c) = a(b+ (−c)) = ab+ a(−c) = ab− ac .

Example (the same as before).

Get rid of the parentheses in the expression x(1− 2y) .

x(1− 2y) = x · 1− x(2y) = x− 2xy.

Example. Clear parentheses in the expression x(−1− 2y).

x(−1− 2y) = x · (−1)− x(2y) = −x− 2xy.

5 / 14
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Another look at distributivity

(a+ b)c = ac+ bc for any a , b and c

Indeed, by commutativity of multiplication,
(a+ b)c = c(a+ b) .

By distributivity,
c(a+ b) = ca+ cb .

By commutativity,
ca+ cb = ac+ bc .

Overall,
(a+ b)c = ac+ bc .

Example. Clear parentheses in the expression (2x+ 3y)z .

Solution. (2x+ 3y)z = 2xz + 3yz .

Similarly, (a− b)c = ac− bc for any a , b and c .
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Distribution of a negative quantity

Be careful in application of the formula a(b+ c) = ab+ ac , when a is negative!

Example 1. Clear parentheses in the expression −2(x+ y) .

Solution.

−2(x+ y) = (−2)x+ (−2)y = −2x− 2y .

Example 2. Clear parentheses in the expression −2(x− y) .

Solution.

−2(x− y) = −2(x+ (−y)) = (−2)x + (−2)(−y) = −2x+ 2y .

Example 3. Clear parentheses in the expression −2(−x− y) .

Solution.

−2(−x− y) = −2((−x) + (−y)) = (−2)(−x) + (−2)(−y) = 2x+ 2y .

7 / 14

4



Negative sign in front of parentheses

What is the meaning of the expression −x ? It represents a quantity opposite to x .
For example, if x = 3 , then −x = −3 .
If x = −3 , then −x = − (−3)

︸︷︷︸

x

= 3 .

You can always check if one number is the opposite of another: their sum must be zero.

In some cases, it may be convenient to represent −x as (−1)x .

Example 1. Clear parentheses in the expression −(x+ y) .
Solution.

−(x+ y) = (−1)(x+ y) = (−1)x+ (−1)y = −x− y .

Example 2. Clear parentheses in the expression −(x− y) .
Solution.

−(x− y) = (−1)(x− y) = (−1)x− (−1)y = −x+ y .

8 / 14

Expansion

Problem. Clear parentheses in the expression (a+ b)(c+ d) .

Solution. How to distribute a+ b over c+ d ?

We may think of c+ d as a single entity.

For this, denote c+ d by x . Then

(a+ b) (c+ d)
︸ ︷︷ ︸

x

= (a+ b)x = ax+ bx = a(c+ d) + b(c+ d)

= ac+ ad+ bc+ bd .

9 / 14
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Expansion

Our result in distribution of a+ b over c+ d is

(a+ b)(c+ d) = ac+ ad+ bc+ bd .

It is convenient to understand this formula in the following way:

First, we distribute a over (c+ d) , the result is ac+ ad .
Then, we distribute b over (c+ d) , the result is bc+ bd .
Overall, (a+ b)(c + d) = ac+ ad+ bc+ bd .

Observe that the right hand side contains no parentheses.

This procedure is called expansion or clearing the parentheses.

Similar arguments are valid when the parentheses contain any number of terms.

For example,
(a+ b)(x+ y + z) = ax+ ay + az + bx+ by + bz .

10 / 14

Examples of expansion

Example 1. Expand the expression (2 + x)(3 + y).

Solution. Expand means clear parentheses using distribution.

(2 + x)(3 + y) = 2 · 3 + 2y + x · 3 + xy = 6 + 2y + 3x+ xy .

Example 2. Clear parentheses in the expression (1− 2x)(−3 + y).

Solution. In this example, we have to be careful about the negative signs in the expression.

For this reason, we rewrite the expression as follows

(1− 2x)(−3 + y) = (1 + (−2x))((−3) + y) .

Now we distribute:

(1 + (−2x))((−3) + y) = 1 · (−3) + 1 · y + (−2x) · (−3) + (−2x)y
= −3 + y + 6x− 2xy .

11 / 14
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Factoring

Rewriting the distributivity formula a(b+ c) = ab+ ac backwards, we get
ab+ ac = a(b+ c) .

This formula is called factoring.
When we add two terms, ab and ac , containing a common factor of a ,

we may factor out a from the parentheses.

Example. Factor the expression 6x+ 9xy.

Solution. Both terms, 6x and 9xy , have a common factor of 3x:
6x = 3x · 2, 9xy = 3x · 3y.

Factoring out 3x , we get
6x+ 9xy = 3x · 2 + 3x · 3y = 3x(2 + 3y).

12 / 14

Combining similar terms

Distributivity and factoring helps us to combine similar terms:
2x+ 3x = (2 + 3)x = 5x.

Example. Simplify the expression 2x+ 3y + x+ 4y.

Solution. First, we use commutativity and associativity of addition:
2x+ 3y + x+ 4y = (2x+ x)

︸ ︷︷ ︸

x−terms

+(3y + 4y)
︸ ︷︷ ︸

y−terms

.

Then we combine similar terms:
(2x+ x) + (3y + 4y) = 3x+ 7y .

13 / 14
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Summary

In this lecture, we have learned

�✓ what distributivity is: a(b+ c) = ab+ ac

a(b− c) = ab− ac

�✓ how to clear parentheses (expand expressions)
�✓ what factoring is
�✓ how to factor expressions using distributivity
�✓ how to combine similar terms

14 / 14
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Multiplying repeated factors

Abbreviations are common and useful.
For example, instead of 2 + 2 + 2 + 2 + 2 we can write 2 · 5 :

2 · 5 = 2 + 2 + 2 + 2 + 2 .
The sum of several equal numbers can be abbreviated to a product.

The product of several equal numbers can be abbreviated similarly:
instead of 2 · 2 · 2 · 2 · 2 , we can write 25 :

25 = 2 · 2 · 2 · 2 · 2 .
In general, xn = x · x · x · · · · x · x

︸ ︷︷ ︸

n times

.

Here x is any number and n is a positive integer.

Examples. x4 = x · x · x · x
102 = 10 · 10 = 100

210 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2
︸ ︷︷ ︸

10 times

= 1024.
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Exponential notation

x
n

base

exponent

We read xn as “x to the n th.”

n = 2 and n = 3 are special:

x2 is read as “x squared”,

x3 as “x cubed”.

Do you see why x1 = x for any x ?

and why 1n = 1 for any positive integer n ?

3 / 8
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When the base is negative

Example 1. (−1)2 = (−1) · (−1) = 1

(−1)3 = (−1) · (−1) · (−1) = −1 .

In general, if n is even (n = 0, 2, 4, 6, . . . ) then (−1)n = 1 and
if n is odd (n = 1, 3, 5, 7, . . . ) then (−1)n = −1 .

Example 2. (−2)3 = (−2) · (−2) · (−2) = −8
(−2)4 = (−2) · (−2) · (−2) · (−2) = 16

In general, (−x)n = (−x) · (−x) . . . (−x)
︸ ︷︷ ︸

n times

= (−1)x · (−1)x . . . (−1)x
︸ ︷︷ ︸

n times

= (−1) · (−1) . . . (−1)
︸ ︷︷ ︸

n times

·x · x . . . x
︸ ︷︷ ︸

n times

= (−1)nxn.

Recall: if n is even, then (−1)n = 1 , and if n is odd, then (−1)n = −1.
Therefore, (−x)n = xn if n is even, and (−x)n = −xn if n is odd.

Warning: (−x)n 6= −xn when n is even.
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Zero and negative exponents

What is 20 , or 2−1 , 2−2 , 2−3, . . . ?

To answer this question, let us have a look at the process of consecutive multiplication by 2 :

2
×2

4
×2

8
×2

16
×2

. . .
×2

1
×21

2

×21

4

×21

8

×2

. . .

We understand this as an infinite sequence of powers of 2 :

21
︸︷︷︸

2

×2

22
︸︷︷︸

4

×2

23
︸︷︷︸

8

×2

24
︸︷︷︸

16

×2

. . .
×2

20
︸︷︷︸

1

×2

2−1

︸︷︷︸

1

2

×2

2−2

︸︷︷︸

1

4

×2

2−3

︸︷︷︸

1

8

×2

. . .

We see that 20 = 1 , 2−1 =
1

2
=

1

21
, 2−2 =

1

4
=

1

22
, 2−3 =

1

8
=

1

23
, and so on.

5 / 8

3



Zero and negative exponents

We define x0 = 1 for any non-zero x and

x−n =
1

xn
for any non-zero x and any positive integer n .

Examples. 70 = 1 ,

(

2

3

)

0

= 1 , (−5)0 = 1 , (−1)0 = 1

3−1 =
1

31
=

1

3
, 3−2 =

1

32
=

1

9
, x−2 =

1

x2
.

Observe that the formula x−n =
1

xn
means that xn and x−n are reciprocals. Therefore,

xn =
1

x−n
. A power can be moved from numerator to denominator (or the other way around) with

the opposite exponent.

Example.
3−1

2−4
=

24

31
=

16

3
.
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Drill

Here are the exponential rules we have learned so far:
xn = x · x · x · · · · x · x

︸ ︷︷ ︸

n times

x0 = 1

x−n =
1

xn
,

1

x−n
= xn

Let us master these rules.

23 = 2 · 2 · 2 = 8

(−2)3 = (−2) · (−2) · (−2) = −8

2−3 =
1

23
=

1

8
,

1

2−3
= 23 = 8

(−2)−3 =
1

(−2)3
=

1

−8
= −1

8

20 = 1 , (−2)0 = 1

7 / 8
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Summary

In this lecture, we have learned about

�✓ powers with positive exponents: xn = x · x · · · · · x
︸ ︷︷ ︸

n times

�✓ powers with negative exponents: x−n =
1

xn

�✓ reciprocals of powers with negative exponent:
1

x−n
= xn

�✓ powers with exponent 0 : x0 = 1

8 / 8
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What are powers?

In Lecture 7, we learned about

powers with positive exponents: xn = x · x · · · · · x
︸ ︷︷ ︸

n times

powers with negative exponents: x−n =
1

xn

powers with exponent 0 : x0 = 1.

In this lecture, we study the properties of powers (a.k.a. “power rules”).
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Multiplication of powers with the same base

xn · xm = xn+m

This formula is valid for any integers n, m . To prove the formula, we consider 4 cases.

Case 1. If n, m are both positive, then

xn · xm = (x · x · · · · x
︸ ︷︷ ︸

n times

) · (x · x · · · · x
︸ ︷︷ ︸

m times

) = x · x · · · · x
︸ ︷︷ ︸

(n+m) times

= xn+m.

Case 2. If n, m are both negative, then −n, −m are positive and

xn · xm =
1

x−n
· 1

x−m
=

1

x−nx−m
=

1

x−n−m
= x−(−n−m) = xn+m .

3 / 13
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Multiplication of powers with the same base

Case 3: one of the integers is positive and the other one is negative.

Say, if n = 5 and m = −3 , then

x5 · x−3 =
x5

x3
=

x · x · x · x · x
x · x · x =

✚x ·✚x ·✚x · x · x
✚x ·✚x ·✚x

= x2 = x5+(−3) .

If n = −5 and m = 3 , then

x−5 · x3 = x3

x5
=

x · x · x
x · x · x · x · x =

✚x ·✚x ·✚x
✚x ·✚x ·✚x · x · x =

1

x2
= x−2 = x−5+3 .

For any other values of n and m , having opposite signs, the reasoning is the same as above.

Case 4: if one of the integers (say, m ) is zero. Then

xn · xm = xn · x0
︸︷︷︸

1

= xn · 1 = xn = xn+0 .

We see that in all cases, xn · xm = xn+m.

4 / 13

Examples

Example 1. 23 · 24 = 23+4 = 27 = 2 · 2 · 2 · 2 · 2 · 2 · 2 = 128

(−1)9 · (−1)7 = (−1)9+7 = (−1)16 = 1

35 · 3−8 = 35−8 = 3−3 =
1

33
=

1

27
(

2

3

)

−5

·
(

2

3

)

7

=

(

2

3

)

−5+7

=

(

2

3

)

2

=

(

2

3

)

·
(

2

3

)

=
4

9

1012 · 10−12 = 1012−12 = 100 = 1

Example 2. Simplify the expression x3 · x−8 · x−4.

Solution.

x3 · x−8 · x−4 = x3−8−4 = x−9 =
1

x9
.

5 / 13
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Division of powers with the same base

xn

xm
= xn−m

This formula is valid for any integers n, m .

Indeed,
xn

xm
= xn · 1

xm
= xn · x−m = xn−m.

Example 1. Find the value of the expression
54

56
.

Solution.
54

56
= 54−6 = 5−2 =

1

52
=

1

25
.

Example 2. Simplify the expression
x4 y−3

x−2 y2
.

Solution.
x4 y−3

x−2 y2
=

x4

x−2
· y

−3

y2
= x4−(−2) · y−3−2 = x6 y−5 =

x6

y5
.
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A power of a power

(xn)m = xnm

This formula is valid for any integers n, m .
It is proven by cases depending on the signs of the integers.

If n, m are both positive, then

(xn)m = (xn) · (xn) · · · · · (xn)
︸ ︷︷ ︸

m

=

(x · · · x)
︸ ︷︷ ︸

n

· (x · · · x)
︸ ︷︷ ︸

n

· · · · · (x · · · x)
︸ ︷︷ ︸

n
︸ ︷︷ ︸

m

=

x · x · · · · · x
︸ ︷︷ ︸

nm

= xnm.

All other cases can be reduced to this case using x−n =
1

xn
.

7 / 13
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Examples

Example 1. (23)4 = 23·4 = 212 = 4096.

Example 2. (2−3)4 = 2(−3)·4 = 2−12 =
1

212
=

1

4096
.

Example 3.
(

(−2)−3
)

−4
= (−2)(−3)·(−4) = (−2)12 = 212 = 4096.

Example 4. ((−1)−1)−1 = (−1)(−1)·(−1) = (−1)1 = −1.

Example 5. Simplify the expression (x3)2 · x−4.

Solution. (x3)2 · x−4 = x3·2 · x−4 = x6 · x−4 = x6−4 = x2.

8 / 13

Multiplication of powers with the same exponent

xn · yn = (xy)n

This formula is valid for any integer n .

Indeed, if n is positive, then

xn · yn = (x · x · · · · x
︸ ︷︷ ︸

n

) · (y · y · · · · y
︸ ︷︷ ︸

n

) = (xy) · (xy) · · · · · (xy)
︸ ︷︷ ︸

n

= (xy)n.

If n is negative, then −n is positive and

xn · yn =
1

x−n
· 1

y−n
=

1

x−ny−n
=

1

(xy)−n
= (xy)n .

9 / 13
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Examples

Example 1. Simplify the expression (−x)9 .

Solution. (−x)9 = ((−1) · x)9 = (−1)9 · x9 = (−1) · x9 = −x9.

Example 2. Simplify the expression (10−5x2)−3 .

Solution.

(10−5x2)−3 = (10−5)−3 · (x2)−3 = 10(−5)·(−3) · x2·(−3) = 1015x−6 .

Example 3. Simplify the expression (5x)2(−3x)3.

Solution.

(5x)2(−3x)3 = 52x2 · (−3)3x3 = 52 · (−3)3
︸ ︷︷ ︸

numbers

· x2 · x3
︸ ︷︷ ︸

variables

= 25 · (−27)x2+3 = −675x5 .
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Division of powers with the same exponent

xn

yn
=

(

x

y

)

n

This formula is valid for any integer n .

Indeed, if n is positive, then

xn

yn
=

n

︷ ︸︸ ︷

x · x · x · · · · x
y · y · y · · · · y
︸ ︷︷ ︸

n

=
x

y
· x
y
· · · x

y
︸ ︷︷ ︸

n

=

(

x

y

)

n

.

If n is negative, then −n is positive and

xn

yn
=

y−n

x−n
=

(y

x

)

−n

=

(

x

y

)

n

.

11 / 13
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Examples

Example 1.

(

2

3

)

3

=
23

33
=

8

27
.

Example 2.

(

2

3

)

−1

=
2−1

3−1
=

31

21
=

3

2
.

In general,
(a

b

)

−n

=

(

b

a

)

n

.

In particular,
(a

b

)

−1

=
b

a
.
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Summary

In this lecture, we have learned

�✓ how to multiply powers with the same base: xn · xm = xn+m

�✓ how to divide powers with the same base:
xn

xm
= xn−m

�✓ how to calculate a power of a power: (xn)m = xnm

�✓ how to multiply powers with the same exponent: xn · yn = (xy)n

�✓ how to divide powers with the same exponent:
xn

yn
=

(

x

y

)

n

13 / 13
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What is a polynomial?

A polynomial expression is an expression that involves only numbers, variables
and the operations of addition, subtraction and multiplication.

Division by a number is allowed (because it is a multiplication by the reciprocal number), but division
by an expression which contains a variable is not allowed.

Example 1. x2 + x is a polynomial expression. It involves a variable x and operations of
multiplication and addition: x2 + x = x · x+ x .

Example 2. x(x+ 1) is a polynomial expression. It involves a variable x and operations of addition
and multiplication.

The polynomial expressions in Examples 1 and 2 are equal: x2 + x = x(x+ 1) .

We say that they represent the same polynomial.

Example 3. 1 is a polynomial expression because it involves a single number 1 , and neither variables
nor operations.
In general, any constant (number) is a polynomial.

Example 4. x is a polynomial in one variable x .
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What is a monomial?

Example. 2x3 is a polynomial in one variable x , because it is represented by an expression involving
the constant 2 , the variable x , and three operations (multiplications):

2x3 = 2 · x · x · x .
An expression like axn , where a is a constant and xn is a variable x raised to a non-negative

power n is called a monomial.
A monomial is a polynomial with neither addition nor subtraction involved.

Examples of monomials: 4x , −5x2 ,
2

5
x3 .

Any constant is a monomial. For example, 3 is a monomial, since 3 = 3 · x0
︸︷︷︸

1

.
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More examples of polynomials

Example 4. −2x3 + x2 + 4x− 1 is a polynomial in one variable x . It is the sum of four monomials.

• A sum of several monomials is a polynomial.

Example 5. x(x(−2x+ 1) + 4)− 1 is a polynomial in one variable x .

Let us clear parentheses in this polynomial:

x(x(−2x+ 1) + 4)− 1 = x(x(−2x) + x · 1 + 4)− 1

= x(−2x2 + x+ 4)− 1 = −2x3 + x2 + 4x− 1.

We see that the polynomial x(x(−2x+ 1) + 4)− 1 is actually the polynomial from Example 4:
x(x(−2x+ 1) + 4)− 1 = −2x3 + x2 + 4x− 1 .

A polynomial may be presented by different polynomial expressions.

4 / 11

Polynomials in several variables

Example 1. 3xy2 is a polynomial in two variables x, y . It is a monomial

(the product of a constant and powers of variables).

Example 2. 3xy(3x+ 1)(4y − 2) + x− 1 is a polynomial in two variables x, y .

Example 3. x+ 2y2 + z3 − xy − 3xz7 is a polynomial in three variables x, y, z . It is the sum of
five monomials.

5 / 11

3



Polynomial or not?

Example 1. x+
1

x
is not a polynomial. This expression involves division by a variable. Division by

variables is not allowed in polynomials.

Example 2.
x+ 1

2
is a polynomial.Division by 2 is actually multiplication by

1

2
:

x+ 1

2
=

1

2
(x+ 1) =

1

2
x+

1

2
.

Division by any non-zero number is a multiplication by its reciprocal.

Example 3. x−2 + 3x− 1 is not a polynomial.

x−2 can’t show up in a polynomial, because
a polynomial can’t contain a variable with negative exponent.
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Simplifying polynomial expressions

Expressions representing polynomials may be simplified.

Example 1. Clear parentheses in the expression x3(2x− 1).

Solution. We distribute x3 to clear parentheses:

x3(2x− 1) = x3 · (2x) + x3(−1) = 2x3 · x− x3 = 2x4 − x3.

Example 2. Clear parentheses and combine similar terms in the expression (x+ 2)(3x− 1).

Solution. We use distributivity to clear parentheses:

(x+ 2)(3x − 1) = x(3x) + x(−1) + 2(3x) + 2(−1) = 3x2−x+ 6x− 2 = 3x2 + 5x− 2.

Example 3. Clear parentheses: (−2x3 + x− 4)(5x + 1).

Solution. We distribute, and then combine similar terms:

(−2x3 + x− 4)(5x + 1) = −2x3 · 5x+ (−2x3) · 1 + x · 5x+ x · 1 + (−4)(5x) + (−4) · 1
= −10x4 − 2x3 + 5x2 + x− 20x− 4 = −10x4 − 2x3 + 5x2 − 19x− 4.

7 / 11
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The standard form of a polynomial in one variable

No matter how a polynomial in one variable is written, one can use commutativity, associativity and
distributivity to put it in standard form:

anx
n + an−x

n−1 + · · · + ax
2 + ax+ a,

where x is the variable, n is a non-negative number, and a, a, a, . . . ,an−,an are constants.

Scared by this “letter monster”? Let us take it apart, to see what it is made of.

As we know, x is a variable.
The letter n stands for the non-negative (positive or zero) number, which is
the highest power of x in the expression. It is called the degree of the polynomial.

The letters a, a, a, . . . ,an−,an stand for constants (numbers).
They are called the coefficients of the polynomial.

The word “polynomial” means “many parts”.
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Taming the monster

Let us see how to put a polynomial in standard form:

anx
n + an−1x

n−1 + · · · + a2x
2 + a1x+ a0 .

Example 1. Put the polynomial (4x− 1)(2x + 3) in standard form.

Solution. We distribute, and combine similar terms:

(4x− 1)(2x + 3) = 4x · 2x+ 4x · 3− 1 · 2x− 1 · 3 = 8x2 + 12x− 2x− 3 = 8x2 + 10x− 3.

The resulting expression, 8x2 + 10x− 3 , is a polynomial in standard form.

Indeed, the highest power of x is n = 2 . And the long expression

anx
n + an−1x

n−1 + · · ·+ a1x+ a0
is reduced in this case to

a2x
2 + a1x+ a0

with n = 2 , a2 = 8 , a1 = 10 and a0 = −3 : 8
︸︷︷︸

a2

x2 + 10
︸︷︷︸

a1

x+ −3
︸︷︷︸

a0

.

9 / 11
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Polynomials in standard form

Example 1. Write the polynomial 2x+ 3x4 − x3 + 1 in standard form, identify the coefficients,
and determine the degree of the polynomial.

Solution. Rearrange the monomials in descending order of exponents:

2x+ 3x4 − x3 + 1 = 3x4 − x3 + 2x1 + 1x0.
The standard form is 3x4 − x3 + 0 · x2 + 2x+ 1 . The degree is n = 4 .
The coefficients are a4 = 3, a3 = −1, a2 = 0, a1 = 2, a0 = 1 .
Observe that the term containing x2 is included with thith the coefficient 0 .

Example 2. What is the degree of the polynomial 1 ?

Solution. As we know, any constant is a polynomial. Actually, it is a monomial. In our case,
1 = 1x0 . The degree is the highest power of x , which is 0 .

Answer: the degree of the polynomial 1 is zero.

Remark. Any constant is a polynomial of degree zero.
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Summary

In this lecture, we have learned

�✓ what polynomial expressions are
�✓ what polynomials are
�✓ what monomials are
�✓ that polynomials may be in one or several variables
�✓ how to simplify polynomial expressions
�✓ that the standard form of a polynomial is

anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

�✓ how to identify the degree of a polynomial
�✓ how to identify the coefficients of a polynomial
�✓ how to bring a polynomial to the standard form

11 / 11
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Reminder: what is a polynomial?

We learned in Lecture 9 that

A polynomial is an expression involving numbers, variables
and operations of addition, subtraction and multiplication.

Any polynomial in one variable can be written in the standard form

anx
n + an−1x

n−1 + · · · + a2x
2 + a1x+ a0 ,

where x is a variable, n is a non-negative integer,
and a0, a1, a2, . . . , an−1, an are coefficients (constants).

The highest power of x is called the degree of the polynomial.

In this lecture, we will learn how to operate with polynomials.
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Addition and subtraction

If we add or subtract two polynomials, then the resulting expression is again a polynomial.

Example 1. Let p = 2x3 − 4x2 + x− 1 and q = x3 + 3x2 − 4x+ 2 be two polynomials. Find p+ q

and p− q and put them in standard form.

Remark. We have given the polynomials the names, p and q .
It is common in mathematics to give short names to long expressions.

Solution.

p+ q = (2x3 − 4x2 + x− 1)
︸ ︷︷ ︸

p

+(x3 + 3x2 − 4x+ 2)
︸ ︷︷ ︸

q

This is the sum. Put it in standard form:

=
combine
similar
terms

(2x3 + x3)+ (−4x2 + 3x2)+ (x− 4x)+ (−1 + 2) = 3x3 − x2 − 3x+ 1
︸ ︷︷ ︸

standard form

.
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Subtraction

Now we calculate p− q , where p = 2x3 − 4x2 + x− 1 and q = x3 + 3x2 − 4x+ 2 as before.

p− q = (2x3 − 4x2 + x− 1)
︸ ︷︷ ︸

p

− (x3 + 3x2 − 4x+ 2)
︸ ︷︷ ︸

q

=

2x3 − 4x2 + x− 1−x3−3x2+4x−2 =

(2x3 − x3) + (−4x2 − 3x2) + (x+ 4x) + (−1− 2) =

x3 − 7x2 + 5x− 3.
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Multiplication

If we multiply two polynomials, then the resulting expression is a polynomial.

Example 1. Let p = 2x− 1 and q = −x2 + 3x+ 4 be two polynomials.
Find the polynomial pq , put it in standard form and determine its degree.

Solution.

pq = (2x−1)(−x2 + 3x+ 4) =

2x(−x2) + (2x)(3x) + (2x) · 4 + (−1)(−x2) + (−1)(3x) + (−1) · 4 =

−2x3 + 6x2 + 8x+ x2 − 3x− 4 = −2x3 + 7x2 + 5x− 4 .

Therefore, pq = −2x3 + 7x2 + 5x− 4 . The degree of pq is 3 .

In general, if p and q are polynomials of degree n and m respectively,
then their product pq has the degree n+m .

That is, when we multiply polynomials, their degrees are added.

5 / 13
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Short multiplication formulas

(x+ y)2 = x2 + 2xy + y2 for any x and y

Indeed,

(x+ y)2 = (x+ y)(x+ y) = x · x+ x · y + y · x
︸ ︷︷ ︸

2xy

+ y · y = x2 + 2xy + y2 .

This formula will save you an enormous amount of time. It’s worth memorizing!

Examples. (x+ 3)2 = x2 + 2x · 3 + 32 = x2 + 6x+ 9 .
(3a+ 4b)2 = (3a)2 + 2(3a) · (4b) + (4b)2 = 9a2 + 24ab+ 16b2 .

A similar formula for the difference:

(x− y)2 = x2 − 2xy + y2 for any x and y

Examples. (xz − 5)2 = (xz)2 − 2(xz) · 5 + 52 = x2z2 − 10xz + 25 .

(2a− 1)2 = (2a)2 − 2(2a) · (1) + 12 = 4a2 − 4a+ 1 .
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Factoring

To factor a polynomial means to present the polynomial as a product of non-constant polynomials.

For example, we factor 3x2 + x as follows:

3x2 + x = x(3x+ 1) .

Factoring is opposite to multiplication:

x(3x+ 1)

multiplication

3x2 + x

factoring

Multiplication of polynomials is straightforward:
given two polynomials, you can always multiply them.

Factoring may be difficult or impossible.

7 / 13
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Factoring out a monomial

Example 1. Factor the polynomial 4x3 + 5x2 .

Solution. The monomials 4x3 and 5x2 have the common factor of x2:

4x3 = x2 · 4x and 5x2 = x2 · 5 .
We factor out x2:

4x3 + 5x2 = x2 · 4x+ x2 · 5 = x2(4x+ 5) .

Example 2. Factor the polynomial 10x3 + 6x2 − 4x .

Solution. The monomials 10x3 , 6x2 and 4x have the common factor of 2x:

10x3 = 2x · 5x2 , 6x2 = 2x · 3x , and 4x = 2x · 2 .
We factor out 2x:

10x3 + 6x2 − 4x = 2x · 5x2 + 2x · 3x− 2x · 2 = 2x(5x2 + 3x− 2) .

Remark. As we will learn later, the polynomial 5x2 + 3x− 2 can be factored further:
5x2 + 3x− 2 = (5x− 2)(x + 1) .
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Difference of squares

x2 − y2 = (x− y)(x+ y) for any x and y

Indeed,

(x+ y)(x− y) = x · x+ x(−y) + y · x+ y(−y) = x2 − xy + xy − y2 = x2 − y2.

Example 1. Factor x2 − 1 .

Solution. x2 − 1 = x2 − 12 = (x− 1)(x+ 1) .

Example 2. Factor 4− a2 .

Solution. 4− a2 = 22 − a2 = (2− a)(2 + a) .

Example 3. Factor 9x4 − y6 .

Solution. 9x4 − y6 = (3x2)2 − (y3)2 = (3x2 − y3)(3x2 + y3) .

Example 4. Factor x4 − 1 .

Solution. x4 − 1 = (x2)2 − 12 = (x2 − 1)(x2 + 1) = (x− 1)(x+ 1)(x2 + 1) .

9 / 13
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Evaluation of a polynomial at a number

Let p be a polynomial in a single variable x . As any expression, p may be evaluated at a number.

“Evaluating p at 2 ”, say, means substituting 2 for every occurrence of x in p . This gives a
number, the value of p at 2 , which we denote by p(2) .
The polynomial p itself can then also be denoted by p(x) .

Example 1. Let p(x) = 3x2 − x+ 4 . Find p(0) , p(1) , p(−2) .

Solution. We have to evaluate the polynomial p(x) at numbers 0, 1, −2 .
For this, we substitute (plug in) x = 0 , x = 1 , and x = −2 , into p(x) .

p(0) = p(x)
∣

∣

∣

x=0

= 3x2 − x+ 4
∣

∣

∣

x=0

= 3 · 02 − 0 + 4 = 4.

p(1) = p(x)
∣

∣

∣

x=1

= 3x2 − x+ 4
∣

∣

∣

x=1

= 3 · 12 − 1 + 4 = 3− 1 + 4 = 6.

p(−2) = p(x)
∣

∣

∣

x=−2

= 3x2 − x+ 4
∣

∣

∣

x=−2

= 3 · (−2)2 − (−2) + 4 = 3 · 4 + 2 + 4 = 12 + 2 + 4 = 18.
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Evaluation of a polynomial at a number

Remark. The polynomial p(x) = 3x2 − x+ 4 describes the following algorithm:

x
multiply by x

−−−−−−→ x2
multiply by 3

−−−−−−→ 3x2
subtract x

−−−−−−→ 3x2 − x
add 4

−−−−−−→ 3x2 − x+ 4

Evaluation of p(x) at a given number, say 1 , is plugging x = 1 into the algorithm:

1
multiply by 1

−−−−−−→ 12
multiply by 3

−−−−−−→ 3 · 12
subtract 1

−−−−−−→ 3 · 12 − 1
add 4

−−−−−−→ 3 · 12 − 1 + 4
︸ ︷︷ ︸

6

Note that p(x) does not mean p · (x) . If p is a polynomial in the variable x , then p(x) is just
another notation for p . We do not mean to multiply p by x !

11 / 13
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Substitution

Example 1. Let p(x) = −x2 + 3x . Find p(a) , p(a− 1) , p(a2) .

Remark. We have to substitute x = a , x = a− 1 , x = a2 into p(x) .

This procedure is called a substitution. Substitution is like evaluation, but instead of a number, we
plug in an algebraic expression.

Solution. p(a) = −x2 + 3x
∣

∣

∣

x=a

= −a2 + 3a.

p(a− 1) = −x2 + 3x
∣

∣

∣

x=a−1

= −(a− 1)2 + 3(a− 1)

= −(a2 − 2a+ 1) + 3(a − 1)

= −a2 + 2a− 1 + 3a− 3 = −a2 + 5a− 4.

p(a2) = −x2 + 3x
∣

∣

∣

x=a2
= −(a2)2 + 3a2 = −a4 + 3a2.
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Summary

In this lecture, we have learned

�✓ how to add and subtract polynomials
�✓ how to multiply polynomials
�✓ formulas for short multiplication: (x+ y)2 = x2 + 2xy + y2

(x− y)2 = x2 − 2xy + y2

�✓ how to factor out monomials
�✓ the formula for difference of squares: x2 − y2 = (x− y)(x+ y)
�✓ how to evaluate a polynomial at a number
�✓ how to substitute an expression into a polynomial
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What a rational expressions is

A rational expression
p

q
is a quotient of two polynomials p and q , where q is non-zero polynomial.

For example,
x+ 1

x2
,

3x3 − x2 + x

x2 + 3x− 2
,

x

1
,

xy + 2

x2 + y2
are rational expressions.

Any polynomial p(x) is a rational expression whose denominator is 1 :

p(x) =
p(x)

1
.

In this lecture, we will learn how to:

• evaluate a rational expression at a number

• substitute an expression into a rational expression

• simplify rational expressions
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Evaluation

Example. Find the value of the expression
−x2 + 4

x− 3
for x = 1 , x = −1 , x = 3 .

Solution. We have to substitute x = 1, −1, 3 into the expression.

−x2 + 4

x− 3

∣

∣

∣

∣

∣

x=1

=
−(1)2 + 4

(1)− 3
=

−1 + 4

1− 3
=

3

−2
= −3

2
.

−x2 + 4

x− 3

∣

∣

∣

∣

∣

x=−1

=
−(−1)2 + 4

(−1)− 3
=

−1 + 4

−1− 3
=

3

−4
= −3

4
.

−x2 + 4

x− 3

∣

∣

∣

∣

∣

x=3

=
−(3)2 + 4

(3)− 3
=

−9 + 4

0
Oops! Division by 0 is prohibited!

Therefore, the expression
−x2 + 4

x− 3
is not defined for x = 3 .

3 / 10
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Substitution

Example 1. Find the value of the expression
x− 1

x2 + 2x
for x = a− 1 .

Solution. We have to substitute a− 1 for x into the expression
x− 1

x2 + 2x
.

The result should be a new expression involving a , not x .

x− 1

x2 + 2x

∣

∣

∣

∣

∣

x=a−1

=
(a− 1)− 1

(a− 1)2 + 2(a− 1)
=

a− 1− 1

a2−2a+ 1+2a− 2
=

a− 2

a2 − 1
.

Short multiplication: (a− 1)2 = a2 − 2a+ 1

Example 2. Find the value of the expression
1

xy
for x = a2 and y = a−3 .

Solution.
1

xy

∣

∣

∣

∣

∣

x=a2, y=a−3

=
1

a2a−3
=

1

a2−3
=

1

a−1
= a .
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Cancellation

Cancellation rule says that
one can cancel out a common factor both in numerator and denominator:

ac

bc
=

a✁c

b✁c
=

a

b
.

Examples.
(x+ 1)(x− 1)

x+ 1
=

✘✘✘✘(x+ 1) · (x− 1)

✘✘✘✘(x+ 1) · 1 =
x− 1

1
= x− 1.

x2 · (x+ 1)3

x5 · (x+ 1)2
=

x2 · (x+ 1)2 · (x+ 1)

x2 · x3 · (x+ 1)2
=

x+ 1

x3
.

Warning: It’s incorrect to cancel out a common summand:

a+ c

b+ c
6= a

b
.

For example,
4

5
=

1 + 3

2 + 3
6= 1

2
.
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Cancellation simplifies

Factoring followed by cancellation is used to simplify rational expressions.

Example. Simplify the expression
x2 − x

x2 − 1
.

Solution. Both numerator and denominator may by factored:

In numerator x2 − x , we factor out x :

x2 − x = x(x− 1) .

To factor denominator, we use the difference of squares formula x2 − y2 = (x− y)(x+ y) :

x2 − 1 = x2 − 12 = (x− 1)(x+ 1) .

Therefore,

x2 − x

x2 − 1
=

x(x− 1)

(x− 1)(x+ 1)
=

x✘✘✘✘(x− 1)

✘✘✘✘(x− 1)(x+ 1)
=

x

x+ 1
.
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Simplify before evaluating

Simplify, if you can, before evaluating.

For example, if we need to evaluate
x2 − x

x2 − 1
at x = 14 ,

then a straightforward evaluation is cumbersome:

x2 − x

x2 − 1

∣

∣

∣

∣

∣

x=14

=
142 − 14

142 − 1
=

196− 14

196 − 1
=

182

195
,

but it gets easier if we simplify first:
x2 − x

x2 − 1
=

x✘✘✘✘(x− 1)

✘✘✘✘(x− 1)(x+ 1)
=

x

x+ 1
,

then evaluate:
x

x+ 1

∣

∣

∣

∣

∣

x=14

=
14

14 + 1
=

14

15
. Is

182

195
=

14

15
?

Yes, because
182

195
=

14 ·✚✚13
✚✚13 · 15 =

14

15
. Observe that x− 1

∣

∣

∣

x=14

= 14− 1 = 13 .
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Something may go wrong

Evaluate the same expression
x2 − x

x2 − 1
at x = 1 .

Using the same simplification
x2 − x

x2 − 1
=

x✘✘✘✘(x− 1)

✘✘✘✘(x− 1)(x+ 1)
=

x

x+ 1
, we get

x

x+ 1

∣

∣

∣

∣

∣

x=1

=
1

1 + 1
=

1

2

Using the original expression
x2 − x

x2 − 1
, we get

x2 − x

x2 − 1

∣

∣

∣

∣

∣

x=1

=
12 − 1

12 − 1
=

0

0
Oops! Division by 0 is impossible!

x2 − x

x2 − 1

∣

∣

∣

∣

∣

x=1

is not defined, while
x

x+ 1

∣

∣

∣

∣

∣

x=1

=
1

2
, although

x2 − x

x2 − 1
=

x

x+ 1
!
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Why this happens and how to avoid

How could this happen? Let us analyse our calculations:

x2 − x

x2 − 1

∣

∣

∣

∣

∣

x=1

=
x(x− 1)

(x− 1)(x + 1)

∣

∣

∣

∣

∣

x=1

=
(1)(1 − 1)

(1− 1)(1 + 1)
=

1 · 0
0 · 2

It is OK to cancel out x− 1 in
x(x− 1)

(x− 1)(x+ 1)
,

but x− 1
∣

∣

∣

x=1

= 1− 1 = 0 , and cancellation by 0 is impossible!

It is useful and safe to simplify a rational expression
p(x)

q(x)
prior to evaluating at x = a , if q(a) 6= 0 .

9 / 10
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Summary

In this lecture, we have learned

�✓ what a rational expression is
�✓ how to evaluate a rational expression at a number
�✓ when a rational expression is not defined
�✓ how to substitute an expression into a rational expression
�✓ how to cancel a common factor

�✓ how to simplify a rational expression

10 / 10
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Fractions

A rational expression is a quotient of two polynomials.
It is a fraction in which numerator and denominator are polynomials.
Therefore rational expressions comply with the same rules as fractions:

Cancellation:
a · c
b · c =

a

b
for any c 6= 0

Multiplication:
a

b
· c
d
=

a · c
b · d

Division:
a

b
÷ c

d
=

a · d
b · c

Addition:
a

c
+

b

c
=

a+ b

c

These are all the rules that you need to know for operating with fractions,
and with rational expressions.
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Multiplying rational expressions

Rational expressions, being fractions, are multiplied as fractions:
a

b
· c
d
=

a c

b d

Example. Simplify the expression
x

9− x2
· x− 3

x2 + x
.

Solution. The expression is a product of two rational expressions:
x

9− x2
· x− 3

x2 + x
=

x(x− 3)

(9− x2)(x2 + x)
.

To simplify the product, we factor the denominator:

(9− x
2)

︸ ︷︷ ︸

32−x2

(x2 + x)
︸ ︷︷ ︸

x(x+1)

= (3− x)(3 + x)x(x+ 1) .

Therefore,
x

9− x2
· x− 3

x2 + x
=

✚x (x− 3)

(3− x)(3 + x)✚x (x+ 1)
=

−(3− x)

(3− x)(3 + x)(x+ 1)
= − 1

(x+ 3)(x+ 1)
.
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Dividing rational expressions

Rational expressions, being fractions, are divided as fractions. To divide an expression by a fraction,
we multiply the expression by the reciprocal of the fraction:

a

b
÷ c

d
=

a

b
· d
c
=

a d

b c
.

Thus,
a

b
÷ c

d
=

a d

b c

Example. Simplify the expression
x3

x2 + 2x+ 1
÷ x2

x+ 1
.

Solution.
x
3

x2 + 2x+ 1
÷ x

2

x+ 1
=

x
3

x2 + 2x+ 1
· x+ 1

x2
=

x(x+ 1)

x2 + 2x+ 1
.

By short multiplication formula, x
2 + 2x+ 1 = (x+ 1)2 .

So
x(x+ 1)

x2 + 2x+ 1
=

x(x+ 1)

(x+ 1)2
=

x✘✘✘✘(x+ 1)

(x+ 1)✘✘✘✘(x + 1)
=

x

x+ 1
.
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Adding rational expressions

Rational expressions, being fractions, are added as fractions: if they have a common denominator,
then

a

c
+

b

c
=

a+ b

c

Otherwise the denominators are made coinciding using the relation
a

b
=

ac

bc
and then the same rule applies.

The product of denominators can always serve as a common denominator:

a

b
+

c

d
=

ad

bd
+

bc

bd
=

ad+ bc

bd
.

This gives a formula which always works:

a

b
+

c

d
=

ad+ bc

bd

Often fractions have a common denominator simpler than bd .

5 / 9
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Subtracting rational expressions

Subtraction is similar to addition. There are similar formulas:

a

c
− b

c
=

a− b

c

a

b
− c

d
=

ad− bc

bd

Moreover, subtraction is reduced to addition:

a

b
− c

d
=

a

b
+

(

− c

d

)

Keep in mind that

− c

d
=

−c

d
=

c

−d

6 / 9

Examples of addition

Example 1. Present
1− x

2

x
+ x as a single fraction.

Solution. We have to perform addition of fractions. For this, we need to find a common

denominator of
1− x

2

x
and x =

x

1
. The common denominator is x · 1 = x. Therefore,

1− x
2

x
+ x =

1− x
2

x
+

x

1
=

(1− x
2) · 1 + x · x
x · 1 =

1− x
2 + x

2

x
=

1

x
.

Example 2. Present 2 +
3

x+ 1
as a single fraction.

Solution.

2 +
3

x+ 1
=

2

1
+

3

x+ 1
=

2 · (x+ 1) + 1 · 3
1 · (x+ 1)

=
2x+ 2 + 3

x+ 1
=

2x+ 5

x+ 1
.
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Examples of addition

Example 3. Perform the operations and simplify the resulting expression:

1

x+ 1
+

1

x2 − 1
.

Solution. By the universal formula
a

b
+

c

d
=

ad+ bc

bd
,

1

x+ 1
+

1

x2 − 1
=

(x2 − 1) + (x+ 1)

(x+ 1)(x2 − 1)
=

x
2 + x

(x+ 1)(x2 − 1)
=

x(x+ 1)

(x+ 1)(x2 − 1)
=

x

x2 − 1
.

Another solution. Since x
2 − 1 = (x− 1)(x+ 1) , a common denominator is (x− 1)(x + 1) :

1

x+ 1
+

1

x2 − 1
=

1

x+ 1
+

1

(x− 1)(x + 1)
=

(x− 1) + 1

(x− 1)(x+ 1)
=

x

(x− 1)(x+ 1)
.
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Summary

In this lecture, we have learned

�✓ how to multiply rational expressions
�✓ how to divide rational expressions
�✓ how to add and subtract rational expressions
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Translating English to Algebra

In this lecture, we will learn how to compose algebraic expressions after word descriptions.

Composing algebraic expressions is an important skill for solving
“real-life” problems that you may encounter in the math classroom and beyond.

To translate successfully English phrases into algebraic expressions, we need
to understand the meaning of each phrase and express this meaning algebraically.

This translation may require some basic knowledge from other fields, for example

• geometric formulas for area, volume, and perimeter,
• formula for uniform motion: distance=speed×time ,
• common facts about money system (cents, nickels, dimes, quarters), pricing,
• percentage.
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Perimeter of a rectangle

Problem. In a rectangle, one side is x feet long. The other side is 3 feet longer. Compose an
algebraic expression (in terms of x ) for the perimeter of the rectangle. Simplify the expression. Find
the value of this expression for x = 5 feet.

Solution.

x x

x+ 3

x+ 3

The perimeter is the sum of the lengths of all sides.

The perimeter of our rectangle is
x+ (x+ 3) + x+ (x+ 3) .

Simplify this expression:
x+ (x+ 3) + x+ (x+ 3) = 4x+ 6 .

Find the value of the expression at x = 5 :

4x+ 6
∣

∣

∣

x=5

= 4 · 5 + 6 = 20 + 6 = 26 (feet).

3 / 13

2



Area of a rectangle

Problem. In a rectangle, the width is x feet. The length is 3 times as long as the width. Compose
an algebraic expression (in terms of x ) for the area of the rectangle. Simplify this expression. Find
the value of this expression for x = 5 feet.

Solution.

x x

3x

3x

The area of a rectangle is
the product of the width by the length.

The area of our rectangle is x(3x) .

Simplify this expression: x(3x) = 3x2 .

Find the value of the expression at x = 5 :

3x2
∣

∣

∣

x=5

= 3 · 52 = 3 · 25 = 75 (ft2) .
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Counting money

Problem. In a piggy bank, there are dimes and quarters. The number of quarters is 5 less than the
number of dimes. Compose an algebraic expression for the total amount of money in the piggy bank,
if the number of dimes is x . Find the value of the expression if x = 20 .

Solution. There are x dimes in the piggy bank. Their total value is 10x cents.

The number of quarters is 5 less than the number of dimes (which is x ).
So there are x− 5 quarters. Their total value is 25(x − 5) cents.

The total money value in the piggy bank is the value of dimes plus the value of quarters:
10x+ 25(x− 5) .

Let us simplify the expression:
10x+ 25(x− 5) = 10x+ 25x− 125 = 35x− 125 ,

and evaluate it at x = 20 :

35x− 125
∣

∣

∣

x=20

= 35 · 20− 125 = 700 − 125 = 575 cents.
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Uniform motion

Problem 1. A car moved for 4 hours at a constant speed of x mi/h.
Compose an algebraic expression (in terms of x ) for the distance covered.

Solution. For uniform motion (motion with a constant speed),
the distance , speed and time are related by the formula

distance=speed×time .
Therefore, the distance that the car covered traveling for 4 hours at a constant speed of x mi/h is
4x (miles).

Problem 2. It took x seconds for an athlete to run the distance of 300 meters. Compose an
algebraic expression for the speed of the athlete.

Solution. Given: time = x seconds, distance = 300 meters. Find the speed.

Since distance=speed×time , then speed =
distance

time
.

In our case, the speed of the athlete is
300

x
(m/s).

6 / 13

Uniform motion

Problem. A car traveled for 3 hours at a constant speed of x mi/h. Then it increased the speed by
8 mi/h and traveled for another 2 hours. Compose an algebraic expression for the total distance

covered by the car. Simplify the expression. Find the value of the expression for x = 50 mi/h.

Solution. Let us show schematically what is given in the problem:

3 h

x mi/h (x+ 8) mi/h

2 h

The total distance is the sum of two distances.

7 / 13
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Uniform motion

3 h

x mi/h (x+ 8) mi/h

2 h

3x miles 2(x+ 8) miles

The total distance is 3x+ 2(x+ 8) miles.

Simplify the expression:

3x+ 2(x+ 8) = 3x+ 2x+ 16 = 5x+ 16 .

Find the value of the expression for x = 50 mi/h:

5x+ 16
∣

∣

∣

x=50

= 5 · 50 + 16 = 250 + 16 = 266 miles.
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Pay rate

Problem. This week, Rob earned $ 300 while tutoring for x dollars per hour, and $ 200 working at
an office, where the pay rate is $ 5 per hour less than for tutoring. Compose an algebraic expression
for the total time that Rob spent working this week.

Solution. Let us show schematically what is given in the problem:

$ 300

x dollars/h

$ 200

(x− 5) dollars/h

The total time is the time spent on tutoring plus the time spent in office.

9 / 13
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Pay rate

The amount earned , the pay rate , and the time are related by the formula

amount earned = pay rate × time .
From which we get

time=
amount earned

pay rate
.

Calculate the time spent on each job separately:

$ 300

x dollars/hour

$ 200

(x− 5) dollars/hour

The time spent while tutoring is
300

x
. The time spent in office is

200

x− 5
.

The total time is
300

x
+

200

x− 5
(hours).
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Volume

Problem. The width of a rectangular aquarium is x inches, the length is twice as long as the width,
and the height is 3 inches more than the width. Compose an algebraic expression for the volume of
the aquarium. Simplify the expression.

Solution.

x

2x

(x + 3)
The volume of a rectangular box is
width×length×height.

By this, the volume of the aquarium is x · (2x) · (x+ 3) .

Simplify this expression:

x · (2x) · (x+ 3) = 2x2(x+ 3) = 2x3 + 6x2 .

11 / 13
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Electric bill

Problem. An electric company charges a flat rate of $ 50 per month plus $x per kWh. The sales
tax is 2.5% . Compose an algebraic expression showing total charges in the electric bill for this month,
if 1000 kWh have been consumed. Simplify the expression.

Solution. The charge for consumed 1000 kWh is 1000x . Adding the flat rate of $ 50 , we get the
charge before tax: 50 + 1000x .
Upon the top, we have to add 2.5% tax, which is 2.5% of before-tax amount. Since

2.5% =
2.5

100
= 0.025 , the tax is 0.025(50 + 1000x) .

The total charge is
50
︸︷︷︸

flat rate

+ 1000x
︸ ︷︷ ︸

consumed

+0.025(50 + 1000x)
︸ ︷︷ ︸

tax

.

Simplify the expression:
50 + 1000x + 0.025(50 + 1000x) = 50 + 1000x + 1.25 + 25x = 51.25 + 1025x (dollars).
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Summary

In this lecture, we have learned

�✓ how to translate English phrases into algebraic language
�✓ which additional information may be required:

• formulas for area, volume, perimeter of geometric figures
• formula for uniform motion
• percentage

�✓ how to make schematic drawings for problems

13 / 13
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Equalities

An (algebraic) equality consists of two algebraic expressions connected by the equality sign “= ”.

For example, x2 − 3x+ 1 = x+ 2 ,
1 + 1 = 2 ,

0 = 1 ,
a+ b = b+ a ,

(x− y)2 = x2 − 2xy + y2 .

An algebraic equality with a variable becomes a numerical one
if we evaluate the expressions on both sides of the equality at some number.

For example, if we substitute x = 1 into both sides of the equality x2 = x ,
it turns into a numerical equality 12 = 1 , which is true.

If we substitute x = −1 , then we get (−1)2 = −1 , which is false.
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True or false
equalities

numerical
1 + 1 = 2

with variables
a(b+ c) = ab+ ac

numerical equalities

true

1 + 4 = 2 + 3
false

1 + 4 = 2 + 5

equalities with variables

always true
(identities)

x2 − y2 = (x− y)(x+ y)

always false
(contradictions)

x = x+ 1

true or false
depending on
values of variables
x+ 2 = 3

3 / 9
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Identities

Here are some important identities that we have learned:

a+ b = b+ a (commutativity of addition)

a(b+ c) = ab+ bc (distributive law)

xn · xm = xn+m (multiplication rule for powers)

x2 − y2 = (x− y)(x+ y) (difference of squares)

(x+ y)2 = x2 + 2xy + y2 (short multiplication)
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Proving identities

A typical problem about an identity is to prove it.
That is, to prove that the equality is true for all values of the variables.

Example. Prove that (x+ 1)3 = x3 + 3x2 + 3x+ 1 for all values of x .

Solution. Work on the left hand side:

(x+ 1)3 = (x+ 1)(x+ 1)2 = (x+ 1)(x2 + 2x+ 1)

= x3 + 2x2 + x+ x2 + 2x+ 1

= x3 + 3x2 + 3x+ 1,
which is the right hand side of the identity.

Therefore,

(x+ 1)3 = x3 + 3x2 + 3x+ 1 for all values of x , and the identity is proven.

5 / 9

3



Equation and its solution

Often we use the word “equation” instead of “equality”.
This happens when we are interested to find the values of variables

at which the equality turns to a true numerical equality.

A solution of an equation with a single variable
is the value of the variable which turns the equation into a true numerical equality.

Example. Consider the equation x+ 2 = 3x . At x = 1 , the equation turns into a true numerical
equality:

1 + 2 = 3 · 1 .

If we substitute x = 0 , then the equation turns into a false numerical equality:

0 + 2 = 3 · 0 .

Therefore, x = 1 is a solution of the equation x+ 2 = 3x , while x = 0 is not a solution.
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All the solutions

It may happen that an equation has no solutions.

For example, the equation 0 · x = 1 has no solution, since 0 · x 6= 1 no matter what x is.

Some equations have infinitely many solutions.

For example, the equation 0 · x = 0 has infinitely many solutions. Any number is a solution.

To solve an equation means to find all its solutions,
that is to find all values of the variable

which turn the equation into a true numerical equality.

The variable in the equation is called unknown.
To solve an equation means to make this unknown known.

7 / 9
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Several unknowns

An equation may have several unknowns.

For example, x+ 2y = 7 is an equation with two unknowns x and y .
The equation turns into a true numerical equality if we plug in x = 1 and y = 3 :

1 + 2 · 3 = 7 .

Plugging in x = 1 and y = 2 results into a false equality:
1 + 2 · 2 = 7 .

A solution of such equation is a pair of numbers which turns the equation into a true numerical
equality. For example, the pair x = 1 and y = 3 is a solution.

Another solution is x = −1 , y = 4 . Indeed:

(−1) + 2 · 4 = 7 .

As we will learn later, equations like this have infinitely many solutions.
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Summary

In this lecture, we have learned

�✓ what an equality is
�✓ that there are numerical equalities and equalities with variables
�✓ what an identity is
�✓ what a contradiction is
�✓ what an equation is
�✓ what a solution of an equation is
�✓ what it means to solve an equation

9 / 9
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Equation and its solutions

Recall that an equation is an equality between two algebraic expressions.

The variables in equation are called unknowns.

For example, 3x+ 1 = 7 is an equation with one unknown x .

To solve an equation means to find all its solutions,
that is all the values of the variables which satisfy the equation.

In other words, to find all values of the unknowns
which turn the equation into a true numerical equality.

For example, x = 2 is a solution of the equation 3x+ 1 = 7 , since it satisfies the equation:
3 · 2 + 1 = 7 .
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Equivalent equations

Some equations are easy.

Example. x = 2 is an equation. But it looks like a solution, and it is a solution for itself!

Often, more complicated equations are replaced by simpler equations which have the same solutions.

If two equations have the same solutions,

that is if
any solution of the first equation is a solution of the second one

and vice versa:
each solution of the second equation is a solution of the first one

then we call the equations equivalent,
and write the equivalence sign “ ⇐⇒ ” between them, like this:

x+ 1 = 3 ⇐⇒ x = 2 .

How to transform an equation into an equivalent equation?

To this end, we will use two elementary transformations.

3 / 14
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Add the same to both sides

Any equation is equivalent to the equation obtained from it by
adding the same expression to both sides.

Example 1. Consider the equation x− 1 = 2 . If we add 1 to both sides,
then we get an equavalent equation:

x− 1 = 2 ⇐⇒ x− 1 + 1 = 2 + 1 ⇐⇒ x = 3

Example 2. 5− x = 0 ⇐⇒ 5− x+ x = 0 + x ⇐⇒ 5 = x ⇐⇒ x = 5

Example 3.

5− x = 2 ⇐⇒ 5− x+ (x− 2) = 2 + (x− 2) ⇐⇒
5− x+ x− 2 = 2 + x− 2 ⇐⇒ 3 = x ⇐⇒ x = 3

Similarly, subtracting the same expression from both sides of an equation
gives rise to an equivalent equation:

x+ 2 = 6 ⇐⇒ x+ 2−2 = 6−2 ⇐⇒ x = 4
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Example

2x− 1 = 5 + x
subtract x

2x− 1−x = 5 + x−x

simplify

x− 1 = 5
add 1

x− 1+1 = 5+1

simplify

x = 6

These transformations are written as follows:

2x− 1 = 5 + x ⇐⇒ 2x− 1− x = 5 + x− x ⇐⇒
x− 1 = 5 ⇐⇒ x− 1 + 1 = 5 + 1 ⇐⇒ x = 6

5 / 14
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Fast track

There is a trick that may help you to operate more efficiently with equations.

The subtraction of x from both sides of the equation 2x− 1 = 5 + x , namely

2x− 1 = 5 + x ⇐⇒ 2x− 1− x = 5 + x− x ⇐⇒ x− 1 = 5

is equivalent to relocation x from the right hand side (RHS) of the equation
to the left hand side (LHS) with the opposite sign:

2x− 1 = 5+ x

−

⇐⇒ 2x−x− 1 = 5 ⇐⇒ x− 1 = 5

Look how fast we can solve the equation:

2x− 1 = 5+ x

−

⇐⇒ x− 1 = 5

+

⇐⇒ x = 6 .
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Multiply both sides by the same non-zero number

Any equation is equivalent to the equation obtained from it by
multiplying both sides by the same non-zero number.

Example 1.
x

2
= 3 ⇐⇒ x

2
· 2 = 3 · 2 ⇐⇒ x = 6

Example 2. 3x = 5 ⇐⇒ 3x · 1
3
= 5 · 1

3
⇐⇒ x =

5

3

Similarly, dividing both sides of an equation by the same non-zero number
gives rise to an equivalent equation:

2x = 8 ⇐⇒ 2x

2
=

8

2
⇐⇒ x = 4

Adding the same expression to both sides of an equation
and multiplying both sides by the the same non-zero number

are called elementary transformations of the equation.

7 / 14
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Example of elementary transformations

See how a sequence of elementary transformations brings an equation
to a simple equivalent equation, which is the solution.

Example. Solve the equation 7x− 5 = 2x+ 1 .

Solution. 7x− 5 = 2x+ 1

Move 2x to the LHS: 7x−2x− 5 = 1

Simplify: 5x− 5 = 1

Move −5 to the RHS: 5x = 1+5

Simplify: 5x = 6

Divide by 5 : x =
6

5
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Linear equations

An equation is called linear, if both its sides are polynomials of degree ≤ 1 .

For example, 3(x− 2) + 4 =
2

3
(5x+ 1) + x is a linear equation,

x
2 + 2 = x is not.

A polynomial of degree ≤ 1 is called a linear expression.
Both sides of a linear equation are linear expressions.

By a sequence of elementary transformations, any linear equation
can be transformed to an equation of the form ax = b

where a and b are some numbers and x is an unknown.

To do this, that is, to bring the equation to the form ax = b ,
• simplify (if needed) both sides of the equation,
• collect all terms involving the unknown on one side of the equation,

and all numbers on the other side,
• simplify the equation again.

9 / 14
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Example

Solve the equation
3

2
(x− 1) =

x

3
+ 1 .

Multiply by 6: 6 · 3
2
(x− 1) = 6

(

x

3
+ 1

)

to get rid of fractions

Simplify LHS: 9(x− 1) = 6
(

x

3
+ 1

)

Distribute: 9x− 9 = 2x+ 6

Move 2x to LHS: 7x− 9 = 6

Move −9 to RHS: 7x = 15 ←−−−− equation in the form ax = b

Divide by 7 : x =
15

7
←−−−− solution
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Number of solutions of a linear equation

How many solutions may a linear equation ax = b have? It depends on the numbers a and b .

ax = b

a 6= 0

x =
b

a

one solution

a = 0

0 · x = b ⇐⇒ 0 = b

b = 0

0 = 0
true

infinitely many solutions

(any real number is a solution)

b 6= 0

0 = b 6= 0
false
no solutions

A linear equation with one unknown may have
either one solution, or no solutions, or infinitely many solutions.

11 / 14
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Examples of linear equations

Example 1. Solve the equation 2(x− 3) = 2x+ 1 .

Solution. Distribute: 2x− 6 = 2x+ 1

Move 2x from RHS to LHS: 2x− 2x− 6 = 1

Simplify: −6 = 1 ←−−−− false numerical equality

Answer. The equation has no solutions.

Example 2. Solve the equation 2− x =
1

3
(6− 3x) .

Solution. Multiply both sides by 3: 3 · (2− x) = 3 · 1
3
(6− 3x)

Simplify: 6− 3x = 6− 3x

Add 3x to both sides: 6 = 6 ←−−−− true numerical equality

Answer. The equation is an identity.
Any number is a solution.
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How to check if solution is correct

While solving an equation, we can make mistakes.
There is a opportunity to check if the number obtained is a solution.

For this, plug in the number into the equation and check if the obtained numerical equality is true.

Example. Solve the equation 2x− 1 = 3(2x+ 1) and check your solution by substitution.

Solution. 2x− 1 = 3(2x + 1) ⇐⇒ 2x− 1 = 6x+ 3 ⇐⇒ −1 = 4x+ 3 ⇐⇒

−4 = 4x ⇐⇒ −1 = x ⇐⇒ x = −1

Check (substitute x = −1 into the original equation):

2 · (−1)− 1
?
= 3(2 · (−1) + 1)

−2− 1
?
= 3(−2 + 1)

−3
?
= 3(−1)

−3 = −3 X

13 / 14
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Summary

In this lecture, we have learned

�✓ which equations are called equivalent

�✓ that there are elementary transformations of equations:
• adding the same expression to both sides
• multiplying both sides by the same non-zero number

�✓ how to solve equations efficiently

�✓ what a linear equation is
�✓ how to solve a linear equation
�✓ how many solutions a linear equation may have:

• one
• infinitely many
• no solutions

�✓ how to check a solution by substitution into the original equation

14 / 14
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Linear equations in mathematics, physics, and beyond

In this lecture, we will show how

• to solve linear equations originated in mathematics and physics

• how to use linear equations for solving word problems.
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Area of trapezoid

Problem 1. The area A of a trapezoid with bases a , b and the height h

is given by the formula

a

b

h A =
a+ b

2
h .

Using this formula, express b in terms of A , a , and h .

Solution. We have to solve out b from the equation A =
a+ b

2
h .

Multiply the equation by 2 : 2A = (a+ b)h ,

divide both sides by h :
2A

h
= a+ b ,

and move a to LHS:
2A

h
− a = b .

Answer: b =
2A

h
− a .
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Motion with constant acceleration

Problem. A car moving at a constant speed of v0

starts to accelerate with a constant acceleration of a .
How long will it take for the car to increase the speed up to v ,
if the initial speed v0 , the terminal speed v , the acceleration a , and the time t

are related by the formula v = v0 + at ?

Solution. We have to solve out t from the equation v = v0 + at .

For this, we subtract v0 from both sides: v − v0 = at ,

and divide both sides by a :
v − v0

a
= t .

Answer: t =
v − v0

a
.
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Newton’s law

Example. According to Newton’s law of universal gravitation,

F = G
m1m2

R2
,

where F is the gravitational force between masses m1 and m2 , G is the gravitational constant, and
R is the distance between the centers of the masses.
Use this equation to find m1 in terms of F , G , m2 , and R .

Solution. To solve out m1 from the equation F = G
m1m2

R2
,

multiply both sides by R
2 : FR

2 = Gm1m2 ,

and divide by Gm2 :
FR

2

Gm2

= m1 .

Answer: m1 =
FR

2

Gm2

5 / 9
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Perimeter of a rectangle

Problem. In a rectangle, one side is 3 feet longer than the other side.
Find the lengths of the sides, if the perimeter of the rectangle is 34 feet.

Solution.

Let x be the length of the short side.
x x

Then the length of the long side is x+ 3 .
x+ 3

x+ 3

The perimeter is the sum of the lengths of all sides: x+ (x+ 3) + x+ (x+ 3) .

Simplify this expression: x+ (x+ 3) + x+ (x+ 3) = 4x+ 6 .

Since the perimeter is 34 feet, 4x+ 6 = 34 .

Solve this equation: 4x+ 6 = 34 ⇐⇒ 4x = 28 ⇐⇒ x = 7 feet.

The short side is 7 feet, the long side is 7 + 3 = 10 feet.

Answer. The lengths of the sides are 7 and 10 feet.
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Angles in a triangle

Problem. In a triangle ABC , the angle B is twice as large as the angle A , and the angle C is 30◦

less than the angle B . Find the angles.

Solution.

A

B

C

Let x be the measure of A .

x

Then the measure of B is 2x ,
2x

and the measure of C is 2x− 30 .2x− 30

The sum of the angles in a triangle is 180◦ . In our case,
x+ 2x+ (2x− 30) = 180 .

This is a linear equation to solve:

x+ 2x+ (2x− 30) = 180 ⇐⇒ 5x− 30 = 180 ⇐⇒ 5x = 210 ⇐⇒ x = 42.

The measure of A is 42◦ , the measure of B is 2 · 42 = 84◦ ,

the measure of C is 84 − 30 = 54◦ .

7 / 9

4



Uniform motion

Problem. A car traveled for 3 hours at a constant speed. Then it increased the speed by 8 mi/h
and traveled for another 2 hours. During this trip, the car traveled for 271 miles. Find the speed of
the car on both intervals of driving.

Solution. Let x mi/h be the speed of the car on the first interval of driving. Then the speed on the
second interval of driving is x+ 8 mi/h.

3 h

x mi/h (x+ 8) mi/h

2 h

3x miles 2(x+ 8) miles

The total distance is 3x+ 2(x+ 8) miles, which is equal to 271 miles.
Therefore, 3x+ 2(x+ 8) = 271 . Let us solve this equation to find x .
3x+ 2(x+ 8) = 271 ⇐⇒ 3x+ 2x+ 16 = 271 ⇐⇒ 5x = 255 ⇐⇒ x = 51

So the speed on the first interval is 51 mi/h, and the speed on the second interval is 51 + 8 = 59
mi/h.

Answer. 51 mi/h and 59 mi/h.
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Summary

In this lecture, we have learned

�✓ how to solve linear equations “with letters” arising from mathematics and physics

�✓ how to solve word problems leading to linear equations
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What a linear inequality is

There are four inequality signs: < , ≤ , > , ≥ .

a < b a is less than b
a ≤ b a is less than or equal to b
a > b a is greater than b
a ≥ b a is greater than or equal to b

A linear inequality consists of two linear expressions connected by one of the inequality signs.

For example, 3(x− 1) ≤ 4 + 5x is a linear inequality in one variable.

Evaluation of both sides of an inequality at a number

gives rise to a numerical inequality, which may be either true or false.

For example, at x = 0 the inequality above holds true:

3(0− 1) ≤ 4 + 5 · 0 ⇐⇒ −3 ≤ 4 X

2 / 16

Solution

To solve an inequality means to find all values of the variable, for which the inequality holds true.

These values form a solution set.

A linear inequality is very similar to a linear equation.

As we remember, the solution set of a linear equation
• either consists of a single number (when the equation has one solution),
• or is empty (when the equation has no solutions),
• or is the entire number line (when the equation has infinitely many solutions).

The solution set of a linear inequality is quite different.

Consider a simple inequality x ≤ 2 . Its solution set consists of all numbers ≤ 2
and is denoted by {x | x ≤ 2} . One can graph the solutions on the number line:

2

The solution set is an interval. It is denoted by (−∞, 2] .

3 / 16
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Intervals

Let us review intervals that we may encounter solving linear inequalities.

inequality solution graph interval

x < a {x | x < a}
a

(−∞, a)

x ≤ a {x | x ≤ a}
a

(−∞, a]

x > a {x | x > a}
a

(a,∞)

x ≥ a {x | x ≥ a}
a

[a,∞)

4 / 16

Equivalent inequalities

Two inequalities are called equivalent if they have the same solution sets.

It means that each solution of the first inequality is a solution of the second one, and vice versa: each
solution of the second inequality is a solution of the first one.

If two inequalities are equivalent, we write the equivalence sign “ ⇐⇒ ” between them, like this

x+ 1 > 3 ⇐⇒ x > 2 .

How to transform an inequality into an equivalent inequality?

To this end, we will use three elementary transformations.

5 / 16
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Add the same to both sides

Any inequality is equivalent to the inequality obtained from it by
adding the same expression to both sides.

Example 1. Consider the inequality x− 1 > 2 . If we add 1 to both sides,
then we get an equavalent inequality:

x− 1 > 2 ⇐⇒ x− 1 + 1 > 2 + 1 ⇐⇒ x > 3

Example 2. 5− x ≤ 0 ⇐⇒ 5− x+ x ≤ 0 + x ⇐⇒ 5 ≤ x ⇐⇒ x ≥ 5

Example 3.

5− x < 2 ⇐⇒ 5− x+ (x− 2) < 2 + (x− 2) ⇐⇒
5− x+ x− 2 < 2 + x− 2 ⇐⇒ 3 < x ⇐⇒ x > 3

Similarly, subtracting the same expression from both sides of an inequality
gives rise to an equivalent inequality:

x+ 2 ≥ 6 ⇐⇒ x+ 2−2 ≥ 6−2 ⇐⇒ x ≥ 4

6 / 16

Fast track

There is a trick that may help you to operate more efficiently with inequalities.

The subtraction of x from both sides of the inequality 2x− 1 ≤ 5 + x , namely

2x− 1 ≤ 5 + x ⇐⇒ 2x− 1− x ≤ 5 + x− x ⇐⇒ x− 1 ≤ 5

is equivalent to relocation x from the right hand side (RHS) of the inequality
to the left hand side (LHS) with the opposite sign:

2x− 1 ≤ 5+ x

−

⇐⇒ 2x−x− 1 ≤ 5 ⇐⇒ x− 1 ≤ 5

Look how fast we can solve the inequality:

2x− 1 ≤ 5+ x

−

⇐⇒ x− 1 ≤ 5

+

⇐⇒ x ≤ 6 .

7 / 16
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Multiply both sides by the same positive number

Any inequality is equivalent to the inequality obtained from it by
multiplying both sides by the same positive number.

Example 1.
x

2
> 3 ⇐⇒ x

2
· 2 > 3 · 2 ⇐⇒ x > 6

Example 2. 3x ≤ 5 ⇐⇒ 3x · 1
3
≤ 5 · 1

3
⇐⇒ x ≤ 5

3

Similarly, dividing both sides of an inequality by the same positive number
gives rise to an equivalent inequality:

2x ≥ 8 ⇐⇒ 2x

2
≥ 8

2
⇐⇒ x ≥ 4

8 / 16

Multiply by negative number and reverse the sign

What happens if we multiply an inequality by a negative number?

Consider the inequality x > 2 . Move x to RHS, and move 2 to LHS
(don’t forget to change the signs):

x > 2 ⇐⇒ −2 > −x .

This inequality says that −2 is greater than −x . This is the same as −x is less than −2 :

−2 > −x ⇐⇒ −x < −2 .

Therefore, x > 2 ⇐⇒ −x < −2 .

In general, if we multiply both sides of an inequality by a negative number,
we have to reverse the sign of the inequality.

Example 1. −x

3
< 2 ⇐⇒ (−3) ·

(

−x

3

)

>(−3) · 2 ⇐⇒ x > −6.

The same rule is valid if we divide an inequality by a negative number.

Example 2. −2x ≤ 6 ⇐⇒ −2x

−2
≥ 6

−2
⇐⇒ x ≥ −3 .

9 / 16
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Elementary transformations

Elementary transformations of an inequality are

• adding the same expression to both sides of an inequality,

• multiplying both sides by the the same positive number, and

• multiplying both sides by the the same negative number and reversing the sign of the inequality.

See how a sequence of elementary transformations brings an inequality
to a simple equivalent inequality.

10 / 16

Examples

Example 1. Solve the inequality 7x− 5 ≤ 2x+ 1 . Give the answer in interval notation. Show the
solution on the number line.

Solution. Move 2x to the LHS: 7x−2x− 5 ≤ 1

Simplify: 5x− 5 ≤ 1

Move −5 to the RHS: 5x ≤ 1+5

Simplify: 5x ≤ 6

Divide by 5 : x ≤ 6

5

6

5

6

5
Answer.

(

−∞,
6

5

]

11 / 16
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Examples

Example 2. Solve the inequality −x

2
+ 3 < x+ 4 . Give the answer in interval notation. Show the

solution on the number line.

Solution.

Move 3 to the RHS: −x

2
< x+ 4−3

Simplify: −x

2
< x+ 1

Multiply by (−2): (−2)
(

−x

2

)

>(−2)(x+ 1)

Simplify: x > −2x− 2

Move −2x to the LHS: x+2x > −2

Simplify: 3x > −2

Divide by 3 : x > −2

3

12 / 16

Writing down the answer

The answer can be written as an inequality x > −2

3
,

or as a set

{

x
∣

∣ x > −2

3

}

,

or as an interval

(

−2

3
,∞

)

on a number line:

−2

3

13 / 16
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Systems of linear inequalities

Two inequalities with the same single variable may form a system.

To solve a system means
to find all the values of the variable that satisfy both inequalities.

Example. Solve the system

{

3x− 2 ≤ 2x− 1

−2x+ 3 < 4.
Write the answer in interval notation. Show the solution on the number line.

Solution.
{

3x− 2 ≤ 2x− 1

−2x+ 3 < 4
⇐⇒

{

3x− 2x ≤ −1 + 2

−2x < 1
⇐⇒







x ≤ 1

x > −1

2

⇐⇒ −1

2
< x ≤ 1

1−1

2
1−1

2

Answer:

(

−1

2
, 1

]

14 / 16

Solution of a system

Geometrically, the solution of a system of two linear inequalities in one variable
is the intersection of two intervals.

The intersection consists of all points belonging to both intervals.

As the intersection, we may get a finite interval, for example, a ≤ x < b :

ba
[a, b)

an infinite interval, for example x ≤ a :

ba
(−∞, a]

or the empty set (when the system has no solutions):

ba
∅

15 / 16
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Summary

In this lecture, we have learned

�✓ what a linear inequality is
�✓ what the solution of an inequality is
�✓ which intervals on a real line may appear as solutions of inequalities
�✓ which inequalities are called equivalent

�✓ what elementary transformations of inequalities are
• adding the same expression to both sides
• multiplying both sides by the same positive number
• multiplying both sides by the same negative number and reversing the sign of the inequality

�✓ how to solve inequalities efficiently

�✓ how to write down the solution of an inequality
�✓ how to show the solution on a number line

�✓ how to solve a system of inequalities

16 / 16
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Absolute Value
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Absolute value of a number

The absolute value of a number is the distance between this number and 0 on the number line.

The absolute value of a number a is denoted by |a| .
For example, |3| = 3 , | − 3| = 3 , |0| = 0 .

0 3

3

−3

3

In general,

|a| =
{

a, if a ≥ 0

−a, if a < 0

Observe that if a is negative, then −a is positive.

For example, if a = −5 , then the formula above gives |−5| = −(−5) = 5 .

2 / 9

Properties of absolute value

• The absolute value of a number is non-negative (positive or zero):

|a| ≥ 0

• A number and its opposite have the same absolute values:

|a| = | − a|

0 a

|a|

−a

| − a|

• The distance between numbers a and b on the number line is given by |a− b|

a b

|a− b|

3 / 9
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Examples

Example 1. Calculate | − 6 + | − 2− 3|| .
Solution. | − 6 + | − 2− 3|| = | − 6 + | − 5|| = | − 6 + 5| = | − 1| = 1 .

Example 2. Which number is greater, | − 2| or −3 ?

Solution. Since | − 2| = 2 , and 2 > −3 , we get | − 2| > −3 .

Example 3. Find the distance between the numbers −7 and −3 on the number line.

Solution. The distance between two numbers is given
by the absolute value of the difference between them:

| − 7−(−3)| = | − 7 + 3| = | − 4| = 4 .

4 / 9

Linear equations involving absolute value

Example 1. Solve the equation |x| = 2 .

Solution. We have to find all values of the unknown x for which |x| = 2 ,
that is, all numbers which are located at the distance of 2 from 0 .

0 ?

2

?

2

These numbers are 2 and −2 .

It is convenient to write down our solution as follows:

|x| = 2

x = 2 x = −2

Answer. x = 2 or x = −2 .

5 / 9
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Linear equations involving absolute value

Example 2. Solve the equation |3x− 1| = 2 . Check your answer by substitution.

Solution. |3x− 1| = 2

3x− 1 = 2 or 3x− 1 = −2

3x = 3

x = 1

3x = −1

x = −1/3or

Check now that both x = 1 and x = −1/3 satisfy the original equation.

Plug in x = 1 :

|3 · 1− 1| ?
= 2

|2| ?
= 2

2
X
= 2

Plug in x = −1/3 :
∣

∣3 ·
(

−1

3

)

− 1
∣

∣

?
= 2

| − 1− 1| ?
= 2

| − 2| ?
= 2

2
X
= 2 Answer. x = 1 or x = −1/3 .
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Linear inequalities involving absolute value

Example 1. Solve the inequality |3x− 1| < 2 .
Give your answer in interval notation. Show the solution on the number line.

Solution. The inequality means that
the number 3x− 1 is on the distance less than 2 units from 0 .

Therefore, this number should be in between −2 and 2 :

−2 < 3x− 1 < 2 .

This double inequality is nothing but a system of inequalities:

−2 < 3x− 1 < 2 ⇐⇒
{

−2 < 3x− 1

3x− 1 < 2
⇐⇒

{

−2 + 1 < 3x

3x < 2 + 1
⇐⇒

{

−1 < 3x

3x < 3
⇐⇒

{

−1/3 < x

x < 1
⇐⇒ −1/3 < x < 1

−1/3 1
Answer. (−1/3, 1)

7 / 9
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Linear inequalities involving absolute value

Example 2. Solve the inequality |1− x| ≥ 3 .
Give your answer in interval notation. Show the solution on the number line.

Solution. The inequality means that
the number 1− x is on the distance more than or equal to 3 units from 0 .

Therefore, the number 1− x should be ≥ 3 or ≤ −3 :

1− x ≥ 3 or 1− x ≤ −3
−x ≥ 2 or −x ≤ −4
x ≤ −2 or x ≥ 4

−2 4

The solution is the union of two intervals: (−∞,−2)∪ (4,∞) .

Answer. (−∞,−2) ∪ (4,∞)

8 / 9

Summary

In this lecture, we have learned

�✓ what absolute value of a number is
�✓ what the properties of absolute value are
�✓ how to solve linear equations involving absolute value
�✓ how to solve linear inequalities involving absolute value

9 / 9
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Cartesian coordinate system on a plane

Cartesian (or rectangular) coordinate system is defined by
• a point, called the origin,
• two perpendicular number lines drawn through the origin.

0 1 2 3−1−2−3

1

2

3

−1
−2

−3

x

y

Usually, one line is drawn horizontally, and the other one vertically.

The horizontal line is called x-axis, the vertical line is called the y-axis.
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Points and their coordinates

Given the coordinate system, each point on the plane gets its coordinates –
two numbers which determine the location of the point on the plane.

1

1

0
x

y

A(3, 2)

3

2

−4

B(−4, 0)

C(−5,−2) D(0,−3)

The first number is called x-coordinate, the second number is called the y-coordinate.
For example, the coordinates of point A are (3, 2) ,

where 3 is the x-coordinate and 2 is the y-coordinate.

3 / 15
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Vertical lines

Example. Describe geometrically the set of all points on the coordinate plane whose x -coordinate is
3 .

Solution. These are the points with coordinates (3, y) , where y is an arbitrary number.

x

y

0 3

x = 3

All such points form a vertical line
passing through the point 3 on the x -axis.

This vertical line is the graph of the equation x = 3.

The graph of the equation x = a , where a is a number,
is the vertical line passing through the point a on the x -axis.

The y-axis, which is a vertical line, has the equation x = 0 .
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Horizontal lines

Example. Draw the graph of the equation y = −1 .

Solution. The graph of y = −1 is the set of all points on the plane
whose coordinates are (x,−1) , where x is an arbitrary number.

It is a horizontal line passing through the point −1 on the y -axis.

x

y

0

y = −1−1

The graph of the equation y = b , where b is a number,
is the horizontal line passing through the point b on the y -axis.

The x-axis, which is a horizontal line, has the equation y = 0 .

5 / 15
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General linear equation in two variables

The equation Ax+By = C , where A,B,C are given numbers and x, y are variables,
is called a linear equation in two variables.

The numbers A,B,C are called the coefficients.

Examples of linear equations in two variables:

−2x+ y = 4 (A = −2, B = 1, C = 4) ,

x = 1 ⇐⇒ x+ 0 · y = 1 (A = 1, B = 0, C = 1) ,

y = 0 ⇐⇒ 0 · x+ y = 0 (A = 0, B = 1, C = 0) ,

0 = 3 ⇐⇒ 0 · x+ 0 · y = 3 (A = 0, B = 0, C = 3) ,

0 = 0 ⇐⇒ 0 · x+ 0 · y = 0 (A = 0, B = 0, C = 0) .

The graph of an equation is the set of all points on the plane whose coordinates satisfy the equation.

6 / 15

The graph of a linear equation in two variables

What is the graph of the equation Ax+By = C ? It depends on the coefficients A,B,C .

• If all the coefficients are zeros, that is A = B = C = 0 , then the equation is

0 · x+ 0 · y = 0 ⇐⇒ 0 = 0,

and it is satisfied by any pair of numbers (x, y) . Therefore, its graph is the entire plane.

• If A = B = 0 and C 6= 0 then the equation is

0 · x+ 0 · y = C ⇐⇒ 0 = C ,

and there are no (x, y) satisfying it. Its graph is the empty set.

• If A, B are not both zero, that is either A 6= 0 or B 6= 0 , then the graph is a straight line.

7 / 15
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Line as the graph of a linear equation

If A, B are not both zero, then there are infinitely many points (x, y)
satisfying the equation Ax+By = C .

They are located on a straight line. This line is the graph of the equation Ax+By = C .

x

y Ax + By = C

A line is determined by any two of its points. Therefore, to draw the line,
it is enough to specify the location of two points on it.

8 / 15

How to draw a line by its equation

Example. Draw the line 3x− 4y = 12 on the coordinate plane.

Solution. Let us pick up two points on the line. A point on the line is defined by
a pair of numbers (x, y) , satisfying the equation 3x− 4y = 12 .

For simplicity, let us choose x = 0 . Then
3 · 0− 4y = 12 ⇐⇒ −4y = 12 ⇐⇒ y = −3 .

Therefore, (0,−3) is a point on the line.
Now put y = 0 . Then

3x− 4 · 0 = 12 ⇐⇒ 3x = 12 ⇐⇒ x = 4 .
Therefore, (4, 0) is a point on the line.

Draw a line through (0,−3) and (4, 0):
x

y

(0,−3)

(4, 0)

3x − 4y = 12

9 / 15
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A line through two points

Remark. When we search for two points belonging to the line 3x− 4y = 12 ,
it is convenient to put the coordinates in the table:

x y

0 −3
4 0

x = 0 =⇒ y = −3
y = 0 =⇒ x = 4

One may choose any two other points on the line, for example,

x y

2 − 3

2

16

3
1

x = 2 =⇒ 3 · 2− 4y = 12 =⇒ 6− 4y = 12 =⇒ y = −3

2

y = 1 =⇒ 3x− 4 · 1 = 12 =⇒ 3x = 16 =⇒ x = 16

3

x

y

(0,−3)

(4, 0)

(2,− 3

2
)

(
16

3
, 1)

3x − 4y = 12

10 / 15

Intercepts

The point where the line intersects the x-axis is called the x-intercept.
The x-intercept has coordinates (x, 0) , its y -coordinate equals 0 .

The point where the line intersects the y-axis is called the y-intercept.
The y-intercept has coordinates (0, y) , its x -coordinate equals 0 .

x

y

x-intercept

y-intercept

11 / 15
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How to find intercepts

Example. Determine the intercepts of the line 2x+ 3y = 4 .
Draw the line on the coordinate system.

Solution.

The x-intercept is the point where y = 0 . Plug in y = 0 into the equation:

2x+ 3 · 0 = 4 ⇐⇒ 2x = 4 ⇐⇒ x = 2 . So the x-intercept is (2, 0).

The y-intercept is the point where x = 0 . Plug in x = 0 into the equation:

2 · 0 + 3y = 4 ⇐⇒ 3y = 4 ⇐⇒ y = 4/3 . So the y-intercept is (0, 4/3).

x

y

(2, 0)

(0, 4/3)

2x+ 3y = 4

12 / 15

Two-intercept form of a linear equation

The equation
x

a
+

y

b
= 1 where x, y are variables and a, b are non-zero numbers,

is called the two-intercept equation of a line.

The coefficients a and b represent the x- and y-intercepts respectively.

Indeed, (a, 0) and (0, b) satisfy the equation:

a

a
+

0

b
= 1 and

0

a
+

b

b
= 1 .

x

y

a

b

x

a
+

y

b
= 1

13 / 15
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Quick drawing

The two intercept form of the equation helps to draw a line in no time.

Example. Draw the line 3x− 2y = 6 .

Solution. Rewrite the equation in the two-intercept form:

3x− 2y = 6 ⇐⇒ 3x

6
− 2y

6
= 1 ⇐⇒ x

2
+

y

−3
= 1.

The x-intercept is (2, 0) , the y-intercept is (0,−3) .

x

y

2

−3

3x− 2y = 6
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Summary

In this lecture, we have learned

�✓ what a Cartesian coordinate system is
�✓ what the equation of a vertical line is ( x = a )
�✓ what the equation of a horizontal line is ( y = b )
�✓ what the general linear equation in two variables is (Ax+By = C )
�✓ what the graph of a linear equation is
�✓ how to draw a line by its equation
�✓ what the intercepts are

�✓ what the two-intercept equation is
( x

a
+

y

b
= 1

)

15 / 15
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Lines on a Plane. Part 2
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Linear equation y = mx + b

Consider a general linear equation Ax+By = C whose graph is a line.

If B 6= 0 , then the equation can be rewritten as follows:

Ax+By = C ⇐⇒ By = −Ax+ C ⇐⇒ y = −A

B
x+

C

B
⇐⇒ y = mx+ b ,

where m = −A

B
and b =

C

B
.

If B = 0 , then Ax+By = C ⇐⇒ Ax = C ⇐⇒ x =
C

A
,

and the graph is a vertical line.

Any non-vertical line can be described by the equation y = mx+ b .
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The y-intercept

Consider a linear equation y = mx+ b . What do the coefficients m and b represent?

The coefficient b represents the y-intercept of the line y = mx+b .

Indeed, if x = 0 then y = m · 0+b ⇐⇒ y = b and (0,b) is the y-intercept.

x

y

b

y = mx+b

The coefficient b in the equation y = mx+b

shows where the line meets the y-axis.

The coefficient b is called the y-intercept.
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Slope-intercept equation of a line

The coefficient m in the equation y =mx+ b is called the slope of the line.

y =mx+ b

slope

y-intercept

The equation y = mx+ b is called the slope-intercept equation of a line.

What does the slope of the line represent?
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Slope measures the inclination of a line

Let us study a line y = mx . The y-intercept is zero, therefore the line passes through the origin.

x

y
y = mxy = mx

y = 0

y = mx

Here are several lines with positive slopes:

x

y

y = 1

2
x slope=1/2

y = x slope=1

y = 2x slope=2

III

III IV

The larger the slope, the steeper the line.

A line with positive slope rises

as we move from left to right.

Lines y = mx with positive m are located
in the first and third quadrants of the plane.
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Negative slope. Zero slope

Here are several lines with negative slopes:

x

y

y = − 1

2
x

y = −x

y = −2x

A line with negative slope falls

as we move from left to right.

A line y = mx with negative m is located
in the second and fourth quadrants.

If the slope m = 0 , then
y = mx+ b ⇐⇒ y = 0 · x+ b ⇐⇒ y = b,
and the line is horizontal.

x

y

slope=0
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Slope of vertical line

The slope of a vertical line is undefined.

x

y

slope is
undefined

7 / 17
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Parallel lines have the same slope

A line y = mx+ b is obtained from the line y = mx by a vertical shift along the y-axis.

x

y

y = mx

y = mx+ b, b > 0

b

y = mx+ b, b < 0

b Two non-vertical lines are parallel

if and only if
they have the same slope.
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Example of parallel lines

x

y

y = 1

2
x

y = 1

2
x+1

1

y = 1

2
x+3

3

y = 1

2
x−2

−2

9 / 17
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Parallel or not?

Example 1. Are the lines 3x− 2y = 1 and −6x+ 4y = 5 parallel?

Solution. To answer the question, we have to determine the slopes of the lines. For this, we rewrite
the equations in the slope-intercept form y = mx+ b .

3x− 2y = 1 ⇐⇒ 2y = 3x− 1 ⇐⇒ y =
3

2
x− 1

2

−6x+ 4y = 5 ⇐⇒ 4y = 6x+ 5 ⇐⇒ y =
6

4
x+

5

4
⇐⇒ y =

3

2
x+

5

4
.

Since the lines have the same slope of
3

2
, they are parallel.

Example 2. Are the lines y = 2 and y = 2x parallel?

Solution. The slope of the line y = 2 is 0, since y = 2 ⇐⇒ y = 0 · x+ 2 .
The slope of line y = 2x is 2. Since the lines have different slopes, they are not parallel.
Remark. y = 2 is a horizontal line, while y = 2x is not. So the lines are not parallel.
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Slope of a line through two given points

Theorem. A line passing though two points (x1, y1) and (x2, y2) with x1 6= x2 has the slope
y2 − y1

x2 − x1
.

Proof. Let y = mx+ b be an equation of the line. We have to prove that the slope m =
y2 − y1

x2 − x1
.

Since the points (x1, y1) and (x2, y2) are on the line y = mx+ b ,
their coordinates satisfy the equation y = mx+ b :

y1 = mx1 + b and y2 = mx2 + b .

Subtracting the first equality from the second one, we get

y2 − y1 = (mx2 + b)− (mx1 + b) ⇐⇒ y2 − y1 = m(x2 − x1) ⇐⇒ m =
y2 − y1

x2 − x1
. as required.

Notice that x2 − x1 6= 0 since x1 6= x2 .
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Slope as a ratio

Let us give a geometric interpretation of this result:

A line y = mx+ b passing through the points (x1, y1) and (x2, y2)

with x1 6= x2 has the slope m =
y2 − y1

x2 − x1
.

x

y

x1

y1

y2

x2

y = mx+ b

x2 − x1

y2 − y1

When we move along the line
from a point (x1, y1) to another point (x2, y2) ,
the difference x2 − x1 shows

the change in x-coordinate,
and the difference y2 − y1 shows

the change in y-coordinate.

The slope is the ratio of the change: slope =
change in y

change inx
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Examples

Example 1. Find the equation of the line passing through the points (1,−1) and (−3, 7) .
Solution. Let y = mx+ b be the equation of the line.

We have to determine the coefficients m and b .

The slope m of the line passing through the points (x1, y1) = (1,−1) and (x2, y2) = (−3, 7) is

m =
y2 − y1

x2 − x1
=

7− (−1)

−3− 1
=

8

−4
= −2 .

Our line has the equation y = −2x+ b .
To determine b , we plug in any of two given points into this equation.

Plugging in (x1, y1) = (1,−1) , we get

−1
︸︷︷︸

y1

= −2
︸︷︷︸

m

· 1
︸︷︷︸

x1

+b ⇐⇒ −1 = −2 + b ⇐⇒ b = 1 .

Therefore, the line has equation y = −2x+ 1

13 / 17
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Examples

Example 2. Find the equation of the line passing through the points (2,−1) and (2, 3) .

Solution. The given points have the same x-coordinate.
Therefore, they belong to a vertical line.

The equation of the line is x = 2 .
x

y

2

x = 2

0

Example 3. Find the equation of the line passing through the points (−1, 3) and (4, 3) .

Solution. The given points have the same y-coordinate.
Therefore, they belong to a horizontal line.

The equation of the line is y = 3 .
x

y

3 y = 3

0
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Point-slope equation

Theorem. A line that has a slope of m and passes through the point (x1, y1)

has the equation y − y1 = m(x− x1)

Proof. Let us show that the equation above describes
a line that has a slope of m and passes through (x1, y1) .

Rewrite the equation in a slope-intercept form:
y − y1 = m(x− x1) ⇐⇒ y = m

︸︷︷︸

slope

x+ (−mx1 + y1) .

The coefficient in front of x is the slope m .
Moreover, the point (x1, y1) satisfies the equation y − y1 = m(x− x1) :

y1 − y1 = m(x1 − x1) ⇐⇒ 0 = 0 , so it belongs to the line.

Example. Find a slope-intercept equation of a line that has a slope of 3 and passes through the
point (−1, 2) .

Solution. Using the point-slope equation y − y1 = m(x− x1) , we get
y − 2 = 3(x− (−1)) ⇐⇒ y − 2 = 3(x+ 1) ⇐⇒ y = 3x+ 5

15 / 17
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Perpendicular lines

Theorem. Two non-vertical lines are perpendicular if the product of their slopes is −1 .
Proof.

x

y

m

1

1

−m

m

slope = m

1

1

slope = 1

−m The triangles are congruent.
The lines are perpendicular.

Example. Prove that the lines x− 2y = 1 and 6x+ 3y = 2 are perpendicular.

Solution. x− 2y = 1 ⇐⇒ 2y = x− 1 ⇐⇒ y =
1

2
x− 1/2

6x+ 3y = 2 ⇐⇒ 3y = −6x+ 2 ⇐⇒ y = −2x+ 2/3
The slopes 1/2 and −2 are negative reciprocals of each other.

Therefore, the lines are perpendicular.
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Summary

In this lecture, we have learned

�✓ the slope-intercept equation of a line y = mx+ b

�✓ what the slope of a line represents
�✓ that parallel lines have the same slope
�✓ how to find equation of a line passing through two points
�✓ what the point-slope equation of a line is y − y1 = m(x− x1)
�✓ that perpendicular lines have negative reciprocals slopes
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What is a linear system?
We will study systems consisting of two linear equations in two unknowns,

like this:

{

−2x+ 3y = −8

5x+ 2y = 1
x, y are called unknowns.

To solve a system means to find all values of x and y which satisfy both equations.

The brace

{

means that both equations should be satisfied by the same values of x and y.

The values x = 1 and y = −2 satisfy

{

−2x+ 3y = −8

5x+ 2y = 1,

because

{

−2 · 1 + 3(−2) = −2 + (−6) = −8

5 · 1 + 2(−2) = 5 + (−4) = 1.
Therefore,

{

x = 1

y = −2
(or just the pair (1,−2)) is a solution of

{

−2x+ 3y = −8

5x+ 2y = 1.

Are there other solutions? To solve a system means to find all its solutions!

2 / 7

How many solutions may a system have?

The graph of each equation of the system is a line.

A solution of the system is a point which belongs to both lines.

How can two lines on a plane be positioned with respect to each other?

x

y

lines intersect
at one point

system has
one solution

x

y

lines are parallel

system has
no solution

x

y

lines coincide

system has
infinitely many

solutions

3 / 7
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How to solve a system?

Some systems are easy.

{

x = −2

y = 3

is a linear system,
but it looks like a solution,
and it is a solution for itself.

x

y

y = 3

x = −2

(−2, 3)

To solve a more complicated system, we propose to turn it into an easy one
by a sequence of elementary transformations.

The transformations must preserve the set of all solutions.

If two systems have the same solutions, we call them equivalent .
and write ⇐⇒ between the systems,

like this:
{

x+ 3 = 1

2y = 6
⇐⇒

{

x = −2

y = 3

4 / 7

Elementary transformations

There are three elementary transformations.

1. Adding equations, that is replacing one equation by its sum with the other equation.

{

−x+ 2y = 3

x− y = 0

sum up−−−−→
keep−−→

⇐⇒
{

−x+ 2y + (x− y) = 3 + 0

x− y = 0

⇐⇒
{

−x+ 2y + (x− y) = 3 + 0

x− y = 0
⇐⇒

{

y = 3

x− y = 0

Adding the first equation to the second one completes the solution:
{

y = 3

x− y = 0
⇐⇒

{

y = 3

x− y + y = 0 + 3
⇐⇒

{

y = 3

x = 3

5 / 7
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Elementary transformations

2. Subtracting equations.
{

y = −1

x+ y = 1

keep−−→
subtract−−−−−→

⇐⇒
{

y = −1

x+ y − y = 1− (−1)
⇐⇒

{

y = −1

x = 2

3. Multiplying an equation by a non-zero number.






−1

2
x = 1

3y = −5

multiply by (−2)−−−−−−−−−−→
divide by 3−−−−−−→







x = −2

y = −5

3

Division by 3 is multiplication by
1

3
.
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Summary

In this lecture, we have learned

�✓ what a linear system is
�✓ what solutions of a linear system are
�✓ what it means to solve a system
�✓ how many solutions a linear system may have
�✓ which systems are called equivalent

�✓ what elementary transformations are
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Preface

In Lecture 21, we learned

• what a linear system is
• what its solution is
• how many solutions a system may have
• how to solve a system by elementary transformations:

adding/subtracting equations and
multiplying an equation by a non-zero number.

We continue our journey through the theory shifting the attention to examples .

We will solve one by one specific systems,
gradually learning new practical tricks and fragments of theory .
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Substitution

Example 1. Solve the system

{

x− 3y = 1

y = 2.

It’s a nice system: the second equation says the unknown y is actually known!
Solution: Plug y = 2 into the first equation:
{

x− 3y = 1

y = 2
⇐⇒

{

x− 3(2) = 1

y = 2
⇐⇒

{

x = 1 + 6

y = 2
⇐⇒

{

x = 7

y = 2

This method is called substitution.

This system could be solved also by elementary transformations:
{

x− 3y = 1

y = 2
⇐⇒

{

x− 3y = 1

3y = 6
⇐⇒

{

x = 7

3y = 6
⇐⇒

{

x = 7

y = 2

Geometric interpretation:

x

y

x −
3y

=
1

y = 2 (7, 2)
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Elimination by addition

Example 2. Solve the system

{

−2x+ 3y = 4

2x− y = 0

Solution.

The coefficients for x are −2 and 2 , so adding the equations will eliminate x :
{

−2x+ 3y = 4

2x− y = 0
⇐⇒

{

2y = 4

2x− y = 0
⇐⇒

{

y = 2

2x− y = 0
⇐⇒

{

y = 2

2x = 2

⇐⇒
{

y = 2

x = 1
⇐⇒ (x, y) = (1, 2)

x

y

−
2
x
+
3
y
=

4

2x − y = 0

(1, 2)

4 / 9

All methods together

Example 3. Solve the system

{

−2x+ 3y = −8

5x+ 2y = 1

Solution.

Let us eliminate one of the unknowns, say x :

{

−2x+ 3y = −8

5x+ 2y = 1

multiply by 5−−−−−−−−→
multiply by 2−−−−−−−−→

{

−10x+ 15y = −40

10x+ 4y = 2
⇐⇒

{

19y = −38

10x+ 4y = 2

⇐⇒
{

y = −2

5x+ 2y = 1
⇐⇒

{

y = −2

5x+ 2(−2) = 1
⇐⇒ (x, y) = (1,−2)

x

y

(1,−2)

5 / 9

3



How to check a solution?

It is easy to check if a solution of a linear system is correct.

Let us check if (x, y) = (1,−2) is indeed a correct solution of the system

{

−2x+ 3y = −8

5x+ 2y = 1

Plug in x = 1 , y = −2 into the system:

{

−2(1) + 3(−2)
?
= −8

5(1) + 2(−2)
?
= 1

⇐⇒
{

−8
X
= −8

1
X
= 1

6 / 9

Systems with no solutions

Solve the system

{

x+ 2y = −1

−2x− 4y = 3.

Solution.
{

x+ 2y = −1

−2x− 4y = 3
⇐⇒

{

2x+ 4y = −2

−2x− 4y = 3
⇐⇒

{

2x+ 4y = −2

0 = 1

The statement 0 = 1 is false.
It is false no matter what values x and y take.

A system, which includes an equation 0 = 1, has no solution.

x

y

x + 2y = −1

−2x − 4y = 3

7 / 9
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Systems with infinitely many solutions

Solve the system

{

x+ 2y = −1

−2x− 4y = 2.

Solution.
{

x+ 2y = −1

−2x− 4y = 2
⇐⇒

{

2x+ 4y = −2

−2x− 4y = 2
⇐⇒

{

2x+ 4y = −2

0 = 0

The statement 0 = 0 is true. It is true, no matter what values x and y take. Removing the
equation 0 = 0 from a system does not change the set of solutions. Our system is equivalent to a
single equation:

2x+ 4y = −2 ⇐⇒ x+ 2y = −1 ⇐⇒ x = −1− 2y

x

y

x + 2y = −1

−2x − 4y = 2

Answer: (x, y) = (−1 − 2y, y) ,
where y is an arbitrary number.
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Summary

In this lecture, we have learned

�✓ how to solve a system by a substitution

�✓ how to eliminate an unknown
�✓ how to check a solution
�✓ how to handle systems with no solutions

�✓ how to handle systems with infinitely many solutions
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Applications of linear systems

In this lecture, we will learn how to solve word problems using systems of linear equations.
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On a farm

Problem. On a farm, there are sheep and chicken.

All together,
they have 44 feet and 17 heads.
How many sheep and

how many chicken
are on the farm?

Solution. Let x be the number of sheep, and y be the number of chicken.

How many feet do all sheep have? 4x

How many feet do all chicken have? 2y

How many feet do sheep and chicken have all together? 4x+ 2y

How many heads do they have all together? x+ y

What is given in the problem?
• all together they have 44 feet, so 4x+ 2y = 44 .

• all together they have 17 heads, so x+ y = 17 .
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Solve a system

How to find x , the number of sheep, and y , the number of chicken?

Solve the system
{

4x+ 2y = 44

x+ y = 17
⇐⇒

{

2x+ y = 22

x+ y = 17
⇐⇒

{

x = 5

x+ y = 17
⇐⇒

{

x = 5

y = 12

Therefore, the number of sheep is 5 , the number of chicken is 12 .

Let us check if our answer is correct.

How many feet do 5 sheep and 12 chicken have?
4 · 5 + 2 · 12 = 20 + 24 = 44 X

How many heads do 5 sheep and 12 chicken have?
5 + 12 = 17 X

The problem is solved correctly!

Answer. There are 5 sheep and 12 chicken on the farm.

4 / 9

In a movie theater

Problem. A family of two adults and five children pays $61 for tickets in a movie theater.
A family of three adults and two children pays $53 .

Find a ticket price for an adult and a ticket price for a child.
Solution. Let $x be the price for an adult ticket, and $y be the price for a child ticket.

How much a family of two adults and five children will pay then? $(2x + 5y)

How much a family of three adults and two children will pay? $(3x + 2y)

What is given in the problem?

A family of two adults and five children pays $61 . So 2x+ 5y = 61.

A family of three adults and two children pays $53 . So 3x+ 2y = 53.

How to find x and y ?

5 / 9
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Solve a system
{

2x+ 5y = 61

3x+ 2y = 53
⇐⇒

{

6x+ 15y = 183

6x+ 4y = 106
⇐⇒

{

11y = 77

3x+ 2y = 53
⇐⇒

{

y = 7

3x+ 2 · 7 = 53
⇐⇒

{

y = 7

3x = 53− 14
⇐⇒

{

y = 7

3x = 39
⇐⇒

{

x = 13

y = 7

Therefore, the price for an adult ticket is $13 , and the price for a children ticket is $7 .

Let us check if our answer is correct.

How much a family of two adults and five children will pay, in dollars?
2 · 13 + 5 · 7 = 26 + 35 = 61 X

How much a family of thee adults and two children will pay, in dollars?
3 · 13 + 2 · 7 = 39 + 14 = 53 X

Answer. The ticket price for an adult is $13 , the ticket price for a child is $7 .

6 / 9

In a winery

Problem. A winemaker has in his cellar
1620 liters of wine

aging in three small and five large barrels.
Find the volumes of the barrels

if a large barrel
contains 20 liters more than a small one.

Solution. Let x be the volume (in liters) of a small barrel,
and y be the volume (in liters) of a large barrel.

What is the total volume of three small and five large barrels?
3x+ 5y (liters)

What is the difference in volumes between a large and a small barrel? y − x

What is given in the problem?
• total volume: 3x+ 5y = 1620
• the difference in volumes: y − x = 20

7 / 9
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Solve a system
{

3x+ 5y = 1620

−x+ y = 20
⇐⇒

{

3x+ 5y = 1620

y = x+ 20
⇐⇒

{

3x+ 5(x+ 20) = 1620

y = x+ 20
{

3x+ 5x+ 100 = 1620

y = x+ 20
⇐⇒

{

8x = 1520

y = x+ 20
⇐⇒

{

x = 190

y = 190 + 20
⇐⇒

{

x = 190

y = 210Therefore, a small barrel contains 190 liters,
and a large one contains 210 liters.

Let us check if our answer is correct.
What is the total volume of three small barrels and five large ones?

3 · 190 + 5 · 210 = 570 + 1050 = 1620 X

How many liters more does a large barrel contain than a small one?
210 − 190 = 20 X

Answer. 190 and 210 liters.

8 / 9

Summary

In this lecture, we have learned

�✓ how to solve word problems using linear systems
�✓ how to check if the answer is correct
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Radicals
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Squares and square roots

A number and its opposite have the same square:
for example, 32 = 9 and (−3)2 = 9.

Number 9 is called the square of 3 (or −3 ).
Numbers 3 and −3 are called the square roots of 9 .

Let a be a non-negative number. A square root of a is a number b such that b2 = a .
If a is positive, then there are two numbers, b and −b , whose square is a :

b

a

−b square

square roots

If a = 0 , then there is only one number, 0 , whose square is 0 : 0 = 02 .

2 / 13

Definition of radical

Let a be a non-negative number.
The principal square root of a is a non-negative number b such that b2 = a .

b

a

−b square

square roots

principal square root

Notation for the principal square root:
√
a = b

The symbol
√

is called a radical sign.

The formula
√
a = b reads “the square root of a is equal to b ”.

By definition,
√
a = b ⇐⇒ b2 = a for non-negative a and b .

3 / 13
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Radicals and perfect squares

Examples.
√
0 = 0 since 02 = 0 ,

√
1 = 1 since 12 = 1 ,

√
4 = 2 since 22 = 4 ,

√
9 = 3 since 32 = 9 ,

√
16 = 4 since 42 = 16 .

A number a is called a perfect square if
√
a is an integer.

Here are some perfect squares: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

4 / 13

Precautions

• When we work with real numbers, the number under the radical sign should be non-negative:√
a is defined only for a ≥ 0 .

For example,
√
−9 is not defined.

• A square root is always non-negative:
√
a ≥ 0 .

For example, it is incorrect to write
√
9 = −3 , since

√
9 , by definition, should be non-negative.

5 / 13
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Taking principal square root is opposite to squaring

3

squaring

9

taking principal root

It means that
√
32 = 3 and (

√
9)2 = 9.

For any non-negative a ,
√
a2 = a and (

√
a)2 = a .

Example. Find the value of the following expressions:
√
52 ,

√

(−5)2 ,
√
−52 , (

√
5)2 , (−

√
5)2 , (

√
−5)2 .

Solution.
√
52 = 5,

√

(−5)2 =
√
52 = 5,

√
−52 =

√
−25 is undefined

(
√
5)2 = 5, (−

√
5)2 = (

√
5)2 = 5, (

√
−5)2 is undefined

6 / 13

Properties of radicals

Let a, b be non-negative numbers. Then
√
a
√
b =

√
ab and

√
a√
b
=

√

a

b
.

Indeed, (
√
a
√
b)2 = (

√
a)2(

√
b)2 = ab . Therefore,

√
a
√
b =

√
ab .

(√
a√
b

)2

=
(
√
a)2

(
√
b)2

=
a

b
. Therefore,

√
a√
b
=

√

a

b
.

Example. Simplify the following expressions:
√
3
√
12 ,

√
75 ,

√
27√
12

.

Solution.
√
3
√
12 =

√
3
√
3 · 4 =

√
3
√
3
√
4 = (

√
3)2

√
22 = 3 · 2 = 6 .

Another way to calculate:
√
3
√
12 =

√
3 · 12 =

√
36 =

√
62 = 6 .

√
75 =

√
3 · 25 =

√
3 · 52 =

√
3
√
52 =

√
3 · 5 = 5

√
3.

√
27√
12

=

√
3 · 9√
3 · 4

=

√
3 ·

√
9√

3 ·
√
4
=

√
32√
22

=
3

2
.
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What is
√

x
2 ?

We know that x2 is non-negative for any value of x . So
√
x2 is defined.

Is it true that
√
x2 = x for all x ? No!

For non-negative x ,
√
x2 = x by definition of the radical.

For negative x ,
√
x2 = −x , since −x > 0 and (−x)2 = x2 .

Therefore,
√
x2 = |x| . Reminder: |x| =

{

x, x ≥ 0

−x, x < 0

Example 1.
√

(−5)2 = | − 5| = 5 .

Example 2. Simplify the following expressions:
√
x4 ,

√
x6 .

Solution.
√
x4 =

√

(x2)2 = |x2| = x2

√
x6 =

√

(x3)2 = |x3| = |x2 · x| = |x2| · |x| = x2 · |x|

8 / 13

Why
√

x + y 6=
√

x +
√
y ?

It is not true that
√
x+ y =

√
x+

√
y for arbitrary x , y .

Indeed, if x = 9 and y = 16 , then

√
x+ y

∣

∣

∣

x=9, y=16

=
√
9 + 16 =

√
25 = 5 , while

(
√
x+

√
y)
∣

∣

∣

x=9, y=16

=
√
9 +

√
16 = 3 + 4 = 7 and 5 6= 7.

Are there any x , y for which
√
x+ y =

√
x+

√
y ? Yes!

For example, x = y = 0 :
√
0 + 0 =

√
0 +

√
0

or x = 1 and y = 0 :
√
1 + 0 =

√
1 +

√
0.

Actually,
√
x+ y =

√
x+

√
y only if at least one of x , y is zero.

9 / 13
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Simplest radical form

An expression involving radicals can be written in many different forms. For example,
√

4

3
=

√
4√
3
=

2√
3
=

2
√
3√

3 ·
√
3
=

2
√
3

3
.

It is a custom to write radical expressions in a special form, which is called simplest radical form.

In simplest radical form, the expression
• doesn’t contain perfect square factors:√

12 is not in the simplest form, but 2
√
3 is. (

√
12 =

√
4 · 3 = 2

√
3 )

• doesn’t contain fractions under the radical:
√

3

4
is not in the simplest form, but

√
3

2
is.

(

√

3

4
=

√
3√
4
=

√
3

2

)

• doesn’t contain radicals in denominators:
1√
2

is not in the simplest form, but

√
2

2
is.

(

1√
2
=

√
2√

2 ·
√
2
=

√
2

2

)

10 / 13

Simplest radical form

Example. Bring the following expressions in simplest radical form:

1√
3
,

√

2

5
,

1

3−
√
2

Solution.
1√
3
=

1 ·
√
3√

3 ·
√
3
=

√
3

(
√
3)2

=

√
3

3

√

2

5
=

√
2√
5
=

√
2 ·

√
5√

5 ·
√
5
=

√
10

(
√
5)2

=

√
10

5

1

3−
√
2
=

1 · (3 +
√
2)

(3−
√
2)(3 +

√
2)

=
3 +

√
2

32 − (
√
2)2

=
3 +

√
2

9− 2
=

3 +
√
2

7

Remember: (a− b)(a+ b) = a2 − b2 , so

(3−
√
2)(3 +

√
2) = 32 − (

√
2)2

11 / 13
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Operating with radical expressions

Example 1. Simplify the expression:
√
6(
√
18−

√
24)

Solution.
√
6(
√
18−

√
24) =

√
6
√
18−

√
6
√
24 =

√
6 · 18−

√
6 · 24 =

√
6 · 6 · 3−

√
6 · 6 · 4 =

√
62 · 3−

√
62 · 22 =

√
62
√
3−

√
62
√
22 =

6
√
3− 6 · 2 = 6

√
3− 12.

Example 2. Bring the expression in simplest radical form:

√
6− 3√
3−

√
2
.

Solution.
√
6− 3√
3−

√
2
=

√
3 · 2− (

√
3)2√

3−
√
2

=

√
3
√
2− (

√
3)2√

3−
√
2

=

√
3(
√
2−

√
3)√

3−
√
2

=

√
3(−1)(

√
3−

√
2)√

3−
√
2

=

√
3(−1)(✘✘✘✘✘√

3−
√
2)

✘✘✘✘✘√
3−

√
2

= −
√
3.
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Summary

In this lecture, we have learned

�✓ what the square roots of a non-negative number are
�✓ what the principal square root is
�✓ what the perfect squares are
�✓ the defining identities for radical:

√
a2 = a and (

√
a)2 = a

�✓ the properties of radicals:
√
a
√
b =

√
ab ,

√
a√
b
=

√

a

b

�✓
√
x2 = |x| that for all x

�✓
√
x+ y 6=

√
x+

√
y for arbitrary x, y

�✓ what the simplest radical form is
�✓ how to operate with radical expressions
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Lecture 25

Radicals as Powers with Rational Exponents
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Roots

Let a be a real number. The n-th root of a is a number b such that bn = a .

If n = 2 then the n-th root is the square root which we studied in the preceding lecture.

Examples. The 2nd root of 49 is 7 , since 72 = 49

The 4th root of 81 is 3 , since 34 = 81 .

The 5th root of −32 is −2 , since (−2)5 = −32 .

The 4th root of −81 does not exist,
since there is no real number which 4th power is negative.

2 / 11

Cube root

The 3rd root has a special name: it is called a cube root.

Notation for the cube root: 3
√

. By definition, b = 3
√
a ⇐⇒ b3 = a .

For any number a , there exists a unique cube root of a ,
since the equation x3 = a has a unique solution.

Examples.
3
√
1 = 1 since 13 = 1,

3
√
8 = 2 since 23 = 8,

3
√
27 = 3 since 33 = 27,

3
√
64 = 4 since 43 = 64,

3
√
0 = 0 since 03 = 0,

3
√
−1 = −1 since (−1)3 = −1,

3
√
−8 = −2 since (−2)3 = −8.
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Odd-order roots

Let n be a positive odd integer, and a be a real number.

Then the equation xn = a has a unique solution. So there exists a unique n-th root of a .

Notation for the n-th root: n

√
. By definition, b = n

√
a ⇐⇒ bn = a .

The number n is called the index of the n-th root.

Examples.
5
√
1 = 1 since 15 = 1,

9
√
−1 = −1 since (−1)9 = −1,

3
√
−125 = −5 since (−5)3 = −125,

5
√
243 = 3 since 35 = 243,

7
√
128 = 2 since 27 = 128,

7
√
−128 = −2 since (−2)7 = −128.

4 / 11

Even-order roots

Let n be a positive even integer, and a be a non-negative real number.

Then the equation xn = a has two solutions, which differ by their signs.
So there exist two n-th roots of a .

The positive root is called the principal n-th root and denoted by n

√
.

By definition, b = n

√
a ⇐⇒ bn = a .

The number n is called the index of the n-th root.

It’s a custom to omit the index of 2 : the second root 2
√
a is written as

√
a .

Examples.
4
√
1 = 1 since 14 = 1,

4
√
16 = 2 since 24 = 16,

4
√
−16 is undefined since 4 is even and −16 < 0,

6
√
64 = 2 since 26 = 64,

4
√
81 = 3 since 34 = 81,

6
√
−81 is undefined since 6 is even and −81 < 0 .

5 / 11
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Precautions

Dealing with n-th roots, we have to distinguish two cases: when n is odd and when n is even.

• For odd n , n

√
a is defined for all a .

In this case, n

√
a may be positive, negative, or zero (depending on a ).

• For even n , n

√
a is defined only for non-negative a . In this case, n

√
a ≥ 0 .

Operations of taking the n-th power and n-th root are inverse to each other:

n

√
a = b

n-th power

a = bn

n-th root

For even n , we have to restrict ourselves to non-negative a and b .

Then n

√
bn = b and ( n

√
b)n = b .

6 / 11

Examples

Example 1. Find the value of the following expressions:
3
√
53 , 3

√

(−5)3 , 3
√
−53 , ( 3

√
5)3 , (− 3

√
5)3 , ( 3

√
−5)3 .

Solution.
3
√
53 = 5, 3

√

(−5)3 = −5, 3
√
−53 = 3

√
−125 = −5,

( 3
√
5)3 = 5, (− 3

√
5)3 = −( 3

√
5)3 = −5, ( 3

√
−5)3 = −5.

Example 2. Find the value of the following expressions:
4
√
54 , 4

√

(−5)4 , 4
√
−54 , ( 4

√
5)4 , (− 4

√
5)4 , ( 4

√
−5)4 .

Solution. Caution! 4 is even and 4
√

may be not defined.
4
√
54 = 5, 4

√

(−5)4 =
4
√
54 = 5, 4

√
−54 = 4

√
−625 is undefined.

( 4
√
5)4 = 5, (− 4

√
5)4 = ( 4

√
5)4 = 5, ( 4

√
−5)4 is undefined.
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Properties of n-th roots

Let a, b be numbers for which n-th roots are defined. Then n

√
a n

√
b = n

√
ab and

n

√
a

n

√
b
= n

√

a

b
.

Indeed, ( n

√
a n

√
b)n = ( n

√
a)n( n

√
b)n = ab . Therefore, n

√
a n

√
b = n

√
ab .

(

n

√
a

n

√
b

)n

=
( n

√
a)n

( n

√
b)n

=
a

b
. Therefore,

n

√
a

n

√
b
= n

√

a

b
.

8 / 11

Radicals as powers with rational exponents

Reminder:

If n is a positive integer, then xn = x · x · · · · · x
︸ ︷︷ ︸

n times

, and x−n =
1

xn
.

If n = 0 , then x0 = 1.

What is x
1

n ? Calculate the n-th power of x
1

n :
(

x
1

n

)

n

= x
1

n · x 1

n · · · · · x 1

n

︸ ︷︷ ︸

n times

= x
1

n
+

1

n
+···+

1

n = xn·
1

n = x1 = x.

This means that n-th power of x
1

n is x , therefore, x
1

n = n

√
x .

For positive integers m and n , define a power with fractional exponent as follows:

x
m

n = n

√
xm = ( n

√
x)m .

One can prove that all power rules are valid for fractional exponents.
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Operating with fractional exponents

Example. Simplify the following expressions:

25
3

2 , 27−
5

3 , (64)
2

3 , (−64)
2

3 , (64)
3

2 , (−64)
3

2 .

Solution.

25
3

2 = 25
1

2
·3 = (25

1

2 )3 = (
√
25)3 = 53 = 125

27−
5

3 =
1

27
5

3

=
1

( 3
√
27)5

=
1

35
=

1

243

(64)
2

3 = ( 3
√
64)2 = 42 = 16

(−64)
2

3 = ( 3
√
−64)2 = (−4)2 = 16

(64)
3

2 = (
√
64)3 = 83 = 512

(−64)
3

2 = (
√
−64)3 is undefined since −64 < 0.
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Summary

In this lecture, we have learned

�✓ what the n-th root is
�✓ what n

√
a is

�✓ the difference between cases when n is odd and even

�✓ defining identities for n -th root: ( n

√
x)n = x , n

√
xn = x for x ≥ 0

�✓ properties of n -th root
�✓ that radicals may be written as powers with rational exponents:

x
m

n = n

√
xm = ( n

√
x)m

�✓ how to operate with rational exponents
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Quadratic Equations
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Quadratic polynomials

A quadratic polynomial is a polynomial of degree two.

It can be written in the standard form ax2 + bx+ c ,
where x is a variable, a, b, c are constants (numbers) and a 6= 0 .

The constants a, b, c are called the coefficients of the polynomial.

Example 1 (quadratic polynomials).

−3x2 + x− 4

5
( a = −3, b = 1, c = −4

5
)

x2 ( a = 1, b = c = 0 )

x2

7
− 5x+

√
2 ( a =

1

7
, b = −5, c =

√
2 )

4x(x+ 1)− x (this is a quadratic polynomial which is not written in the standard form.
Its standard form is 4x2 + 3x , where a = 4, b = 3, c = 0 )

2 / 10

Quadratic polynomials

Example 2 (polynomials, but not quadratic)

x3 − 2x+ 1 (this is a polynomial of degree 3 , not 2 )

3x− 2 (this is a polynomial of degree 1 , not 2 )
Example 3 (not polynomials)

x2 + x
1

2 + 1 , x− 1

x
are not polynomials

A quadratic polynomial ax2 + bx+ c is called sometimes a quadratic trinomial.
A trinomial consists of three terms.

Quadratic polynomials of type ax2 + bx or ax2 + c
are called quadratic binomials. A binomial consists of two terms.

Quadratic polynomials of type ax2 are called quadratic monomials.
A monomial consists of one term.

Quadratic polynomials (together with polynomials of degree 1 and 0 ) are the simplest polynomials.

Due to their simplicity, they are among the most important algebraic objects.
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Quadratic equations and their roots

A quadratic equation is an equation that can be written in the standard form ax2 + bx+ c = 0 ,
where x is an unknown, a, b, c are constants and a 6= 0 .

Examples. −x2 + 3x+ 5 = 0 is quadratic equation in standard form with
a = −1, b = 3, c = 5 .

x+ 1 = 2x(3− 4x) is a quadratic equation, but not in standard form.
We obtain its standard form as follows:

x+ 1 = 2x(3− 4x) ⇐⇒ x+ 1 = 6x− 8x2 ⇐⇒ 8x2 − 5x+ 1 = 0 .

To solve an equation means to find all values of the unknown
which turn the equation into a numerical identity.

The values of x that turn the equation ax2 + bx+ c = 0 into a numerical identity

are called the roots or solutions of the equation.

Also, they are called the roots of the polynomial ax2 + bx+ c .

4 / 10

How to solve a binomial quadratic equation

Example 1. Solve the equation x2 − 3 = 0 .

Solution. Alternative 1.

x2 − 3 = 0 ⇐⇒ x2 = 3 ⇐⇒
√
x2 =

√
3 ⇐⇒ |x| =

√
3

⇐⇒ x =
√
3 or x = −

√
3 .

One can shorten the answer: x = ±
√
3 .

Alternative 2. Let us write 3 as (
√
3)2 and use the difference of squares formula:

x2 − 3 = 0 ⇐⇒ x2 − (
√
3)2 = 0 ⇐⇒ (x−

√
3)(x+

√
3) = 0 .

The product of two terms, (x−
√
3) and (x+

√
3) , equals 0

if and only if either one term equals 0 , or the other term equals 0 :

(x−
√
3)(x+

√
3) = 0 ⇐⇒ x−

√
3 = 0 or x+

√
3 = 0

⇐⇒ x =
√
3 or x = −

√
3

Answer. x = ±
√
3 .
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Solution in simplest radical form

Example 2. Solve the equation 3x2 − 5 = 0 . Give the answer in simplest radical form.

Solution.

3x2 − 5 = 0 ⇐⇒ 3x2 = 5 ⇐⇒ x2 =
5

3
⇐⇒ x = ±

√

5

3
.

To write the number

√

5

3
in the simplest radical form,

we have to get rid of the radical in the denominator:
√

5

3
=

√
5√
3
=

√
5
√
3√

3
√
3
=

√
15

3
.

Therefore, the solution is x = ±
√

5

3
= ±

√
15

3
.

Answer. x = ±
√
15

3
.

6 / 10

Quadratic equations with no roots

Example 3. Solve the equation x2 + 4 = 0 .

Solution. x2 + 4 = 0 ⇐⇒ x2 = −4 .

We know that the square of any real numbers is non-negative (positive or zero).

Therefore, the equation has no real solutions.

Example 4. Solve the equation x(2− 3x) = (x+ 1)2 .

Solution. The equation is not in the standard form. Let us bring it to this form.

x(2− 3x) = (x+ 1)2 ⇐⇒ 2x− 3x2 = x2 + 2x+ 1

⇐⇒ −4x2 = 1 ⇐⇒ x2 = −1

4
.

The square of a real number can’t be negative, therefore, the equation has no real solutions.
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Solving binomial equations by factoring

Example 5. Solve the equation −3x2 + 4x = 0 .

Solution. By factoring, we get

−3x2 + 4x = 0 ⇐⇒ x(−3x+ 4) = 0 .

The product of two unknown numbers, x and −3x+ 4 equals zero.

This may happen if and only if either one number equals 0 , or the other number equals 0 :

x(−3x+ 4) = 0 ⇐⇒ x = 0 or − 3x+ 4 = 0 ⇐⇒ x = 0 or x =
4

3
.

Answer. x = 0 or x =
4

3

8 / 10

Don’t lose roots!

Example 6. Solve the equation x(x− 1) = x .

Solution. Rewrite the equation to bring it to the standard form:

x(x− 1) = x ⇐⇒ x2 − x = x ⇐⇒ x2 − 2x = 0 .

Solve this binomial equation by factoring:

x2 − 2x = 0 ⇐⇒ x(x− 2) = 0 ⇐⇒ x = 0 or x = 2 .

Warning. Let us have a look on an “alternative solution”:

✚x x (x− 1) = ✚x x ⇐⇒ x− 1 = 1 ⇐⇒ x = 2 .

We have got only one solution, the other solution, x = 0 , has been lost.
The reason for this is an illegal cancellation of x .
A cancellation of x is the division by x , which makes sense only ifx 6= 0 .
But x = 0 is in fact a solution,

and cancellation of it leads to the loss of this solution.

B Don’t cancel anything unknown while solving an equation!
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Summary

In this lecture, we have learned

�✓ what a quadratic polynomial is
�✓ what the standard form of a quadratic polynomial is ax2 + bx+ c
�✓ why quadratic polynomials are important
�✓ what a quadratic equation is
�✓ what it means to solve an equation
�✓ what the roots (or solutions) of a quadratic equation are
�✓ how to solve a binomial quadratic equation
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Goal: to solve any quadratic equation

In previous lecture, we learned how to solve some special quadratic equations, namely, binomial

equations, that is, equations of types ax2 + c = 0 or ax2 + bx = 0 .

In this lecture, we will learn how to solve a general quadratic equation ax2 + bx+ c = 0 for
arbitrary coefficients a 6= 0, b and c .

This will take some time and efforts,
but we’ll get a formula which allows to solve any quadratic equation!

2 / 16

Quadratic formula

Theorem. Let ax2 + bx+ c = 0 be a quadratic equation
with arbitrary coefficients a 6= 0, b and c .

Its solution is given by the quadratic formula

x1,2 =
−b±

√
b2 − 4ac

2a
, provided b2 − 4ac ≥ 0

If b2 − 4ac < 0 , then the equation has no solutions.

Remarks. We are going to prove and discuss the quadratic formula,
and master it by various numerical examples.

The deduction of the quadratic formula is the most difficult part of our course.

It’s normal to go over this proof several times until complete understanding.

Important. Quadratic formula will be used throughout all your math studies.
It makes sense to memorize it.
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Plan

Let ax2 + bx+ c = 0 be a quadratic equation,
where x is unknown, a, b, c are given numbers (coefficients) and a 6= 0 .

We have to solve this equation, that is to find the unknown x in terms of the coefficients a, b, c .

For this, we perform a standard trick which turns any quadratic trinomial into a quadratic binomial.

This trick is called completing the square.

Once the quadratic trinomial is converted to a quadratic binomial,
the equation becomes a binomial equation, which we know how to solve.
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Completing the square

Let ax2 + bx+ c be a quadratic trinomial.

The expression ax2 + bx may be considered as a “sprout” of a square, an incomplete square:

ax2 + bx = a

(

x2 +
b

a
x

)

= a

(

x2 + 2 · x · b

2a

)

︸ ︷︷ ︸

incomplete square

To complete this incomplete square,

we add (and then subtract to keep the balance) the missing term, namely,

(

b

2a

)

2

:

a

(

x2 + 2 · x · b

2a

)

︸ ︷︷ ︸

incomplete square

= a











x2 + 2 · x · b

2a
+

(

b

2a

)

2

︸ ︷︷ ︸

complete square

−
(

b

2a

)

2











= a

(

(

x+
b

2a

)

2

−
(

b

2a

)

2
)
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Completing the square

We have got that

ax2 + bx = a

(

(

x+
b

2a

)

2

−
(

b

2a

)

2
)

= a

(

x+
b

2a

)

2

− b2

4a
.

The trinomial may be rewritten as

ax2 + bx+ c = a

(

x+
b

2a

)2

− b2

4a
+ c .

Note that the resulting expression is a quadratic binomial.

Indeed, x is a variable, so is x+
b

2a
. Since a, b, c are constants, so is − b2

4a
+ c .

If we denote x+
b

2a
by y and − b2

4a
+ c by d ,

then the expression a

(

x+
b

2a

)

2

− b2

4a
+ c turns to ay2 + d , which is a binomial.
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Proving quadratic formula

By completing the square,

ax2 + bx+ c = a

(

x+
b

2a

)

2

− b2

4a
+ c

Therefore

ax2 + bx+ c = 0 ⇐⇒ a

(

x+
b

2a

)2

− b2

4a
+ c = 0 .

Let us solve the latter binomial equation:

a

(

x+
b

2a

)

2

− b2

4a
+ c = 0 Move − b2

4a
+ c to RHS

a

(

x+
b

2a

)2

=
b2

4a
− c Divide both sides by a

(

x+
b

2a

)

2

=
b2

4a2
− c

a
Combine terms in RHS:

b2

4a2
− c

a
=

b2 − 4ac

4a2

7 / 16
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Proving quadratic formula

(

x+
b

2a

)2

=
b2 − 4ac

4a2

Notice that the equation has a solution only if
b2 − 4ac

4a2
≥ 0 .

b2 − 4ac

4a2
≥ 0 ⇐⇒ b2 − 4ac ≥ 0 since 4a2 > 0 .

Take the square roots from both sides of the equation:
∣

∣

∣

∣

x+
b

2a

∣

∣

∣

∣

=

√

b2 − 4ac

4a2
Take down the absolute value sign

x+
b

2a
= ±

√

b2 − 4ac

4a2
Simplify the radical

x+
b

2a
= ±

√
b2 − 4ac

2a
Move

b

2a
to RHS

8 / 16

Proving quadratic formula

x = − b

2a
±

√
b2 − 4ac

2a
Combine terms on RHS

x =
−b±

√
b2 − 4ac

2a
Done!

This is the quadratic formula for finding roots (solutions) of a quadratic equation.

It is applicable only if b
2
− 4ac ≥ 0.

The expression b
2
− 4ac is of special importance,

it is called the discriminant of the quadratic equation.

A quadratic equation has solutions if and only if its discriminant is non-negative.

9 / 16
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Discriminant

What does the quadratic formula x =
−b±

√
b2 − 4ac

2a
give us?

Case 1. If the discriminant is positive, that is b2 − 4ac > 0 ,
then the quadratic formula gives two solutions (roots):

x1 =
−b+

√
b2 − 4ac

2a
and x2 =

−b−
√
b2 − 4ac

2a
.

Case 2. If the discriminant equals zero, that is b2 − 4ac = 0 ,
then the quadratic formula gives one solution (root):

x = − b

2a
.

Case 3. If the discriminant is negative, that is b2 − 4ac < 0 ,
then the quadratic equation has no solutions (roots).
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How to apply the quadratic formula

Example 1. Solve the equation x2 + 2x− 3 = 0 .

Solution. The quadratic equation is written in the standard form

ax2 + bx+ c = 0 with a = 1, b = 2 and c = −3 .

The solution is given by the quadratic formula x1,2 =
−b±

√
b2 − 4ac

2a
.

In our case,

x1,2 =
−2±

√

22 − 4 · 1 · (−3)

2 · 1 =
−2±

√
4 + 12

2
=

−2±
√
16

2
=

−2± 4

2
.

From this, x1 =
−2 + 4

2
= 1 and x2 =

−2− 4

2
= −3 .

Answer. x = 1 or x = −3 .
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How to apply the quadratic formula

Example 2. Solve the equation 2x2 − 3x− 1 = 0 .

Solution. In this case, a = 2, b = −3, c = −1 . The solution is

x1,2 =
−b±

√
b2 − 4ac

2a
=

−(−3)±
√

(−3)2 − 4 · 2 · (−1)

2 · 2

=
3±

√
9 + 8

4
=

3±
√
17

4
.

Answer. x1,2 =
3±

√
17

4

Example 3. Solve the equation x2 − x+ 1 = 0 .

Solution. In this case, a = 1, b = −1, c = 1 . The solution is

x1,2 =
−b±

√
b2 − 4ac

2a
=

−(−1)±
√

(−1)2 − 4 · 1 · 1
2 · 1 =

1±
√
−3

2

This equation has no real solutions.
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How to apply the quadratic formula

Example 4. Solve the equation −x2 + 6x− 9 = 0 .

Solution. In this case, a = −1, b = 6, c = −9 . The solution is

x1,2 =
−b±

√
b2 − 4ac

2a
=

−6±
√

62 − 4 · (−1) · (−9)

2 · (−1)

=
−6±

√
36− 36

−2
=

−6

−2
= 3 .

Answer. x = 3 .

Remark. Let us have another look on the equation:

−x2 + 6x− 9 = 0 ⇐⇒ x2 − 6x+ 9 = 0 . The left hand side on the latter equation is, actually, a

perfect square trinomial: x2 − 6x+ 9 = (x− 3)2 .

Therefore, x2 − 6x+ 9 = 0 ⇐⇒ (x− 3)2 = 0 ⇐⇒ x− 3 = 0 ⇐⇒ x = 3 .
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When an equation is not in the standard form

Example 5. Solve the equation 5 + x(2− x) = 4 + x2 .

Solution. To use the quadratic formula, we have to bring the equation into the standard form:

5 + x(2− x) = 4 + x2 ⇐⇒ 5 + 2x− x2 = 4 + x2 ⇐⇒ 0 = 2x2 − 2x− 1 .

The equation is in the standard form with a = 2, b = −2, c = −1 .

The solution is

x1,2 =
−b±

√
b2 − 4ac

2a
=

−(−2)±
√

(−2)2 − 4 · 2 · (−1)

2 · 2 =
2±

√
4 + 8

4

=
2±

√
12

4
.

Let us bring the answer to simplest radical form:

2±
√
12

4
=

2± 2
√
3

4
=

2(1±
√
3)

4
=

1±
√
3

2
.

Answer. x1,2 =
1±

√
3

2
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When the quadratic formula is not the best choice

If a quadratic equation is not a trinomial, but a binomial,
then the quadratic formula is valid, but is not the most efficient tool for solving the equation.

Example. Solve the equation 4x2 − x = 0 .

Solution. Alternative 1 (using the quadratic formula) a = 4, b = −1, c = 0

x1,2 =
−b±

√
b2 − 4ac

2a
=

−(−1)±
√

(−1)2 − 4 · 4 · 0
2 · 4 =

1±
√
1

8
=

1± 1

8
.

By this, x1 =
1 + 1

8
=

1

4
and x2 =

1− 1

8
= 0 .

Alternative 2 (by factoring):

4x2 − x = 0 ⇐⇒ x(4x− 1) = 0 ⇐⇒ x = 0 or 4x− 1 = 0

⇐⇒ x = 0 or x =
1

4
.

Answer. x = 0 or x =
1

4
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Summary

In this lecture, we have learned

�✓ the quadratic formula x1,2 =
−b±

√
b2 − 4ac

2a
�✓ how to complete the square
�✓ how to prove the quadratic formula
�✓ when the quadratic formula is valid
�✓ what the discriminant of a quadratic equation is
�✓ how many solutions a quadratic equation has depending on its determinant
�✓ how to apply the quadratic formula to solving quadratic equations
�✓ when the quadratic formula is not the best tool to solve a quadratic equation
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Factoring polynomials

To factor a polynomial means to present this polynomial as a product
of polynomials of degree less than the original polynomial.

For example, x2 − 1 = (x− 1)(x+ 1) is a factoring, but

3x2 + 3 = 3(x2 + 1) is not a polynomial factoring,
since the degree of x2 + 1 is not less than the degree of 3x2 + 3 .

Factoring is an important algebraic tool that helps to solve various problems.

The same polynomial can be factored in different ways.

For example, x3 − x can factored as x(x2 − 1) or as x(x− 1)(x+ 1) or as 2x(x− 1)

(

1

2
x+

1

2

)

Monomials, that is, polynomials of type axn , are easy to factor.

For example, 4x3 = 4x2 · x or 4x3 = 4x · x · x .
In this lecture we will learn how to factor quadratic binomials and trinomials.
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Irreducible polynomials

If a polynomial can’t be factored, it is called irreducible.

Polynomials of degree one are irreducible, they can’t be factored:
we can’t present a polynomial of degree one

as a product of polynomials of degrees less than one.

Some polynomials are easy to factor: x2 − 4 = x2 − 22 = (x− 2)(x + 2) .
The factors, x− 2 and x+ 2 , contain only integer coefficients.

Such factoring is called factoring over the integers.

Consider another factoring: x2 − 3 = x2 − (
√
3)2 = (x−

√
3)(x+

√
3) .

Here the factors, x−
√
3 and x+

√
3 , have real coefficients,

Such factoring is called factoring over the reals.

The polynomial x2 − 3 can’t be factored over the integers. It is irreducible over the integers.

The polynomial x2 + 1 is irreducible over the reals,
but can be factored over the complex numbers: x2 − 1 = (x− i)(x+ i) .
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Factoring quadratic binomials

Quadratic binomials are expressions of type ax2 + bx or ax2 + c ,
they are special types of quadratic polynomials.

It’s easy to factor the binomial ax2 + bx : ax2 + bx = x(ax+ b)

The binomial ax2 + c can be factored over the reals
only if the coefficients a and c have opposite signs.

If a and c are of the same sign (both positive or both negative) then ax2 + c is irreducible.

Example. Factor the following polynomials: 9x2 − 4 , 9x2 + 4 .

Solution. 9x2 − 4 = (3x)2 − 22 = (3x− 2)(3x + 2) .

The polynomial 9x2 + 4 is irreducible.

For the rest of the course, we will say that a polynomial is irreducible,
if it is irreducible over the reals.
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Factorization theorem for quadratic trinomials

Theorem. Let ax2 + bx+ c be a quadratic polynomial
with non-negative discriminant, that is, b2 − 4ac ≥ 0 .

Then
ax2 + bx+ c = a(x− x1)(x− x2)

where x1 , x2 are the roots of the polynomial,
that is, the solutions of the equation ax2 + bx+ c = 0 .

Remarks.

1. If the discriminant is 0 , then x1 = x2 is the only root of the equation, and the factoring is

ax2 + bx+ c = a(x− x1)(x− x1) = a(x− x1)
2 .

2. Factoring is simple when a = 1 :

x2 + bx+ c = (x− x1)(x− x2) .

3. If the discriminant is negative, then the polynomial is irreducible.
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Proving factorization formula

By completing the square,

ax2 + bx+ c = a

(

(

x+
b

2a

)

2

− b2 − 4ac

4a2

)

=

a





(

x+
b

2a

)

2

−
(√

b2 − 4ac

2a

)2


 =

a

(

x+
b

2a
−

√
b2 − 4ac

2a

)(

x+
b

2a
+

√
b2 − 4ac

2a

)

=

a

(

x− −b+
√
b2 − 4ac

2a

)(

x− −b−
√
b2 − 4ac

2a

)

= a(x− x1)(x− x2) ,

as required.
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Factoring by finding roots

Example 1. Factor 2x2 − x− 1 .

Solution. By the factoring theorem,

2x2 − x− 1 = 2(x− x1)(x− x2) , where

x1,2 =
−b±

√
b2 − 4ac

2a
=

−(−1)±
√

(−1)2 − 4 · 2 · (−1)

2 · 2

=
1±

√
1 + 8

4
=

1±
√
9

4
=

1± 3

4

So x1 =
1 + 3

4
= 1 and x2 =

1− 3

4
= −1

2
.

The factoring is

2x2 − x− 1 = 2(x− 1)

(

x−
(

−1

2

))

= 2(x− 1)

(

x+
1

2

)

= (x− 1)(2x + 1) .
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Factoring by finding roots

Example 2. Factor x2 − x− 1 .

Solution. By the factoring theorem,

x2 − x− 1 = (x− x1)(x− x2) , where

x1,2 =
−b±

√
b2 − 4ac

2a
=

−(−1)±
√

(−1)2 − 4 · 1 · (−1)

2 · 1 =

=
1±

√
1 + 4

2
=

1±
√
5

2

So x1 =
1 +

√
5

2
and x2 =

1−
√
5

2
.

The factoring is

x2 − x− 1 =

(

x− 1 +
√
5

2

)(

x− 1−
√
5

2

)

.
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Factoring by finding roots

Example 3. Factor x2 − 4x+ 4 .

Solution. By the factoring theorem,

x2 − 4x+ 4 = (x− x1)(x− x2) , where

x1,2 =
−b±

√
b2 − 4ac

2a
=

−(−4)±
√

(−4)2 − 4 · 1 · 4
2 · 1 =

=
4±

√
16− 16

2
=

4± 0

2
= 2

So x1 = x2 = 2 .

The factoring is x2 − 4x+ 4 = (x− 2)(x − 2) = (x− 2)2 .

Remark. If you recognize a perfect square trinomial formula
in the expression x2 − 4x+ 4 , then the factoring can be achieved faster:

x2 − 4x+ 4 = x2 − 2 · x · 2 + (2)2 = (x− 2)2 .
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Factoring by finding roots

Example 4. Factor 3x2 − x+ 1 .

Solution. The discriminant is

b2 − 4ac = (−1)2 − 4 · 3 · 1 = 1− 12 = −11 < 0 ,

therefore, the polynomial has no roots and is irreducible.
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Vieta’s theorem

Theorem. If x1 , x2 are the roots of the equation ax2 + bx+ c = 0 ,

then x1 + x2 = − b

a
and x1 · x2 =

c

a
.

Proof. By the Factorization theorem,

ax2 + bx+ c = a(x− x1)(x− x2) .

Let us expand RHS of this identity:

a(x− x1)(x− x2) = a(x2 − x1x− x2x+ x1x2) = ax2 − a(x1 + x2)x+ ax1x2 .

Therefore, ax2+ bx+ c= ax2−a(x1 + x2)x+ax1x2.

By comparison of the coefficients of these two polynomials, we get

b = −a(x1 + x2) and c = ax1x2. From this,

x1 + x2 = − b

a
and x1 x2 =

c

a
, as required.

Vieta’s theorem relates the roots and the coefficients of a quadratic equation.
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Vieta’s theorem for finding roots

Vieta’s theorem is especially simple if a = 1 . In this case,

• the roots x1 , x2 of the equation x2 + bx+ c = 0 satisfy

x1 + x2 = −b and x1x2 = c .

Vieta’s theorem may be used for finding the roots of a quadratic equation, provided that the
coefficients of the equation and the roots are integers.

Example. Solve the equation x2 + x− 6 = 0 .
Solution. If x1 and x2 are the roots of x2 + x− 6 = 0 , then

x1 + x2 = −b = −1 and x1x2 = c = −6 .
Let us guess two numbers, whose sum equals −1 and the product equals −6 . The numbers are 2
and −3 . Answer. x = 2 or x = −3 .
B Warning. Guessing out the roots may be not a good idea.

It may happen that the equation has irrational roots or no roots at all.
Although Vieta’s theorem is valid, it can’t be used to find the roots in these cases.

Don’t waste your time guessing!
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Solving quadratic equations by factoring

Example. Solve the equation x2 − 2x− 15 = 0 .

Solution. For this equation, a = 1, b = −2, c = −15 .

The discriminant of the equation is b2 − 4ac = (−2)2 − 4 · 1 · (−15) = 64 , which a perfect square.

It means that the roots are rational numbers, and we may guess them out.

The factoring is

x2 − 2x− 15 = (x− ? )(x− ? )

By guessing, we get

x2 − 2x− 15 = (x− 5)(x + 3) .

So x2 − 2x− 15 = 0 ⇐⇒ (x− 5)(x+ 3) = 0

⇐⇒ x− 5 = 0 or x+ 3 = 0 ⇐⇒ x = 5 or x = −3 .

Answer. x = 5 or x = −3
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Summary

In this lecture, we have learned

�✓ what it means to factor a polynomial
�✓ what an irreducible polynomial is
�✓ how to factor quadratic binomials
�✓ how to factor quadratic trinomials ax2 + bx+ c = a(x− x1)(x− x2)
�✓ how to prove the factorization formula
�✓ Vieta’s theorem
�✓ how to use Vieta’s theorem for solving quadratic equations
�✓ how to solve quadratic equations by factoring
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Applications of quadratic equations

In this lecture we will learn how to apply our knowledge about quadratic equations to other problems.

We will discuss

• Polynomial equations

• Biquadratic equations

• Rational equations

• Word problems leading to quadratic equations

2 / 11

Polynomial Equations

Example 1. Solve the equation x3 − 3x2 − 4x = 0 .

Solution. This is a polynomial equation, since x3 − 4x2 − 3x is a polynomial.

To solve the equation, we factor LHS:

x3 − 4x2 − 3x = 0 ⇐⇒ x(x2 − 4x− 3) = 0 .

The product of two factors, x and x2 − 4x− 3 , equals 0
if and only if x = 0 or x2 − 4x− 3 = 0 .

By this, the first root is x1 = 0 . To find other roots,
we have to solve the quadratic equation x2 − 4x− 3 = 0 .

x2 − 4x− 3 = 0 ⇐⇒ x =
4±

√

(−4)2 − 4 · 1 · (−3)

2 · 1 =
4±

√
16 + 12

2

=
4±

√
28

2
=

4± 2
√
7

2
= 2±

√
7 .

Therefore, the equation has three roots: x1 = 0 , x2 = 2 +
√
7 , x3 = 2−

√
7 .
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Biquadratic equations

Example 2. Solve the equation x4 + 2x2 − 3 = 0 .

Solution. This equation is called biquadratic.
It is solved by the substitution t = x2 . Observe that t ≥ 0 .

x4 + 2x2 − 3 = 0 ⇐⇒ t2 + 2t− 3 = 0 ⇐⇒ (t− 1)(t+ 3) = 0

⇐⇒ t = 1 or t = −3 .

Since t ≥ 0 , we reject the negative root t = −3 .

By this, the only solution is given by t = 1 , that is x2 = 1 . So x = ±1 .

Answer. x = ±1
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Rational equations

Example 3. Solve the equation
1

x
+

2

x+ 1
= 1 .

Solution. This equation is called rational, since it contains rational expressions.

To solve the equation, we bring RHS to 0 :

1

x
+

2

x+ 1
= 1 ⇐⇒ 1

x
+

2

x+ 1
− 1 = 0 .

Bring all terms to the common denominator:

x+ 1

x(x+ 1)
+

2x

x(x+ 1)
− x(x+ 1)

x(x+ 1)
= 0

Combine the terms in a single fraction:

x+ 1 + 2x− x(x+ 1)

x(x+ 1)
= 0 and simplify

−x2 + 2x+ 1

x(x+ 1)
= 0

5 / 11
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Rational equations

We have got that the original equation is equivalent to the following equation:

−x2 + 2x+ 1

x(x+ 1)
= 0 .

When is a fraction equal to 0 ?
Only if its numerator equals 0 and the denominator is not equal to 0

(since one can’t divide by 0 ).
Therefore,

−x2 + 2x+ 1

x(x+ 1)
= 0 ⇐⇒ −x2 + 2x+ 1 = 0 and x 6= 0 , x 6= −1 .

Let us solve the quadratic equation:

−x2 + 2x+ 1 = 0 ⇐⇒ x2 − 2x− 1 = 0

⇐⇒ x =
−(−2)±

√

(−2)2 − 4 · 1 · (−1)

2 · 1 =
2±

√
8

2
=

2± 2
√
2

2
= 1±

√
2

We accept both roots, since none of them is 0 or −1 .
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Word problems

Problem 1. The hypotenuse of a right triangle is 8 cm long.
One leg is 2 cm shorter than the other. Find the lengths of the legs of the triangle.

Solution.

x

x+ 2
8 Let x cm be the length of the shorter leg.

Then the other leg has the length of x + 2 cm.
The hypotenuse is 8 cm.

By the Pythagorean theorem, x2 + (x+ 2)2 = 82 .

To find x , we have to solve this quadratic equation.
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Word problems

To solve the equation, we have bring it to the standard form.

x2 + (x+ 2)2 = 82 ⇐⇒ x2 + x2 + 4x+ 4 = 64 ⇐⇒ 2x2 + 4x− 60 = 0

⇐⇒ x2 + 2x− 30 = 0 .

The equation is in the standard form now, and we can use the quadratic formula:

x1,2 =
−2±

√

22 − 4 · 1 · (−30)

2
=

−2±
√
124

2
=

−2± 2
√
31

2
= −1±

√
31 .

We have got two solutions, x1 = −1 +
√
31 and x2 = −1−

√
31 .

One of the solutions, x2 = −1−
√
31 , is negative, and should be rejected,

since x , being the length of a side in a triangle, is positive.

Therefore, one leg is −1 +
√
31 cm long, the other leg is −1 +

√
31 + 2 = 1 +

√
31 cm long.

Answer. The lengths of the legs are −1 +
√
31 cm and 1 +

√
31 cm.
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Word problems

Problem 2. Two parallel resistors provide the total resistance of 2 Ohms.
Find the value of each resistor if one of them is 3 Ohms more than the other.
Use the law for parallel resistors:

1

Rtotal

=
1

R1

+
1

R2

.

Solution.

R1 R2

Given: Rtotal = 2 , R2 = R1 + 3 .
Plug these into the given equation:

1

2
=

1

R1

+
1

R1 + 3
.

To find R1 , we have to solve this rational equation.
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Word problems

1

2
=

1

R1

+
1

R1 + 3
⇐⇒ 1

R1

+
1

R1 + 3
− 1

2
= 0

Bring all terms to the common denominator:

2(R1 + 3)

2R1(R1 + 3)
+

2R1

2R1(R1 + 3)
− R1(R1 + 3)

2R1(R1 + 3)
= 0 Combine the terms in a single fraction:

2(R1 + 3) + 2R1 −R1(R1 + 3)

2R1(R1 + 3)
= 0 Simplify:

−R2

1
+R1 + 6

2R1(R1 + 3)
= 0 ⇐⇒ −R2

1
+R1 + 6 = 0 ⇐⇒ R2

1
−R1 − 6 = 0

⇐⇒ (R1 − 3)(R1 + 2) = 0 ⇐⇒ R1 = 3 or R1 = −2 .

We reject the negative root R1 = −2 since a negative resistance makes no sense.

So R1 = 3 Ohms and R2 = R1 + 3 = 3 + 3 = 6 Ohms.
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Summary

In this lecture, we have learned

�✓ how to solve polynomial equations reducible to quadratic ones
�✓ how to solve biquadratic equations
�✓ how to solve rational equations
�✓ how to solve word problems leading to quadratic equations
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Parabolas
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Quadratic functions

A quadratic function is a function y = ax2 + bx+ c , where a, b, c are given numbers and a 6= 0 .

Examples of quadratic functions: y = x2

y = x2 + x

y = −3x2 + 2x− 5

y =
1

3
x2 −

√
2x+ 1

Functions and, in particular, quadratic functions, are studied in the precalculus and calculus courses.

In this lecture we will learn how to draw the graph of a quadratic function.

The graph of a function provides a visualization of various properties of the function, and helps to
understand these properties.
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What is the graph

The graph of a quadratic function y = ax2 + bx+ c is the set of all points on the plane
whose coordinates (x, y) satisfy the equation y = ax2 + bx+ c .

The graph of a quadratic function is a plane curve, it is called a parabola.

Here are a few examples of parabolas:

x

y

x

y

x

y

In this lecture, we will learn how to draw a parabola by its equation.
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Geometry of a parabola

Any parabola has certain geometric elements which are common for all parabolas.

Let us have a look on a typical parabola:

x

y

Which geometric elements do we observe on this parabola?
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Horns: upward or downward

A parabola has its “horns” turned upward or downward. (A parabola opens upward or downward.)

x

yupward a > 0

x

y

downwarda < 0

It is the coefficient a (called the leading coefficient) which is responsible for this.
• If a > 0, then the parabola opens upward

• If a < 0, then the parabola opens downward

5 / 24
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Vertex and axis of symmetry

There is a characteristic point on a parabola, where the parabola makes a turn.

x

y

vertex

axis of symmetry

x

y

vertex

axis of symmetry

This point is called the vertex.
The vertex is the lowest point on the parabola if a > 0 , and the highest point if a < 0 .

A vertical line passing through the vertex is called the axis of symmetry,
because a parabola is symmetric about its axis of symmetry.

6 / 24

The x-intercepts

The points where the parabola intersects the x -axis, are called the x-intercepts.

x

y

x-intercept x-intercept

A parabola may have two, one, or no x-intercepts.

x

y

x

y

x

y

7 / 24
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The y-intercept

A point where the parabola intersects the y -axis is called the y-intercept.

x

y

y-intercept

Each parabola has exactly one y -intercept.
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Wide or narrow?

Some parabolas are wider than others:

x

y

y = x2

y = 2x2

y = 1

2
x2

|a| is responsible
for the width of the parabola

.
The smaller |a| ,

the wider the parabola.

9 / 24
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What do we need to sketch a parabola?

• the vertex
• the axis of symmetry
• the sign of a (upward or downward)
• the y -intercept
• the x -intercepts (if any)

Example. Sketch a parabola which opens downward, has the vertex at (−1, 3) , the y -intercept at
(0, 9/4) , and the x -intercepts at (−3, 0) and (1, 0) .

Solution.

x

y

-1

3vertex

axis of symmetry

y-intercept at (0, 9/4)

-3

x-intercept

1

x-intercept

10 / 24

How to find the vertex

The vertex of the parabola y = ax2 + bx+ c is located

at the point with coordinates

(

− b

2a
,− b2

4a
+ c

)

.

Why is this so? Rewrite the equation of the parabola using completing the square:

y = ax2 + bx+ c ⇐⇒ y = a

(

x+
b

2a

)2

+

(

− b2

4a
+ c

)

If a > 0 , then the vertex is located at the lowest point on the parabola,
that is at the point, where y takes the minimal value.

Since a

(

x+
b

2a

)2

≥ 0 for all x , the minimal value of y = a

(

x+
b

2a

)2

+

(

− b2

4a
+ c

)

occurs exactly

when

(

x+
b

2a

)2

= 0 , that is when x = − b

2a
.

Therefore, the vertex is located at

(

− b

2a
,− b2

4a
+ c

)

.
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How to find the vertex and the axis of symmetry

If a < 0 , then the vertex is located at the highest point on the parabola,
that is at the point, where y takes the maximal value.

Since a

(

x+
b

2a

)2

≤ 0 for all x , the maximal value of y = a

(

x+
b

2a

)2

+

(

− b2

4a
+ c

)

occurs exactly

when

(

x+
b

2a

)2

= 0 , that is when x = − b

2a
.

Therefore, the vertex is located at

(

− b

2a
,− b2

4a
+ c

)

.
Remember that

The vertex of the parabola y = ax2+bx+c

is located at the point where x =
−b

2a
.

The axis of symmetry is the vertical line passing through the vertex.

Its equation is x = − b

2a

12 / 24

How to find the vertex and the axis of symmetry

Example. Find the vertex and the axis of symmetry of the parabola y = x2 − 4x+ 1 .

Solution. The x -coordinate of the vertex is

x =
−b

2a
=

−(−4)

2 · 1 =
4

2
= 2 .

To find the y -coordinate of the vertex, we plug in x = 2 into the equation of the parabola:

y = 22 − 4 · 2 + 1 = 4− 8 + 1 = −3 .

Therefore, the vertex of the parabola is at the point with coordinates (2,−3) .

The axis of symmetry is the vertical line x = 2 .

13 / 24
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How to find the x-intercepts

The x -intercepts are the points where the parabola meets the x -axis.

x

y

x

y

x

y

A parabola may have two, one or no x -intercepts.
At x -intercept, the y -value is equal to 0. Therefore,

To find the x-intercepts of the parabola y = ax2 + bx+ c ,
solve the equation ax2 + bx+ c = 0 .

If the quadratic equation ax2 + bx+ c = 0 has two roots,
then the parabola intersects the x -axis at two points.

If the equation has one root, then the parabola touches the x -axis at one point.

If the equation has no roots, then the parabola does not intersect the x -axis.

14 / 24

How to find the y-intercept

The y -intercept is easy to find.

x

y

y-intercept
This is the point where the parabola

intersects the y axis.

At this point, the x -coordinate equals 0 .

When we plug x = 0 into the equation of the parabola ax2 + bx+ c , we get

y = a · 02 + b · 0 + c = c .

Therefore,

The y-intercept of the parabola y = ax2 + bx+ c

is located at the point (0, c)

15 / 24
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Step-by-step instruction for drawing a parabola

To draw the parabola y = ax2 + bx+ c ,

• Determine the vertex. It’s located at the point where x =
−b

2a
.

• Draw the axis of symmetry. It’s the vertical line x =
−b

2a
.

• Determine if the parabola opens upward ( a > 0 ) or downward ( a < 0 ).

• Determine the y-intercept. It’s located at the point (0, c) .

• Determine the x-intercepts (if any). They are located at the points (x1,2, 0) ,

where x1,2 =
−b±

√
b2 − 4ac

2a

• Draw the parabola, using the information above.
Make sure that your parabola is smooth and symmetric.
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Example 1

Example 1. For the parabola y = x2 − x− 2 , determine the vertex,
the axis of symmetry, the intercepts, and draw the graph.

Solution.

• The vertex is at x =
−b

2a
=

−(−1)

2
=

1

2
. The y -coordinate of the vertex is

y =

(

1

2

)2

− 1

2
− 2 =

1

4
− 1

2
− 2 = −9/4 . So the vertex is located at (1/2,−9/4) .

Draw the vertex.

• The axis of symmetry

is the vertical line x = 1/2.

Draw the axis of symmetry.

x
1/2

y

−9/4 (1/2,−9/4)

x = 1/2

17 / 24
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Example 1

• a = 1 > 0 , therefore, the parabola opens upward.

Draw a small sprout of a parabola at the vertex.

x
1/2

y

(1/2,−9/4)

-1

-2

y -intercept

2

x -interceptx -intercept

• The y -intercept is at (0, c) = (0,−2).

• The x -intercepts are the roots of x2 − x− 2 = 0 .

x2 − x− 2 = 0 ⇐⇒ (x+ 1)(x− 2) = 0 ⇐⇒ x = −1, x = 2 .
So the x -intercepts are (−1, 0) and (2, 0) .

18 / 24

Example 1

Now we are ready to draw the parabola:

x
1/2

y

(1/2,−9/4)

-1

-2

2

y = x2– x – 2

Be neat: the parabola should be smooth and symmetric.

19 / 24
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Example 2.

Example 2. For the parabola y = −x2 − 2x− 2 , determine the vertex,
the axis of symmetry, the intercepts, and draw the graph.

Solution. The vertex is at x =
−b

2a
=

−(−2)

2 · (−1)
= −1 .

The y -coordinate of the vertex is y = −(−1)2 − 2 · (−1)− 2 = −1 + 2− 2 = −1 . By this, the vertex is
(−1,−1) .

The axis of symmetry is x = −1 .

a = −1 < 0 , so the parabola opens downward .

The y -intercept is (0, c) = (0,−2) .

For the x -intercepts, solve the equation −x2 − 2x− 2 = 0 :
−x2 − 2x− 2 = 0 ⇐⇒ x2 + 2x+ 2 = 0 .

The discriminant is b2 − 4ac = 22 − 4 · 1 · 2 = −4 < 0 .
Therefore, there are no solutions, and the parabola doesn’t meet the x -axis.
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Example 2.

Now put all the information on the graph.

x

y

-1

-1

x = −1

y = −x2
− 2x− 2

-2
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The graph of a quadratic monomial

What do we know about the graph of the parabola y = ax2 ?

• The vertex at the origin (0, 0) , since
−b

2a
= 0 .

• The axis of symmetry is the line x = 0 , that is, the y -axis.

• The parabola opens upward if a > 0 , and downward if a < 0 .

• The y -intercept is (0, 0) .

• The only x -intercept is (0, 0) .

This information is not sufficient for a drawing.
We may need to plot a support point, say, (x, y) = (1, a) belonging to the parabola.

By symmetry, we get another point (x, y) = (−1, a) on the parabola.
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The graph of a quadratic monomial

Let us draw several parabolas y = ax2 with different coefficients a .

x

y

1 2

1

−1

−2

2

y = x2

y = −x2

y = 2x2

y = −2x2

y =
1

2
x2

y = −

1

2
x2
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Summary

In this lecture, we have learned

�✓ what the graph of a quadratic function is
�✓ what a parabola looks like
�✓ what the essential geometric elements of the parabola are

(vertex, axis of symmetry, intercepts)
�✓ when a parabola opens upward ( a > 0 ) or downward ( a < 0 )
�✓ how to find the vertex and the axis of symmetry of a parabola
�✓ how to find the x -intercepts (if any) and the y -intercept of a parabola
�✓ how to draw the parabola from its equation
�✓ how to draw the graph of a quadratic monomial
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Quadratic inequalities

We will solve inequalities of the following types:

ax2 + bx+ c ≥ 0 , ax2 + bx+ c > 0 , ax2 + bx+ c ≤ 0 , ax2 + bx+ c < 0 ,

where a 6= 0 , b , c are given coefficients, and x is unknown.

For example, x2 + 5x− 6 ≤ 0 is a quadratic inequality.
Here a = 1 , b = 5 , c = −6 .

The coefficient a is not zero, otherwise the inequality would be not quadratic , but rather linear .

What does it mean to solve inequality ?

It means to find all the values of unknown x for which the inequality holds true.

2 / 12

Visualization

Let us draw a picture illustrating a quadratic inequality.

We know that the equation y = ax2 + bx+ c defines a parabola ,
and know how to draw this parabola.

If a > 0 , then the parabola opens upward:

x

two x-intercepts

x

one x-intercept

x

no x-intercepts

If a < 0 , then the parabola opens downward:

x

two x-intercepts

x

one x-intercept

x

no x-intercepts

3 / 12
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Geometric solution

Let us solve the inequality ax2 + bx+ c> 0 in the case when a > 0 .

Let y = ax2 + bx+ c . Then ax2 + bx+ c> 0 ⇐⇒ y > 0.

Thus, to solve the inequality ax2 + bx+ c> 0 , we need to find
where the parabola y = ax2 + bx+ c is above the x-axis.

x

two x-intercepts

x

one x-intercept

x

no x-intercepts

For which x is the parabola above the x-axis?

x

x1 x2

x ∈ (−∞, x1) ∪ (x2,∞)

x

x1

x ∈ (−∞, x1) ∪ (x1,∞)

x

x ∈ (−∞,∞)
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Geometric solution

Now let us solve the inequality ax2 + bx+ c ≤ 0 again in the case when a > 0 .

Let y = ax2 + bx+ c . Then ax2 + bx+ c ≤ 0 ⇐⇒ y ≤ 0.

Thus, to solve the inequality ax2 + bx+ c ≤ 0 , we need to find
where the parabola y = ax2 + bx+ c is below or on the x-axis.

x

two x-intercepts

x

one x-intercept

x

no x-intercepts

For which x is the parabola below or on the x-axis?

x

x1 x2

x ∈ [x1, x2]

x

x1

x = x1

x

no solution

5 / 12
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What if a < 0?

We have a choice:

• either to solve the inequality using a parabola, as we did in the case a > 0 ,

Don’t forget that the parabola y = ax2 + bx+ c with a < 0 opens down:

x

x

x

• or multiply both sides of the inequality by −1 , like

−3x2 + x− 2 ≥ 0 ⇐⇒ 3x2 − x+ 2 ≤ 0 ,

in order to make a -coefficient positive.

Don’t forget to reverse the sign of inequality!

6 / 12

Example 1

Solve the inequality x2 − 4x+ 3 < 0 .

Solution. The parabola y = x2 − 4x+ 3 opens upward, since a = 1 > 0 .

Determine the x-intercepts. They are the roots of the equation x2 − 4x+ 3 = 0 .

x2 − 4x+ 3 = 0 ⇐⇒ (x− 1)(x− 3) = 0 ⇐⇒ x1 = 1 , x2 = 3 .

Therefore, the parabola looks as follows:
x

1 3

To solve the inequality x2 − 4x+ 3 < 0 , we have to find all x

for which the parabola is below the x-axis.

As we see, those x fill the interval (1, 3).

The answer can be written in several ways:
1 < x < 3 , or x ∈ (1, 3) , or simply (1, 3) .

7 / 12
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Example 2

Solve the inequality 9x2 − 6x+ 1 > 0 .

Solution. The parabola y = 9x2 − 6x+ 1 opens upward, since a = 9 > 0 .

Determine the x-intercepts. They are the roots of the equation 9x2 − 6x+ 1 = 0 .

9x2 − 6x+ 1 = 0 ⇐⇒ (3x− 1)2 = 0 ⇐⇒ x1 =
1

3
.

Therefore, the parabola looks as follows:
x

1

3

To solve the inequality 9x2 − 6x+ 1 > 0 , we have to find all x

for which the parabola is above the x-axis.

As we see, those x fill the whole line except the point
1

3
.

The answer can be written as
(

−∞, 1
3

)

∪
(

1

3
,∞
)

or Rr

{

1

3

}

.

8 / 12

Example 3

Solve the inequality −x2 + 3x− 1 ≤ 0 .

Solution. The parabola y = −x2 + 3x− 1 opens downward, since a = −1 < 0 .

Determine the x-intercepts. They are the roots of the equation −x2 + 3x− 1 = 0 . Solve the
equation:

−x2 + 3x− 1 = 0 ⇐⇒ x2 − 3x+ 1 = 0 ⇐⇒ x1,2 =
3±

√
9− 4

2
=

3±
√
5

2
.

Therefore, the parabola looks as follows:
x

x1 x2

To solve the inequality −x2 + 3x− 1 ≤ 0 , we have to find all x

for which the parabola is below or on the x-axis.

Answer: x ∈
(

−∞,
3−

√
5

2

]

∪
[

3 +
√
5

2
,∞
)

.
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Example 4

Solve the inequality −x2 − x− 1 > 0 .
Solution. Alternative 1. The parabola y = −x2 − x− 1 opens downward, since a = −1 < 0 .

Determine the x-intercepts. They are the roots of the equation −x2 − x− 1 = 0 .

−x2 − x− 1 = 0 ⇐⇒ x2 + x+ 1 = 0 ⇐⇒

x1,2 =
−1±

√
1− 4

2
=

−1±
√
−3

2
. No real roots!

Therefore, the parabola looks as follows:
x

To solve the inequality −x2 − x− 1 > 0 , we have to find all x

for which the parabola is above the x-axis.

As we see, there are no such x . Answer: no solutions.
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Example 4

Let us solve the inequality −x2 − x− 1 > 0 in a different way.

Alternative 2. −x2 − x− 1 > 0 ⇐⇒ x2 + x+ 1 < 0 .

Instead of solving −x2 − x− 1 > 0 , we will solve an equivalent inequality x2 + x+ 1 < 0 .

The parabola y = x2 + x+ 1 opens upward since a = 1 > 0,
and has no x -intercepts, since the discriminant b2 − 4ac = 12 − 4 · 1 · 1 = −3 is negative.

Therefore, the parabola is situated above the x -axis:

x

To solve the inequality x2 + x+ 1< 0
means to find all values of x for which the parabola is below the x -axis.

But there are no such x . Answer: the inequality has no solutions.

11 / 12
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Summary

In this lecture, we have learned

�✓ what a quadratic inequality is
�✓ what it means to solve a quadratic inequality
�✓ how to visualize a quadratic inequality by a parabola

�✓ how to solve a quadratic inequality
in terms of the leading coefficient and the roots

�✓ how to write down the answer
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1.

2.

3.

4.

5.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #1

(1)  rational numbers
 integers

 natural numbers
 irrational numbers

Select the answer that best completes the given statement.

The (1)  are  {...,  3,  2,  1,  0, 1,  2, 3,  ...}.− − −

(1)  natural number.
 rational number.
 irrational number.
 whole number.

Select the correct choice to complete the following sentence.

The number  is  a(n) (1) 5

(1)  natural numbers.
 rational number.
 irrational numbers.
 whole number.

Select the answer that best completes the given statement.

The number  is  a(n) (1) 
5
7

List the elements in the set described.

{ }x|x is a natural number less than 2

 (Use a comma to separate answers as needed. Use ascending  order.)

Graph the set on a number line.

{ − 5, − 6, − 8}

Choose the correct graph below.

A.
-10 00

B.
-10 00

C.
-10 00

D.
-10 00



6.
List the elements of the set  that are also the elements of the set of whole numbers.2,0, , , , − 12913 25

3
5

The elements of the given set that are also elements of the set of whole numbers are .
 (Use a comma to separate answers as  needed.)



1.

2.

3.

4.

5.

6.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #2

Add.

− 5 + 15

 − 5 + 15 =  

Subtract.

    11 − 13

  11 − 13 =

Subtract as indicated.

−
7
6 −

1
3

−
7
6 −

1
3 =

 (Simplify your  answer.)

Subtract .20 − 8 − 16

 20 − 8 − 16 =

Subtract as indicated.

− −
4
5 −

7
15

− −
4
5 −

7
15 =

 (Simplify your answer. Type an integer or a simplified  fraction.)

Divide.

− 8
− 4

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A.
  

 (Simplify your  answer.)
− 8
− 4

=

B. The expression is undefined.



7.

8.

9.

10.

11.

12.

Multiply as indicated.

    
2 −

1
18

Select the correct choice  and, if  necessary, fill in the answer box to complete your choice.

A.
2 −

1
18 =

 (Type an integer or a simplified  fraction.)
B. The expression is undefined.

Simplify the expression.

− 14 − 14−
2
7

− 14 − 14 =−
2
7

Simplify the expression.

4 − [(7 − 6) + (9 − 19)]

4 − [(7 − 6) + (9 − 19)] =

Divide.

    
− 16

8

Select the correct choice  and, if  necessary, fill in the answer box to complete your choice.

A.
  

 (Simplify your answer. Type an integer or a  fraction.)
− 16

8
=

B. The expression is undefined.

Find the product.

     ( − 6)( − 8)( − 1)

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. ( − 6)( − 8)( − 1) =

B. The expression is undefined

Simplify.

4{ }− 5 + 3[ ]3 − 5( )− 3 + 1

4{ }− 5 + 3[ ]3 − 5( )− 3 + 1 =



1.

2.

3.

4.

5.

6.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #3

Simplify the expression.

0.5 − ( − 1.5)
− 0.5

=
0.5 − ( − 1.5)

− 0.5

Simplify the expression.

1
2 • 4 − 7

5 +
1
3 • 9

  (Type an integer or a simplified  fraction.)=

1
2 • 4 − 7

5 +
1
3 • 9

Evaluate the expression when x  and y .= 5 = − 6

5x − 3y

5x − 3y =

Evaluate the expression when y .= − 3

− 9y2

− 9y =2

Evaluate the expression when x  and y .= 25 = − 6

−
x

y
y
x

− =
x

y
y
x

 (Type an integer or a simplified  fraction.)

Find the value of the expression when  ,  ,  , .x = 41 x = 62 y = − 31 y = 82

y2 − y1

x2 − x1

=
y2 − y1

x2 − x1



1.

2.

3.

4.

5.

6.

7.

8.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #4

Use the commutative property of addition to write an expression equivalent to the following.

13x + y

The answer is .

Use the commutative property of multiplication to write an expression equivalent to the following.

g • h

The answer is .

Use the commutative property of multiplication to write an expression equivalent to the following.

•
1
6

x
8

The answer is .
 (Do not  multiply.)

Use the associative property of multiplication to write an expression equivalent to the following.

10 • (2x)

    (Do not  simplify.)10 • (2x) =

Use the associative property of addition to write an expression equivalent to the following.

(x + 9.7) + y

The answer is .

Use an associative property to write an equivalent expression.

( ) • y22x

  = ( ) • y22x
 (Type the terms of your expression in the same order as they appear in the original  expression.)

Write an expression for the amount of money  (in  ) in n .cents quarters

 cents
 (Use integers or decimals for any numbers in the  expression.)

Use a commutative property to complete the statement.

 ________3x + 13 =

3x + 13 =



9.

10.

11.

12.

13.

Complete the following statement to illustrate the additive inverse property.

+ − =
2
4

2
4  ? 

+ − =
2
4

2
4

Complete the following statement to illustrate the multiplicative identity property.

3 • 1 =  ? 

3 • 1 =

Complete the statement to illustrate the associative property.

 ______12( )4y =

12( )4y =
 (Type the terms of your expression in the same order as they appear in the original expression. Do not perform the 
calculation.)

In the  statement, a property of real numbers has been incorrectly applied. Correct the right side of the statement.

3( ) = ( )( )6y 3 • 6 3y

3( ) =6y
 (Do not perform the calculation. Type the terms of your expression in the same order as they appear in the original 
expression.)

Name the only real number that is its own  opposite, and explain why this is so. 

Select the correct choice below and fill in the answer box to complete your choice.

A. If a real number a satisfies the given  condition, then a a. The only real number that satisfies 
this equation is .

=

B. If a real number a satisfies the given  condition, then a. The only real number that satisfies 
this equation is .

a2 = −

C.
If a real number a satisfies the given  condition, then a . The only real number that satisfies 

this equation is .

=
1
a

D. If a real number a satisfies the given  condition, then a a. The only real number that satisfies 
this equation is .

= −



1.

2.

3.

4.

5.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #5

(1)  

 

 
 

Select the answer that best completes the given statement.

0 a (1)  • =

0
1
a
1
a

(1)  opposite
 reciprocal

 absolute value
 exponent

 square root

Select the answer that best completes the given statement.

The (1)  of the nonzero number b is .
1
b

(1)  
 

(2)  4.
 0.
 undefined.

Select the correct choices that complete the sentence below.

 is (1)  while  is (2) 
0
4

4
0

undefined
0

(1)  

 

(2)  

 

Select the correct choices that complete the sentence below.

The fraction (1) (2) −
a
b

= =

a
b

− a
b

.
a

− b

.
a
b

(1)  

 

 
 

Select the answer that best completes the given statement.

The opposite of nonzero number a is (1)  

.
1
a

− .
1
a

− a.
a.



6.

7.

8.

9.

10.

(1)  

 

Select the correct choice that completes the sentence below.

The reciprocal of nonzero number a is (1) 

.
1
a
− a.

(1)  commutative
 distributive
 associative

Select the answer that best completes the given statement.

The (1)  property has to do with  "order."

(1)  commutative
 associative
 distributive

Select the correct choice that completes the sentence below.

The (1)  property has to do with  "grouping."

Evaluate.

    − 32

 − 32 =

Find the value of the expression.

−
1
10

3

−
1
10

3
=

 (Simplify your  answer.)



11.

12.

13.

Choose the  fraction(s) equivalent to the given fraction.

−
1
5

Select all that apply.

A. 1
− 5

B. 1
5

C. − 1
5

D. − 1
− 5

Choose the  fraction(s) equivalent to the given fraction.

8
− (p + r)

Select all that apply.

A.
−

8
(p + r)

B. 8
(p + r)

C. − 8
(p + r)

D. − 8
− (p + r)

Choose the  fraction(s) equivalent to the given fraction.

− 8r
− 9s

Select all that apply.

A.
−

8r
9s

B. − 8r
9s

C. 8r
− 9s

D. 8r
9s



14.

(1)  is
 is not

Evaluate  (  ) and  (  ) . Use these two expressions and discuss whether division is associative.40 ÷ 8 ÷ 4 40 ÷ 8 ÷ 4

 (  )   (Type an integer or a simplified  fraction.)40 ÷ 8 ÷ 4 =

 (  )   (Type an integer or a simplified  fraction.)40 ÷ 8 ÷ 4 =

 Therefore, division (1)  associative.



1.

2.

3.

4.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #6

(1)  commutative
 associative
 distributive

Select the answer that best completes the given statement.

 a(b  c) ab ac illustrates the (1)  property.+ = +

Watch the section lecture video and answer the question listed below.  Note: The counter in the lower right corner of the 
screen displays the Example number.

From Examples  12-14, how are algebraic expressions  simplified? If the expression contains  parentheses, what property 
might be applied  first?

From Examples  12-14, how are algebraic expressions  simplified? 

A. They are simplified by combining like terms.
B. Algebraic expressions in those examples cannot be simplified.
C. They are simplified by substitution.
D. They are simplified by solving.

If the expression contains  parentheses, what property might be applied  first?

identity property
commutative property
associative property
distributive property

(1)  degree
 terms

 grouping symbols

Select the correct choice that completes the sentence below.

The (1)  of an expression are the addends of the expression.

In the  statement, a property of real numbers has been incorrectly applied. Correct the right side of the statement.

 (x  ) x6 + 3 = 6 + 3

The correct statement is  (x  ) .6 + 3 =



5.

6.

7.

8.

9.

10.

(1)  

 

 

 

 (2)  
 

 

 

 

Fill in the chart.

Number Opposite Reciprocal
5  ?  ?

Number Opposite Reciprocal

5 (1) (2) 

− 5
1
5

−
1
5

undefined

0 − 5
0
1
5

undefined

−
1
5

(1)  

 
 
 

 (2)  
 

 

 

 

Fill in the chart.

Number Opposite Reciprocal
 ? 6  ?

Number Opposite Reciprocal

(1) 6 (2) 

−
1
6

6
Undefined
− 6

1
6

− 6
6

−
1
6

1
6

Undefined

Use the commutative property of addition to write an expression equivalent to the following.

10a + b

The answer is .

Use the distributive property to find the product of the following.

8(x + 1)

  (Simplify your  answer.)8(x + 1) =

Use the distributive property to find the product of  the following.

− (3x + y)

The answer is .

Use the distributive property to multiply.

3(4x + 5y + 3z)

3(4x + 5y + 3z) =



11.

12.

13.

14.

15.

16.

17.

18.

19.

Use the distributive property to find the product.

 (x y  )− 6 − 2 + 9

  (x y  )− 6 − 2 + 9 =
 (Simplify your  answer.)

Simplify.

x x− 6 + 7 + 14 − 12

x x− 6 + 7 + 14 − 12 =

Simplify the following expression.

7y − 6 + 19y − 17y

  = 7y − 6 + 19y − 17y

Simplify.

k  ( k  )8 − 4 − 18

k  ( k  )8 − 4 − 18 =

Simplify the expression.

− 9c − ( )4 − 2c

− 9c − ( )4 − 2c =

Simplify the following expression.

(12 − 11y) − (12 + 17y)

  = (12 − 11y) − (12 + 17y)

Simplify.

 (xy  ) xy4 − 3 + + 18 − x2

 (xy  ) xy4 − 3 + + 18 − x2 =

Simplify.

− (n + 1) + (2n − 2)

− (n + 1) + (2n − 2) =

Simplify the expression.

 (  )  (  )9 10n2 − 2 − 5 18n2 + 6

 (  )  (  )9 10n2 − 2 − 5 18n2 + 6 =
 (Use integers or fractions for any numbers in the  expression.)



20.

21.

22.

Simplify.

b − + b −
7
9

1
5

8
15

1
3

b − + b −
7
9

1
5

8
15

1
3

=

 (Use integers or fractions for any numbers in the  expression.)

Simplify the following expression.

(27x − 18) − (20x − 3y)
1
3

1
4

  = (27x − 18) − (20x − 3y)
1
3

1
4

 (Simplify your answer. Use integers or fractions for any numbers in the  expression.)

To demonstrate the distributive property  geometrically, represent the area of the larger 
rectangle in two  ways, first as width times length and second as the sum of the areas 
of the smaller rectangles.

The area of the larger rectangle obtained by multiplying width times length is . 
 (Do not  simplify.)

The area of the larger rectangle obtained by finding the sum of the areas of the two smaller rectangles is 
.  (Simplify your  answer.)

f+d

c

f d



1.

2.

3.

4.

5.

6.

7.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #7

State the base of the exponent  in the expression.8

( )− 6 8

The base of the exponent  is .8

State the base of the exponent  in the expression.4

− 84

The base of the exponent  is .4

State the base of the exponent  in the expression.7

cx7

The base of the exponent  is .7

(1)  absolute value
 square root

 base
 exponent

Select the answer that best completes the given statement.

 A(n) (1)  is a shorthand notation for repeated multiplication of the same number.

(1)  
 

(2)  
 

Select the correct choices that complete the sentence below.

In  , the 2 is the (1)  and the 5 is the (2) ( − 5)2 −

exponent
base

exponent.
base.

Evaluate.

    − 92

 − 92 =

Evaluate.

    ( − 2)2

 ( − 2)2 =



8.

9.

10.

11.

12.

13.

14.

Find the value of the expression.

−
1
10

3

−
1
10

3
=

 (Simplify your  answer.)

Write the expression with positive exponents.

4a u− 1 − 3

  (Simplify your  answer.)4a u− 1 − 3 =

Write the expression with positive exponents.

a b c3 − 1 − 9

  (Simplify your  answer.)a b c3 − 1 − 9 =

Simplify. Use positive exponents for any variables. Assume that all bases are not equal to 0.

p − 5

q − 7

   (Simplify your  answer.)
p − 5

q − 7 =

Evaluate the following. Assume that all bases are not equal to 0.

( − 2x + 8)0

( − 2x + 8)0 =

Evaluate the expression. Assume that all bases are not equal to 0. 

− 5x0

− 5x0 =
 (Simplify your  answer.)

Evaluate the expression. Assume that all bases are not equal to 0.

3x + 50

3x + 50 =
 (Simplify your  answer.)



15.

16.

17.

18.

19.

20.

Simplify. Use positive exponents for any variables.

9 − 2

  (Type an integer or a simplified  fraction.)9 − 2 =

Simplify. Use positive exponents for any variables.

( − 3) − 3

( − 3) − 3 =
 (Type an integer or a  fraction.)

Simplify. Use positive exponents for any variables. Assume that all bases are not equal to 0.

9x − 2

 (Simplify your  answer.)9x − 2 =

Simplify. Use positive exponents for any variables. Assume that all bases are not equal to 0.

40 − 3x0

 4 − 3x =0 0

Simplify. Use positive exponents for any variables.

3 + 2− 1 − 2

3 + 2− 1 − 2 =
 (Type an integer or a simplified  fraction.)

Simplify. Use positive exponents for any variables.

5 • y− 2

5 • y− 2 =
 (Simplify your answer.  Use integers or fractions for any numbers in the  expression.)



1.

2.

3.

4.

5.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #8

Use the quotient rule for exponents to simplify.

y17

y4

y17

y4 =

 (Type your answer using exponential notation. Use positive exponents  only.)

Use the quotient rule to simplify.

−
12z12

6z9

−
12z12

6z9 =

 (Type your answer using exponential  notation.)

Use the quotient rule to simplify.

x6y7

x2y7

x6y7

x2y7 =

 (Type your answer using exponential  notation.)

Simplify. Use positive exponents for any variables.

x9

x13

  (Type exponential notation with positive  exponents.)
x9

x13 =

Simplify. Use positive exponents for any variables.

10r6

2r − 4

  (Type exponential notation with positive  exponents.)
10r6

2r − 4 =



6.

7.

8.

9.

10.

11.

Simplify. Use positive exponents for any variables.

4x − 7x3

x − 4

4x − 7x3

x − 4 =

Simplify. Use positive exponents for any variables.

4a − 6b5

20a2b − 3

4a − 6b5

20a2b − 3 =

 (Use integers or fractions for any numbers in the expression. Type exponential notation with positive  exponents.)

Simplify. Use positive exponents for any variables. Assume that all bases are not equal to 0.

− 8x − 4

   (Simplify your  answer.)− 8x − 4 =

Simplify. Use positive exponents for any variables.

− 5x y 4x − 2xy2 5 4

− 5x y 4x − 2xy2 5 4 =
 (Type exponential notation with positive  exponents.)

Simplify. Use positive exponents for any variables.

6x − 6yz − 7

2x5yz

6x − 6yz − 7

2x5yz
=

 (Simplify your answer. Type exponential notation with positive  exponents.)

Simplify. Assume that the variable in the exponent represents a nonzero integer and that x is not 0.

x • x6 6a

x • x6 6a =



12.

13.

14.

15.

16.

17.

18.

Simplify. Assume that variable in the exponents represents nonzero integer and that  is not 0.x

x9t − 3

xt

x9t − 3

xt =

Use the power rule to simplify the expression.

n4 3

n4 3
=

Simplify.

g − 8 − 7
g − 8 − 7

=
 (Simplify your answer. Type exponential notation using 
positive  exponents.)

Simplify. 

3 − 1 3

  (Type an integer or a simplified fraction. Use positive exponents  only.)3 − 1 3
=

Simplify. Write the answer using positive exponents only.

5x y8 9 3

5x y8 9 3
=

Simplify. Write each answer using positive exponents only.

4a bc
2 − 6 − 3

 4a bc2 − 6 − 3
=

Simplify. 

x2y − 7

z − 1

− 2

  (Use positive exponents  only.)
x2y − 7

z − 1

− 2

=



19.

20.

21.

22.

23.

24.

Simplify.

4
5

− 3

  (Type an integer or a  fraction.)
4
5

− 3
=

Simplify.

2x4

4x2

3

2x4

4x2

3

=

 (Type an integer or a simplified fraction. Use positive exponents  only.)

Simplify. 

x x bc7 7 − 5

  (Use positive exponents  only.)x x bc7 7 − 5
=

Simplify.

2 − 2x2y − 5

5 − 2x7y − 1

 
2 − 2x2y − 5

5 − 2x7y − 1 =

 (Type the ratio as a simplified fraction. Use positive exponents  only.)

Simplify the following. Assume that variables in the exponents represent integers and that all other variables are not 0.

x3a + 7 2

  (Simplify your  answer.)x
3a + 7 2

=

Simplify the expression.

− 7x − (6x − 3)

  (Simplify your  answer.)− 7x − (6x − 3) =



1.

2.

3.

4.

5.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #9

(1)  coefficient.
 degree.

Fill in the blank.

The numerical factor of a term is the  _________.

The numerical factor of a term is the (1) 

(1)  polynomial
 equation

 coefficient

Select the correct choice that completes the sentence below.

 A(n) (1)  is a finite sum of terms in which all variables are raised to nonnegative integer powers and no 
variables appear in any denominator.

(1)  binomial
 monomial
 trinomial
 constant

Fill in the blank.

A (1)  is a polynomial with exactly two terms.

(1)  binomial
 monomial
 trinomial

Select the correct choice that completes the sentence below.

A (1)  is a polynomial with 1 term.

(1)  binomial
 monomial
 trinomial
 constant

Fill in the blank.

A (1)  is a polynomial with exactly three terms.



6.

7.

8.

9.

10.

(1)  degree
 coefficient

Fill in the blank.

The  __________ of a polynomial is the largest degree of all its terms.

The (1)  of a polynomial is the largest degree of all its terms.

(1)  Like
 Unlike

Select the correct choice that completes the sentence below.

(1)  terms contain the same variables raised to the same powers.

Find the degree of the given term.

46

The degree is .

Find the degree of the polynomial and indicate whether the polynomial is a  monomial, binomial,  trinomial, or none of these.

6x + 0.7

Classify the given polynomial.

monomial
binomial
trinomial
none of these

The degree of the polynomial is .

Classify the polynomial as a  monomial, binomial,  trinomial, or none of these.  Also, give the degree.

xx2 − 16 + 64

Choose the correct type of polynomial.

Trinomial Monomial
Binomial None of these

What is the degree of the  polynomial? 

The degree is .



11.

12.

Simplify by combining like terms.

9y + 8y − 7y − 2y2 2

9y + 8y − 7y − 2y2 2 =

Simplify by combining like terms.

− 6x y + 8x − 5x y − − 4x2 2 1
3

− 6x y + 8x − 5x y − − 4x2 2 1
3

=



1.

2.

3.

4.

5.

6.

7.

8.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #10

If  P(x )  and  Q(x)  , find  P(  ).= x + x + 32 = 6x − 32 7

 P(  )7 =
 (Type an integer or a  fraction.)

If  P(x)  and  Q(x)  , find  Q(  ).= x + x + 62 = 4x − 12 − 10

 Q(  )− 10 =
 (Type an integer or a  fraction.)

If  P(x)  and  Q(x)  , find .= x + x + 22 = 71x − 12 Q
1
9

Q
1
9

=

 (Type an integer or a  fraction.)

An object is dropped from the top of a tower with a height of  feet. Neglecting air  resistance, the height of the object at 
time t seconds is given by the polynomial . Find the height of the object at .

1130
− 16t + 11302 t = 8 seconds

The height of the object at  seconds is  feet.8

Add.

9y + y − 8 + 6y − y − 52 2

9y + y − 8 + 6y − y − 52 2 =
 (Simplify your  answer.)

Add.

8x y − 7xy + 3 + 7x y + 7xy + 3x3 3

  (Simplify your  answer.)8x y − 7xy + 3 + 7x y + 7xy + 3x3 3 =

Subtract.

2y − 9y + 4 − 4y − 9y + 92 2

  (Simplify your answer. Do not  factor.)2y − 9y + 4 − 4y − 9y + 92 2 =

Perform the indicated operation.

 (  )  (  )9x + 9x − 10x + 83 2 − − 11x − 11x − 3x + 33 2

 (  )  (  )9x + 9x − 10x + 83 2 − − 11x − 11x − 3x + 33 2 =
 (Simplify your answer. Do not  factor.)



9.

10.

11.

12.

13.

14.

15.

Perform the subtraction and simplify.

−7x2 + 3x + 5 3x2 − 5

−7x2 + 3x + 5 3x2 − 5 =

Perform the subtraction and simplify.

−14ab − 11a2b + 2b2 18a2 − 19a2b − 2b2

−14ab − 11a2b + 2b2 18a2 − 19a2b − 2b2 =
                                           (Do not  factor.)

Perform the indicated operations and simplify.

8x − 7 + − 4x − 2 − 4x − 92 2 2

8x − 7 + − 4x − 2 − 4x − 92 2 2 =

Subtract.

x − x + − x + x −
3
4

2 6
7

2
3

1
4

2 1
14

1
6

x − x + − x + x −
3
4

2 6
7

2
3

1
4

2 1
14

1
6 =

 (Use integers or fractions for any numbers in the expression. Simplify your answer. Do not  factor.)

For the following pair of  functions, find  P(x)  Q(x).+

 and P(x) = 3x + 5 Q(x) = 6x − 7x + 22

 P(x)  Q(x)   (Simplify your answer. Do not  factor.)+ =

For the following  polynomial, find  P(a),  P(  x) and  P(x  h).− +

P(x) = 3x − 7

 P(a)   (Simplify your answer. Do not  factor.)=

 P(  x)   (Simplify your answer. Do not  factor.)− =

 P(x +  h)   (Simplify your answer. Do not  factor.)=

For the following  polynomial, find  P(a),  P(  x) and  P(x  h).− +

P(x) = 6x − 7

 P(a)   (Simplify your answer. Do not  factor.)=

 P(  x)   (Simplify your answer. Do not  factor.)− =

 P(x  h)   (Simplify your answer. Do not  factor.)+ =



16.

17.

18.

19.

Complete the expression. 

 (x  )  ______+ 18 2 =

Choose the correct answer below.

A.  (x  ) x+ 18 2 = 2 − 324

B.  (x  )+ 18 2 = x + 18x + 3242

C.  (x  ) x+ 18 2 = 2 + 324

D.  (x  )+ 18 2 = x + 36x + 3242

Choose the product of  from the following list.(x + 3)(x − 3)

x + 3x − 92 x + 6x − 92

x + 92 x − 92

Choose the correct answer below.

A. x − 92

B. x + 92

C. x + 3x − 92

D. x + 6x − 92

(1)  
 
 
 

Select the correct choice that completes the sentence below.

The product of  (3x  1)(4x2 2x  1) is a polynomial of degree (1) − − +

12x .3

12.
3.
2.

(1)  
 
 
 

Fill in the blank.

If  f(x)  , then  ____.= x + 92 f ( )a + 4 =

(1) f ( )a + 4 =

a + 4
( )a + 4 2

( ) + ( )a + 4 2 a + 4
( ) + 9a + 4 2



20.

21.

22.

23.

24.

25.

26.

27.

(1)  
 
 

Select the correct choice that completes the sentence below.

(1) [ ]x + ( )2y + 1 2 =

[ ] [ ]x + ( )2y + 1 x − ( )2y + 1
[ ] [ ]x + ( )2y + 1 x + ( )2y + 1
[ ] [ ]x + ( )2y + 1 x + ( )2y − 1

Multiply.

− 6xy(3x + y)

  =   (Simplify your  answer.)− 6xy(3x + y)

Multiply.

3ab xa + ya + 52 7

3ab xa + ya + 52 7 =

Multiply. 

(a − 3)(2a + 5)

 (Simplify your  answer.) (a − 3)(2a + 5) =

Multiply.

( − 6x + 2) x − x − 53

  (Simplify your  answer.)( − 6x + 2) x − x − 53 =

Multiply. 

 (x  )+ 3 2

 (x  )    (Simplify your  answer.) + 3 2 =

Multiply using the rule for the product of the sum and difference of two terms.

(6x + 7)(6x − 7)

(6x + 7)(6x − 7) =

Multiply using special product methods.

(8x − y)2

(8x − y)2 =
 (Simplify your  answer.)



28.

29.

30.

31.

32.

33.

34.

35.

Use special products to multiply.

3x + 3x −
1
2

1
2

3x + 3x −
1
2

1
2 =

 (Simplify your answer. Use integers or fractions for any numbers in the  expression.)

Multiply.

5x + 3 7x + 3x + 53 2

  =  5x + 3 7x + 3x + 53 2

 (Simplify your  answer.)

If  , find the following.f(x) = x − 15x2

 f(a + h)

  (Simplify your  answer.)f(a + h) =

If  f(x)  , find  f(  ).= x − 5x2 b − 9

 f(  )b − 9 =

Find the greatest common factor for the list of terms.
   ,  , x3 x6 x8

The greatest common factor is .

Find the greatest common factor for the list of monomials.

 ,  , x y z5 5 4 y z2 4 xy z2 3

The GCF is .
 (Simplify your  answer.)

Find the greatest common factor for the list of monomials.

 ,  , 42x y z4 3 21xy3 84x y3 4

The greatest common factor is .

Factor out the GCF in the polynomial.

12x − 18

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. 12x − 18 =

B. The polynomial has no common factor other than 1.



36.

37.

Factor out the greatest common factor from the following polynomial.

5y − 30xy2 3

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A.   =   (Type your answer in factored  form.)5y − 30xy2 3

B. The polynomial has no common factor other than 1.

The amount E of voltage in an electrical circuit is given by the formula E. Write an equivalent equation by 
factoring the expression .

IR + IR1 2 =
IR + IR1 2

The equivalent equation is E.=



1.

2.

3.

4.

5.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #11

(1)  simplified expression
 rational expression

 fraction
 binomial

 trinomial

Fill in the blank.

A (1)  is an expression that can be written in the form  where P and Q are polynomials and Q 0.
P
Q

≠

(1)  
 
 

Select the correct choice that completes the sentence below.

A rational expression is undefined if the denominator is (1) 

− 1.
1.
0.

Simplify the rational expression.

5x − 30x2

5x

=
5x − 30x2

5x

Simplify the rational expression.

x2 − 16
4 + x

=
x2 − 16

4 + x

Simplify the rational expression.

6y − 18
5y − 15

6y − 18
5y − 15 =



6.

(1)  
 

 

Select the correct choice that completes the sentence below.

A rational expression is (1)  if the numerator and denominator have no common factors other than 1 or 1.−

simplified
linear

a polynomial



1.

2.

3.

4.

5.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #12

Multiply.

•
15x + 15

8x + 24

4x + 12

5x2 − 5

  (Simplify your  answer.)•
15x + 15

8x + 24

4x + 12

5x2 − 5
=

Multiply and simplify.

•
18a − 12a2

4a2 + 12a + 9

4a2 + 12a + 9

4a2 − 9

•
18a − 12a2

4a2 + 12a + 9

4a2 + 12a + 9

4a2 − 9
=

Divide and simplify.

÷
4x
9

16x + 32
9x + 18

÷ =
4x
9

16x + 32
9x + 18

Divide and simplify.

÷
a + b

ab

a2 − b2

4a3b

÷
a + b

ab

a2 − b2

4a3b
=

Perform each indicated operation.

5
x

÷
4xy

x2 •
16x3

x5

  (Simplify your  answer.)
5
x

÷
4xy

x2 •
16x3

x5 =



6.

7.

8.

9.

Find the function value. 

If  , find  f(  ),  f(0), and  f(  ).f(x) =
x + 8
2x − 1 6 − 5

 f(  )   (Type an integer or a simplified  fraction.)6 =

 f(0)   (Type an integer or a simplified  fraction.)=

 f(  )   (Type an integer or a simplified  fraction.)− 5 =

Find each function value. If  , find  g(  ),  g(  ), and  g(  ).g(x) =
x2 + 8

x3 − 25x
3 − 2 2

g(3) =
 (Type an integer or a simplified  fraction.)

g( − 2) =
 (Type an integer or a simplified  fraction.)

g(2) =
 (Type an integer or a simplified  fraction.)

Which of the expressions are equivalent to  ?
x

7 − x

Select all equivalent expressions.

A. − x
− 7 + x

B. − x
x − 7

C. x
x − 7

D. − x
7 − x

(1)  multiplication and division.
 addition and subtraction.

Fill in the blank.

The denominators must be the same before performing the operations  ______.

The denominators must be the same before performing the operations (1) 



10.

11.

12.

13.

14.

Name the  operation(s) that make the statement true.

To perform this  operation, multiply the first rational expression by the reciprocal of the second rational expression.

Choose the correct answer below.

Addition
 Addition, Subtraction
Subtraction
Division
Multiplication
 Division, Subtraction
 Division, Multiplication
 Addition, Multiplication

(1)  addition.
 subtraction.
 division.
 multiplication.

Fill in the blank.

Numerator times numerator all over denominator times denominator is  _______.

Numerator times numerator all over denominator times denominator is (1) 

Use the example in the hint to perform the following subtraction.

 ________−
7
2x

x + 1
2x =

 Hint: − = =
8

x + 1
x + 5
x + 1

8 −
↓

(x + 5
↓

)
x + 1

3 − x
x + 1

  (Simplify your  answer.)−
7
2x

x + 1
2x

=

Subtract fractions. Simplify the answer.

−
x − 6
6x

x + 6
6x

− =
x − 6
6x

x + 6
6x

Find the sum.

+
4
9x

7
5x

+
4
9x

7
5x =

 (Simplify your  answer.)



15.

16.

17.

Subtract fractions. Simplify the answer.

−
7

2y2
2

5y

− =
7

2y2
2

5y

Perform the indicated operation.

−
x − 2
x + 4

x + 7
x − 4

  (Simplify your  answer.)−
x − 2
x + 4

x + 7
x − 4 =

Add.

+
9

4x + 8
16

3x + 6

  (Simplify your  answer.)+
9

4x + 8
16

3x + 6
=



1.

2.

3.

4.

5.

6.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #13

Complete the following table. The first row has been completed.

First Integer  All Described Integers
Three consecutive integers  18   18, 19, 20
Three consecutive odd integers 23   ________

First Integer  All Described Integers
Three consecutive integers  18   18, 19, 20
Three consecutive odd integers

23
 

 ,  ,
                                         (Use ascending  order.)

Write the following as an algebraic expression.  Then 
simplify.

The perimeter of the  with   square side length y. y

The answer is .   (Simplify your  answer.)

Write the following as an algebraic expression. Then simplify.

 The sum of   integers if the first integer is x.four consecutive

The answer is .  (Type a simplified  expression.)

A piece of land is to be fenced and subdivided as shown so that each rectangle has the same dimensions. Express the total 
amount of fencing needed as an algebraic expression in x.

3 6

The total amount of fencing is .

Write the perimeter of the floor plan shown 
as an algebraic expression in x. 

9

x - 9
3

?

x - 5

The perimeter of the floor is .
 (Simplify your  answer.)

Write the following as an algebraic expression. Then simplify.

The total amount of money  (in cents) in x  ,   , and x .  (Hint: The value of a  is   cents, the 
value of a  is   cents, and the value of a  is   cents.)

dimes (x + 5) nickels 3 quarters dime 10
nickel 5 quarter 25

The total amount of money is  cents.
 (Simplify your answer. Do not  factor.)



1.

2.

3.

4.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #14

(1)  slope
 solution

Select the correct choice that completes the sentence below. 

A value for the variable in an equation that makes the equation a true statement is called  a(n) (1)  of the 
equation.

Identify the following as an equation or an expression.

x 5
1
3 −

Choose the correct answer below.

A. x 5 is an equation.
1
3

−

B. x 5 is an expression.
1
3

−

Identify the following as an equation or an expression.

 2(x  3) 7− =

Choose the correct answer below.

A. It is an  equation, because it contains the difference of two terms.
B. It is an  expression, because it contains a variable.
C. It is an  expression, because it contains the difference of two terms.
D. It is an  equation, because it contains an equal sign.

Identify the following as an equation or an expression.

x x
5
9

+
1
3

=
2
9

−

Choose the correct answer below.

A. x x is an expression.
5
9

+
1
3

=
2
9

−

B. x x is an equation.
5
9

+
1
3

=
2
9

−



5. Identify the following as an equation or an expression.

x + − − x
5
9

1
3

2
9

Choose the correct answer below.

A. It is an  expression, because it contains the sum and difference of  terms, and does not contain an 
equal sign.

B. It is an  equation, because it does not contain an equal sign.
C. It is an  expression, because it contains a variable.
D. It is an  equation, because it contains the sum and difference of terms.



1.

2.

3.

4.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #15

Solve the equation and check.

− 7x = − 42

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is .
 (Simplify your  answer.)

B. The solution is all real numbers.
C. There is no solution.

Solve the equation and check.

− 18 = x + 8

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is .
 (Simplify your  answer.)

B. The solution is all real numbers.
C. There is no solution.

Solve the equation and check.

7x − 4 = 6 + 5x

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is .
 (Simplify your  answer.)

B. The solution is all real numbers.
C. There is no solution.

Solve the equation and check.

6y + 16 = 3y − 5

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is .
 (Simplify your  answer.)

B. The solution is all real numbers.
C. There is no solution.



5.

6.

7.

8.

Solve the equation and check.

8x − 5x + 3 = x − 7 + 10

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is .
 (Simplify your  answer.)

B. The solution is all real numbers.
C. There is no solution.

Solve the equation and check.

17x + 10 = 4(4x + 3)

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is .
 (Simplify your  answer.)

B. The solution is all real numbers.
C. There is no solution.

Solve the equation and check.

− 3(6y − 9) − y = − 3(y − 2)

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is .
 (Type an integer or a simplified  fraction.)

B. The solution is all real numbers.
C. There is no solution.

Solve the following equation and check.

+ =
x
4

x
7

7
8

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is .
 (Type an integer or a simplified  fraction.)

B. The solution is all real numbers.
C. There is no solution.



9.

10.

11.

12.

Solve the equation and check.

+ x = + 2
2x − 5

12
2x + 5

2

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is .  
 (Type an integer or a simplified  fraction.)

B. The solution is all real numbers.
C. There is no solution.

Solve the equation.

(a + 2) = (2 − a)
1
15

1
6

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is . 
 (Type an integer or a simplified  fraction.)

B. The solution is all real numbers.
C. There is no solution.

Solve the equation.

6(n + 4) = 2(12 + 3n)

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is . 
 (Simplify your  answer.)

B. The solution is all real numbers.
C. There is no solution.

Solve the equation.

9(x + 8) + 2 = 9x + 7

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is .
 (Simplify your  answer.)

B. The solution is all real numbers.
C. There is no solution.



1.

2.

3.

4.

5.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #16

Solve the equation for y.

x + y = 9

y =

One number is  times a first number.  A third number is 100 more than the first number.  If the sum of the three numbers is 
 , find the numbers.

2
208

The three numbers are .   (Use a comma to separate answers as  needed.)

Solve the formula for the specified variable.

 y = dg for d

d =

Solve  for y.7x − 6y = 19

y    (Use integers or fractions for any numbers in the  expression.)=

Solve  for .P = 2G + 2M G

G =



6.

7.

8.

A woman works at a law firm in city A which is about  miles from city B. She must go to the law library in city B to get a 
document. Find how long it takes her to drive  round-trip if she averages  mph.

70
50

Translate the sentence into an equation. Use the distance  formula, d  rt, where d distance  traveled, r  rate, and 
t time. Fill in the blanks below.

= = =
=

Distance
 (round-trip) equals rate or speed • time

↓ ↓ ↓ ↓ ↓

 = • t

What is the first step in solving the resulting equation for  t?

A. Add  to both sides of the equation.50
B. Multiply both sides of the equation by .50
C. Divide both sides of the equation by .50
D. Subtract  from both sides of the equation.50

Divide both sides of the equation by  and simplify.50

140 = t50
= t

 (Type an integer or a  decimal.)

Interpret the result.

It takes her approximately  hours and  minutes to drive  round-trip.
 (Type a whole  number.)

A package of floor tiles contains   one-foot-square tiles. 
Find how many packages should be bought to cover a 
square ballroom floor whose side measures  feet.   Note:  
Partial packages cannot be bought.

26

67

67 ft
67 ft

 packages should be bought to cover the 
floor.  

(1)  m.
 sq m.
 cu m.

The formula for the volume of a cylinder is . The cylinder to the right has an exact 
volume of  cubic meters. Find its height.

V = πr h2

480π
4 m

height

The height of the cylinder is  (1) 
            (Simplify your  answer.)



9.

(1)  mm.
 cu mm.
 sq mm.

(2)  sq mm.
 mm.
 cu mm.

The formula for the volume of a sphere is  , where r is the radius of the sphere. The 

steel ball to the right is in the shape of a sphere and has a diameter of  millimeters.

V = πr
4
3

3

30
a. Find the exact volume of the sphere.
b. Find a  2-decimal-place approximation for the volume.

a. The exact volume of the sphere is  (1)  
 (Simplify your answer. Type an exact  answer, using  as  needed.)π

b. The  2-decimal-place approximation for the volume is  (2) 
 (Type an integer or decimal rounded to two decimal places as  needed.)

d=30 mm



1.

2.

3.

4.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #17

(1)  
 
 
 

Fill in the blank.

The set  written in interval notation is  ___________.{x | x ≥ − 1.1}

The set  written in interval notation is (1) {x | x ≥ − 1.1}

( − 1.1,∞).
[ − 1.1,∞).
( −∞, − 1.1).
( −∞, − 1.1].

(1)  
 
 
 

Use the choices to fill in the blank.

The set  written in interval notation is  ____.{x | x < − 2.1}

The set  written in interval notation is (1) {x | x < − 2.1}

− 2.1,∞ .

−∞, − 2.1 .

− 2.1,∞ .

−∞, − 2.1 .

(1)  
 
 
 

Fill in the blank.

The set  written in interval notation is  _________.{x | x ≤ 2.7}

The set  written in interval notation is (1) {x | x ≤ 2.7}

2.7,∞ .

−∞,2.7 .

−∞,2.7 .

2.7,∞ .

(1)  the same
 different

(2)  not change
 reverse

Watch the section lecture video and answer the question listed below.  Note: The counter in the lower right corner of the 
screen displays the Example number.

Based on the lecture before Example  4, complete the following statement.

To multiply or divide both sides of an inequality by (1)  nonzero negative  number(s), one must 

(2)  the direction of the inequality symbol.



5.

6.

7.

Graph the solution set of the inequality on a number line and then write it in interval notation.

{x | x < − 5}

Select the correct graph below.

A.

-10 100

-5 B.

-10 100

5

C.

-10 100

-5 D.

-10 100

-5

Now type the solution in interval notation.

Graph the inequality on a number line.  Then write the solution in interval notation.

{x| − 5 <  x < 4}

Select the correct graph below.

A.

-10 100

-4 5 B.

-10 100

-5 4

C.

-10 100

-5 D.

-10 100

-5 4

Now enter the solution in interval notation.

Graph the solution set of the inequality on a number line and then write it in interval notation.

{x|4 ≥ x > − 3}

What is the graph of the  solution? Choose the correct graph below.

A.

-4 -2 0 2 4 6 8 10

3 4 B.

-4 -2 0 2 4 6 8 10

-3 4

C.

-4 -2 0 2 4 6 8 10

-3 4 D.

-4 -2 0 2 4 6 8 10

3 4

What is the solution  set?

The solution set is .  (Type your answer in interval  notation.)



8.

9.

Solve the following inequality. Graph the solution set and write it in interval notation.

x − 4 ≥ − 8

Select the correct graph below.

A.
-14 140

-4
B.

-14 140

-4

C.
-14 140

-4
D.

-14 140

4

E.
-14 140 F.

-14 140

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is .
 (Type your answer in interval  notation.)

B. The solution is .∅

Solve the following inequality. Graph the solution set and write it in interval notation.

x x15 < 14 + 3

Choose the graph of the solution set.

A.
-5 150

3
B.

-5 150

0

C.
-5 150

5
D.

-5 150

2

E.
-5 150

F.
-5 150

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution set is .
 (Type your answer in interval  notation.)

B. The solution set is .∅



10.

11.

Solve the following inequality. Graph the solution set and write it in interval notation.

x ≥ − 3
8
9

Select the correct graph below.

A.
-10 -8 -6 -4 -2 0 2 4 6 8 10

B.
-10 -8 -6 -4 -2 0 2 4 6 8 10

C.
-10 -8 -6 -4 -2 0 2 4 6 8 10

D.
-10 -8 -6 -4 -2 0 2 4 6 8 10

E.
-10 -8 -6 -4 -2 0 2 4 6 8 10

F.
-10 -8 -6 -4 -2 0 2 4 6 8 10

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is .
 (Use integers or fractions for any numbers in the expression. Type your answer in interval 
notation.)

B. The solution is .∅

Solve the following inequality. Graph the solution set and then write it in interval notation.

− 4x ≥ 24

What is the graph of the  solution?

A.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-6 B.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-6

C.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-6 D.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-6

E.
-10 100

F.
-10 100

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution set is . 
 (Type your answer in interval  notation.)

B. The solution set is .∅



12.

13.

14.

15.

Solve the following inequality. Write the solution set using interval notation.

x x21 + 7 ≥ 3 − 7

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution set is .
 (Type your answer in interval notation. Use integers or fractions for any numbers in the 
expression. Simplify your  answer.)

B. The solution set is .∅

Solve the following inequality. Write the solution set in interval notation.

5(x − 6) < 3(2x − 1)

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution set is .
 (Simplify your answer. Type your answer in interval  notation.).)

B. The solution set is .∅

Solve the following inequality. Write the solution set in interval notation.

− 3(2x − 1) < − 2[5 + 4(x + 2)]

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution set is .
 (Type your answer in interval notation. Use integers or fractions for any numbers in the 
expression.)

B. The solution set is .∅

Solve the following inequality. Write the solution set using interval notation.

8 − (6x − 3) ≥ − 7(x + 1) − 7

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution set is .
 (Type your answer in interval notation. Use integers or fractions for any numbers in the 
expression.)

B. The solution set is .∅



1.

2.

3.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #18

Solve the absolute value equation.

= 16x

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution set is .
 (Type an integer or a simplified fraction. Use a comma to separate answers as  needed.)

B. The solution set is .∅

Solve the following inequality. Then graph the solution set.

≤ 4x

Select the correct choices  below, and, if  necessary, fill in the answer box to complete your choice.

A. The solution is an interval. The solution is .
 (Simplify your answer. Type your answer in interval notation. Use integers or fractions for any 
numbers in the  expression.)

B. The solution set is one or two points. The solution set is .
 (Type an integer or a fraction. Use a comma to separate answers as  needed.)

C. The solution set is .∅

Choose the correct graph below.

A.
-13 130

-4 4
B.

-13 130

-4-4 44

C.
-13 130

-4
D.

-13 130

4-4

E.
-13 130

F.
-13 130

Solve the absolute value equation.

= 172x − 11

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution set is .
 (Type an integer or a simplified fraction. Use a comma to separate answers as  needed.)

B. The solution set is .∅



4.

5.

6.

Solve the absolute value equation.

= 1
x
4 − 3

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution set is . 
 (Type an integer or a simplified fraction. Use a comma to separate answers as  needed.)

B. The solution set is .∅

Solve the absolute value equation.

+ 15 = 57n + 2

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution set is .
 (Type an integer or a simplified fraction. Use a comma to separate answers as  needed.)

B. The solution set is .∅

Solve the absolute value equation. 

= 9
2x − 5

3

Select the correct choice  below, and, if  necessary, fill in the answer box to complete your choice.

A. The solution set is .
 (Type an integer or a simplified fraction. Use a comma to separate answers as  needed.)

B. The solution set is .∅



7.

8.

Solve the following inequality. Then graph the solution set.

< 5x + 3

Select the correct choices  below, and, if  necessary, fill in the answer box to complete your choice.

A. The solution is an interval. The solution is .
 (Simplify your answer. Type your answer in interval notation. Use integers or fractions for any 
numbers in the  expression.)

B. The solution set is one or two points. The solution set is .
 (Type an integer or a fraction. Use a comma to separate answers as  needed.)

C. The solution set is .∅

Choose the correct graph below.

A.
-20 -10 0 10 20

-8 2
B.

-20 -10 0 10 20

-8-8 2

C.
-20 -10 0 10 20

-8-8
D.

-20 -10 0 10 20

-8 2

E.
-20 -10 0 10 20

F.
-20 -10 0 10 20

Solve the following inequality and graph the solution set.

≥ 20x + 4

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is an interval. The solution is .
 (Simplify your answer. Type your answer in interval notation. Use integers or fractions for any 
numbers in the  expression.)

B. The solution set is one or two points. The solution set is .
 (Type an integer or a fraction. Use a comma to separate answers as  needed.)

C. The solution set is .∅

Choose the correct graph below.

A.
-30 -20 -10 0 10 20 30

-24 16
B.

-30 -20 -10 0 10 20 30

-24 16

C.
-30 -20 -10 0 10 20 30

-24 16
D.

-30 -20 -10 0 10 20 30

-24-24

E.
-30 -20 -10 0 10 20 30

F.
-30 -20 -10 0 10 20 30



9.

10.

Solve the inequality. Then graph the solution set and write it in interval notation.

− 6 ≤ − 1x − 4

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution set is .
 (Simplify your answer. Type your answer in interval notation. Use integers or fractions for any 
numbers in the  expression.)

B. The solution set is .∅

Choose the correct graph below.

A.
-20 -10 0 10 20

B.
-20 200

C.
-20 200

D.
-20 200

E.
-20 200

F.
-20 200

Solve the inequality . Graph the solution set and write it in interval notation.+ 2 > 156x − 17

Select the correct choices below  and, if  necessary, fill in the answer box to complete your choice.

A. Written in interval  notation, the solution is .
 (Simplify your answer. Type your answer in interval notation. Use integers or fractions for any 
numbers in the  expression.)

B. The solution is a set of points. The solution set is .
 (Type an integer or a fraction. Use a comma to separate answers as  needed.)

C. The solution set is . ∅

Graph the solution set on the number line. Choose the correct answer below.

A.
-10 -5 0 5 10

B.
-10 -5 0 5 10

C.
-10 -5 0 5 10

D.
-10 -5 0 5 10

E.
-10 -5 0 5 10

F.
-10 -5 0 5 10



11. Solve the inequality. Graph the solution set.

− 18 + 2x − 4 ≤ − 8

Select the correct choices below  and, if  necessary, fill in the answer box to complete your choice.

A. The solution is one or more intervals. The solution is .
 (Simplify your answer. Type your answer in interval notation. Use integers or fractions for any 
numbers in the  expression.)

B. There are only one or two solutions. The solution set is . 
 (Type an integer or a fraction. Use a comma to separate answers as  needed.)

C. The solution set is . ∅

Choose the correct graph below.

A.
-10 -8 -6 -4 -2 0 2 4 6 8 10

B.
-10 -8 -6 -4 -2 0 2 4 6 8 10

C.
-10 -8 -6 -4 -2 0 2 4 6 8 10 D.

-10 -8 -6 -4 -2 0 2 4 6 8 10

E.
-10 -8 -6 -4 -2 0 2 4 6 8 10

F.
-10 -8 -6 -4 -2 0 2 4 6 8 10



1.

2.

3.

4.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #19-20

Find the slope and the  y-intercept of the line.

 y = − 3x + 7

Select the correct choice below and fill in any answer boxes within your choice.

A. The slope is . 
 (Simplify your answer.  Type an integer or a  fraction.)

B. The slope is undefined.
Select the correct choice below and fill in any answer boxes within your choice.

A. The  y-intercept is . 
 (Simplify your answer.  Type an ordered pair.  Use integers or fractions for any numbers in the 
expression.)

B. There is no  y-intercept.

State the slope and the  y-intercept of the line with the given equation.

y = 10x

Find the slope of the given line. Select the correct choice below  and, if  necessary, fill in the answer box to complete your 
choice.

A. The slope is .  
 (Type an integer or a simplified  fraction.) 

B. The slope of the line is undefined.

Find the  y-intercept of the given line. Select the correct choice below  and, if  necessary, fill in the answer box to complete 
your choice.

A. The  y-intercept is .
 (Type an ordered  pair, using integers or  fractions.)

B. There is no  y-intercept.

Use the  slope-intercept form of the linear equation to write the equation of the line with the given slope and  y-intercept.

Slope  ;  y-intercept  (0,  )− 4 8

The equation is .
 (Type your answer in  slope-intercept form.)

Use the  slope-intercept form of the linear equation to write the equation of the line with the given slope and  y-intercept.

Slope  ;  y-intercept (0,0)
1
5

The equation is .
 (Type your answer in  slope-intercept form.)



5.

6.

7.

8.

9.

10.

Find an equation of the line having the given slope and containing the given point. 

Slope  ; through  (  ,  )8 5 1

The equation of the line is .
 (Simplify your answer. Type your answer in  slope-intercept form.)

Find an equation of the line having the given slope and containing the given point.

Slope  ; through  (  ,  )
3
4 − 4 4

The equation of the line is . 
 (Simplify your answer. Type your answer in  slope-intercept form.)

Find the equation of the line with the given slope and containing the given point. 

Slope  ; through −
4
5

( − 3,0)

The equation of the line is .
 (Simplify your answer. Type your answer in  slope-intercept form.)

Decide whether the lines are  parallel, perpendicular, or neither.

y = 13x − 7
y = 13x + 9

Are the lines  parallel, perpendicular, or  neither?

Parallel
Neither
Perpendicular

Decide whether the following lines are  parallel, perpendicular, or neither.

y x= − 10 + 3

y = x − 2
7
2

Choose the correct answer below.

A. The lines are parallel.
B. The lines are perpendicular.
C. The lines are neither parallel nor perpendicular.

Find an equation of the line passing through the given points. Use function notation to write the equation.

 (  ,  ) and  (  ,  )3 2 5 8

 f(x)  =



11.

12.

13.

14.

15.

16.

Find an equation of the line passing through the given points. Use function notation to write the  equation,

 (  ,  ) and  (  ,  )− 2 12 − 1 7

 f(x)  =

Find an equation of the line passing through the given points. Use function notation to write the equation.

 (  ,  ) and  (  ,  )− 4 − 3 − 6 − 2

 f(x)  =

Find an equation of the line containing the given points. Use function notation to write the equation.

 and 
4
7 ,

5
7 −

1
7 ,

11
14

 f(x) =
 (Simplify your answer. Use integers or fractions for any numbers in the  expression.)

Find an equation of the line graphed. Write the equation in 
standard form.

-10 -8 -6 -4 -2 2 4 6 8 10

-10

-8

-6

-4

-2

2

4

6

8

10

x

y

The equation is . 
 (Type your answer in standard form. Simplify your  answer.)

Find the equation of the line. Write the equation of the line in standard form.

With slope  ;  y-intercept −
3
4 3

The equation of the line in standard form is .
 (Type your answer in standard form. Use integers or fractions for any numbers in the  equation.)

Find the equation of the line.

Through  (  ,  ); parallel to the line 9 − 1 4x + 5y = 3

Which of the following is the equation of the line in standard  form?

A. 4x + 5y = 31
B. 4x − 5y = 41
C. 5x − 4y = 49
D. 4x + 5y = 41



17. Find an equation of the line. Write the equation using function notation.

Through  ; perpendicular to y x(4, − 1) 8 = − 16

The equation of the line is  f(x) .=
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2.

3.

4.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #21

Determine which of the graphs is of a system of linear equations that has no solution.

Which of the following graphs is of a system that has no  solution? Choose the correct graph below.

A.

-10 10

-10

10

x

y

B.

-10 10

-10

10

x

y

C.

-10 10

-10

10

x

y

D.

-10 10

-10

10

x

y

Determine which of the graphs is of a system of linear equations that has an infinite number of solutions.

Which of the following graphs is of a system that has infinitely many intersection  points? Choose the correct graph below.

A.

-10 10

-10

10

x

y

B.

-10 10

-10

10

x

y

C.

-10 10

-10

10

x

y

D.

-10 10

-10

10

x

y

Determine which of the graphs is of a system of linear equations that has  (  ,  ) as its only solution.1 − 5

Which of the below graphs is of a system of linear equations that has  (  ,  ) as its only  solution? Choose the correct graph 
below.

1 − 5

A.

-10 10

-10

10

x

y

B.

-10 10

-10

10

x

y

C.

-10 10

-10

10

x

y

D.

-10 10

-10

10

x

y

Determine whether the given ordered pair is a solution of the system.

x − y = 5
(1, − 4)

2x − 3y = 14

Is  a solution of the  system?(1, − 4)

Yes
No



5.

6.

Solve the system of equations.

2x = 4

y = 5 − x

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. There is one solution. The solution of the system is . 
 (Simplify your answer. Type an ordered  pair.)

B. The solution set of the system is .{ }(x,y)| y = 5 − x
C. The solution set is .∅

Solve the system of equations.

4x − y = − 1

y = − 4x

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. There is one solution. The solution of the system is . 
 (Simplify your answer. Type an ordered  pair.)

B. The solution set of the system is .{ }(x,y) 4x − y = − 1
C. The solution set is .∅



1.

2.

3.

4.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #22

Use the substitution method to solve the following system of equations.

x + y = 12

y = 5x

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. There is one solution. The solution of the system is . 
 (Simplify your answer. Type an ordered  pair.)

B. The solution set of the system is .{ }(x,y)| x + y = 12
C. The solution set is .∅

Use the substitution method to solve the following system of equations.

5x − y = 46

2x + 3y = − 2

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. There is one solution. The solution of the system is . 
 (Simplify your answer. Type an ordered  pair.)

B. The solution set of the system is .{ }(x,y)| 5x − y = 46
C. The solution set is .∅

Solve the system of equations by the elimination method.

− x + 2y = 0

x + 2y = 1

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. There is one solution. The solution of the system is . 
 (Simplify your answer. Type an ordered pair. Use integers or fractions for any numbers in the 
expression.)

B. The solution set of the system is .{ }(x,y)| − x + 2y = 0
C. The solution set is .∅

Use the elimination method to solve the following system of equations.

 
 

x4 + y = 10
x − y3 = 9

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. There is one solution. The solution of the system is .
 (Simplify your answer. Type an ordered  pair.)

B. The solution set of the system is .{(x,y) | 4x + y = 10}
C. The solution set is  { }or .∅



5.

6.

7.

8.

Solve the system of equations by the elimination method.

8x − 6y = 6

7x − 5y = 6

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. There is one solution. The solution of the system is . 
 (Simplify your answer. Type an ordered pair. Use integers or fractions for any numbers in the 
expression.)

B. The solution set of the system is .{ }(x,y)|8x − 6y = 6
C. The solution set is .∅

Solve the system of equations.

x = 2y + 3

2x − 4y = 6

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. There is one solution. The solution of the system is . 
 (Simplify your answer. Type an ordered  pair.)

B. The solution set of the system is .{ }(x,y)| x = 2y + 3
C. The solution set is .∅

Solve the system of equations.

7x − y = − 5

y = − 7x

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. There is one solution. The solution of the system is . 
 (Simplify your answer. Type an ordered  pair.)

B. The solution set of the system is .{ }(x,y) 7x − y = − 5
C. The solution set is .∅

Without  graphing, determine whether system has one  solution, no  solution, or an infinite number of solutions.

y = 6x − 5

y = 6x + 7

Choose the correct answer below.

A. There is one solution.
B. There are an infinite number of solutions.
C. There is no solution.



9. Without  graphing, determine whether system has one  solution, no  solution, or an infinite number of solutions.

x + y = 7  

6x + 6y = 42

Choose the correct answer below.

A. There is one solution.
B. There are an infinite number of solutions.
C. There is no solution.



1.

2.

3.

4.

5.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #23

A woman bought some large frames for  $  each and some small frames for  $  each at a closeout sale. If she bought 
 frames for  $  , find how many of each type she bought.

16 4
29 236

She bought  large frames.

She bought  small frames.

One number is  less than a second number.  the first is  more than  times the second. Find the numbers.nine Three times 6 4

The value of the first number is .

The value of the second number is .

At a concession  stand,   and   cost  $  ;   and   cost 
 $ . Find the cost of one  and the cost of one . 

five hot dog(s) four hamburger(s) 16.50 four hot dog(s) five hamburger(s)
17.25 hot dog hamburger

What is the cost of one  ?    $hot dog

What is the cost of one  ?    $hamburger

Solve the system of equations.

9x − 2y = 65

− 2x + 5y = 22

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. There is one solution. The solution of the system is . 
 (Simplify your answer. Type an ordered  pair.)

B. The solution set of the system is .{ }(x,y)| 9x − 2y = 65
C. The solution set is .∅

Solve the system of equations by the substitution method.

x
4

+ y = −
25
4

− x + 4y = − 31

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A. There is one solution. The solution of the system is .
 (Simplify your answer. Type an ordered  pair.)

B. The solution set of the system is .(x,y)
x
4 + y = −

25
4

C. The solution set is .∅



1.

2.

3.

4.

5.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #24

Find the square root.

121

Select the correct choice below  and, if  necessary, fill in the answer box within your choice.

A. The square root is .

B. The square root is not a real number.

Simplify.

−
1
81

Select the correct choice below  and, if  necessary, fill in the answer box within your choice.

A. − =
1
81

B.  The root is not a real number.

Find the square root.

− 100

Select the correct choice below  and, if  necessary, fill in the answer box within your choice.

A. The square root is a real number. − 100 =

B. The square root is not a real number.

Simplify. Assume that variables represent nonnegative real numbers.

x8

Select the correct choice below  and, if  necessary, fill in the answer box to complete your choice.

A.
x8 =

B. The square root is not a real number.

Simplify by factoring. Assume that all variables under radicals represent nonnegative numbers.

49x6

Select the correct choice below  and, if  necessary, fill in the answer box that completes your choice.

A. 49x6 =
 (Type an exact  answer, using radicals as  needed.)

B. The square root is not a real number.



6.

7.

8.

9.

10.

11.

Simplify. 

( − 8)2

Select the correct choice below  and, if  necessary, fill in the answer box that completes your choice.

A.  = ( − 8)2

 (Type an exact  answer, using radicals as  needed.)
B. The square root is not a real number.

Simplify. Assume that the variable represents any real number.

 100x2

Select the correct choice below  and, if  necessary, fill in the answer box within your choice.

A. =100x2

B. The root does not represent a real number.

Rationalize the denominator.

10

7

The answer is .

Rationalize the denominator.

1
149

  (Type an exact  answer, using radicals as  needed.)
1

149 =

Rationalize the denominator. Assume that all variables represent positive real numbers.

121
x

  (Type an exact  answer, using radicals as  needed.)
121

x
=

Rationalize the denominator. Assume that all variables represent positive real numbers.

9
28x

  =   (Type an exact  answer, using radicals as  needed.)
9
28x



12.

13.

14.

15.

16.

17.

Rationalize the denominator of . Assume that all variables represent positive real numbers.
7
7x

  =   (Type an exact  answer, using radicals as  needed.)
7
7x

Rationalize the denominator.

5 3

2

5 3

2
=

 (Type an exact  answer, using radicals as  needed.)

Rationalize the denominator.

17x
2y

  (Type an exact  answer, using radical as  needed.)
17x
2y

=

Rationalize the denominator. Assume that all variables represent positive real numbers. 

3x
125

  (Type an exact  answer, using radicals as  needed.)
3x

125 =

Rationalize the denominator. Assume that all variables represent positive real numbers.

1
27z

  (Type an exact  answer, using radicals as  needed.)
1
27z

=

Rationalize the denominator.

6
1 − 3

6
1 − 3

=

 (Simplify your answer. Type an exact  answer, using radicals as  needed.)



18. Rationalize the denominator.

14 − 13

14 + 13

  (Type an exact  answer, using radicals as  needed.)
14 − 13

14 + 13
=
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Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #25

Use the product rule to multiply.

3 6 • 3 7

 
3

6 •
3

7 =
 (Type an exact  answer, using radicals as needed. Simplify your  answer.)

Use the product rule to multiply. Assume that all variables represent positive real numbers.

•
4

2x3 4
3

•4 2x3 4 3 =
 (Type an exact  answer, using radicals as needed. Simplify your  answer.)

Use the quotient rule to simplify.

3 7
27

3 7
27 =

 (Type an exact  answer, using radicals as needed. Simplify your  answer.)

Simplify.

3
135

3
135 =

Use the quotient rule to divide. Then simplify if possible.

34 48
4 3

34 48
4 3

=

 (Type an exact  answer, using radicals as needed. Simplify your  answer.)

Rationalize the denominator of .
7

3
6

  =   (Type an exact  answer, using radicals as  needed.)
7

3 6
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Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #26

Use the square root property to solve the equation. The equation has real number solutions.

x − 142 = 0

x =
 (Simplify your  answer, including any radicals. Use integers or fractions for any numbers in the expression. Use a comma to 
separate answers as  needed.)

Use the square root property to solve the equation. The equation has real number solutions.

x2 = 20

x =
 (Simplify your  answer, including any radicals. Use integers or fractions for any numbers in the expression. Use a comma to 
separate answers as  needed.)

Use the square root property to solve the equation. The equation has real number solutions.

2z − 282 = 0

z =
 (Simplify your  answer, including any radicals. Use integers or fractions for any numbers in the expression. Use a comma to 
separate answers as  needed.)

Use the square root property to solve the equation. The equation has real number solutions.

(x + 2)2 = 9

x =
 (Simplify your  answer, including any radicals. Use integers or fractions for any numbers in the expression. Use a comma to 
separate answers as  needed.)

Use the square root property to solve the equation.

x − 112 = 0

x =
 (Simplify your  answer, including any radicals and  as needed. Use integers or fractions for any numbers in the expression. 
Use a comma to separate answers as  needed.)

i

Use the square root property to solve the equation.

2x + 902 = 0

x =
 (Simplify your  answer, including any radicals and  as needed. Use integers or fractions for any numbers in the expression. 
Use a comma to separate answers as  needed.)

i



1.

2.

3.

4.

5.

6.

Student: _____________________ 
Date: _____________________

Instructor: Deb Wertz 
Course: MAP102 MASTER Assignment: Homework #27

Use the quadratic formula to solve the equation.

m − 4m + 3 = 02

m =
 (Simplify your  answer, including any radicals. Use integers or fractions for any numbers in the expression. Use a comma to 
separate answers as  needed.)

Use the quadratic formula to solve the equation. The equation has real number solutions.

y4 = 4y2 − 8

y =
 (Simplify your  answer, including any radicals. Use integers or fractions for any numbers in the expression. Use a comma to 
separate answers as  needed.)

Use the quadratic formula to solve the equation.

x − 10x + 25 = 02

x =
 (Simplify your  answer, including any radicals. Use integers or fractions for any numbers in the expression. Use a comma to 
separate answers as  needed.)

Use the quadratic formula to solve the equation.

x + x − 4 = 02

x =
 (Simplify your  answer, including any radicals. Use integers or fractions for any numbers in the expression. Use a comma to 
separate answers as  needed.)

Use the quadratic formula to solve the equation.

10m − 2m = 92

m =
 (Simplify your  answer, including any radicals. Use integers or fractions for any numbers in the expression. Use a comma to 
separate answers as  needed.)

Use the quadratic formula to solve the equation. The equation has real number solutions.

x 0x
1
3

2 + 4 + 4 =

x =
 (Simplify your  answer, including any radicals. Use integers or fractions for any numbers in the expression. Use a comma to 
separate answers as  needed.)



7.

8.

9.

10.

Use the quadratic formula to solve the equation.

 (m  )( m  )  (m  )− 3 3 + 4 = 5 + 1 + 8

m =
 (Simplify your  answer, including any radicals. Use integers or fractions for any numbers in the expression. Use a comma to 
separate answers as  needed.)

(1)  two real solutions.
 two complex but not real solutions.
 one real solution.

Use the discriminant to determine the number and types of solutions of the quadratic equation.

x − 6 = 02

The equation has (1) 

(1)  two complex but not real solutions.
 one real solution.
 two real solutions.

Use the discriminant to determine the number and types of solutions of the quadratic equation.

4x − 8x = − 42

The equation has (1) 

(1)  two complex but not real solutions.
 one real solution.
 two real solutions.

Use the discriminant to determine the number and types of solutions of the quadratic equation.

3 = 3x − 5x2

The equation has (1) 
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1. (1) integers

2. (1) irrational number.

3. (1) rational number.

4. 1

5.

B. -10 00

6. 2,0, 25



1. 10

2. − 2

3. 3
2

4. − 4

5.
−

1
3

6. A.    (Simplify your  answer.)
− 8
− 4 = 2

7. A. 2 −
1
18 = −

1
9  (Type an integer or a simplified  fraction.)

8. − 10

9. 13

10. A.    (Simplify your answer. Type an integer or a  fraction.)
− 16

8 = − 2

11. A. ( − 6)( − 8)( − 1) = − 48

12. 136



1. − 4

2.
−

5
8

3. 43

4. − 81

5.
−

89
150

6. 11
2



1. y + 13x

2. h • g

3.
•

x
8

1
6

4. (10 • 2)x

5. x + (9.7 + y)

6. 22 • (x • y)

7. 25n

8. 13 + 3x

9. 0

10. 3

11. (12 • 4) • y

12. (3 • 6) • y

13. D. 
If a real number a satisfies the given  condition, then a a. The only real number that satisfies this equation is 

.
= −

0



1. (1) 0

2. (1) reciprocal

3. (1) 0

(2) undefined.

4.
(1) 

− a
b

(2) .
a

− b

5. (1) − a.

6.
(1) .

1
a

7. (1) commutative

8. (1) associative

9. − 9

10.
−

1
1000

11.
A. , C. 

1
− 5

− 1
5

12.
A. , C. −

8
(p + r)

− 8
(p + r)

13.
D. 

8r
9s

14. 20

5
4

(1) is not



1. (1) distributive

2. A. They are simplified by combining like terms.

distributive property

3. (1) terms

4. 6x + 18

5. (1) − 5

(2) 
1
5

6. (1) − 6

(2) −
1
6

7. b + 10a

8. 8x + 8

9. − 3x − y

10. 12x + 15y + 9z

11. − 6x + 12y − 54

12. − 5x + 8

13. 9y − 6

14. 4k + 18

15. − 7c − 4

16. − 28y



17. − x + 5xy + 62

18. n − 3

19. − 48

20.
b −

59
45

8
15

21.
4x + y − 6

3
4

22. c(f + d)

cf + cd



1. − 6

2. 8

3. x

4. (1) exponent

5. (1) exponent

(2) base.

6. − 81

7. 4

8.
−

1
1000

9. 4

au3

10. a3

bc9

11. q7

p5

12. 1

13. − 5

14. 8

15. 1
81



16.
−

1
27

17. 9

x2

18. − 2

19. 7
12

20. y
25



1. y13

2. − 2z3

3. x4

4. 1

x4

5. 5r10

6. 4

7. b8

5a8

8.
−

8

x4

9. 40x y8 5

10. 3

x11z8

11. x6a + 6

12. x8t − 3

13. n12

14. g56

15. 1
27



16. 125x y24 27

17. c18

64a6b3

18. y14

x4z2

19. 125
64

20. x6

8

21. 1

x28b5c5

22. 25

4x5y4

23. x6a + 14

24. − 13x + 3



1. (1) coefficient.

2. (1) polynomial

3. (1) binomial

4. (1) monomial

5. (1) trinomial

6. (1) degree

7. (1) Like

8. 0

9. binomial

1

10. Trinomial

2

11. 17y − 9y2

12.
− 11x y + 4x −2 1

3



1. 59

2. 399

3.
−

10
81

4. 106

5. 15y − 132

6. 15x y + 3x + 33

7. − 2y − 52

8. 20x + 20x − 7x + 53 2

9. 4x + 3x + 102

10. 14ab + 8a b − 18a + 4b2 2 2

11. 0

12.
x − x +

1
2

2 13
14

5
6

13. 6x − 4x + 72

14. 3a − 7

− 3x − 7

3x + 3h − 7

15. 6a − 7

− 6x − 7

6x + 6h − 7



16. D.  (x  )+ 18 2 = x + 36x + 3242

17. A. x − 92

18. (1) 3.

19. (1) ( ) + 9a + 4 2

20. (1) [ ] [ ]x + ( )2y + 1 x + ( )2y + 1

21. − 18x y − 6xy2 2

22. 3xa b + 3ya b + 15ab3 8

23. 2a − 1a − 152

24. − 6x + 2x + 6x + 28x − 104 3 2

25. x + 6x + 92

26. 36x − 492

27. 64x − 16xy + y2 2

28.
9x −2 1

4

29. 35x + 15x + 25x + 21x + 9x + 155 4 3 2

30. a + 2ah + h − 15a − 15h2 2

31. b − 23b + 1262

32. x3



33. y • z2 3

34. 21xy3

35. A. 12x − 18 = 6(2x − 3)

36. A.   =   (Type your answer in factored  form.)5y − 30xy2 3 5y (1 − 6xy)2

37. I R + R1 2



1. (1) rational expression

2. (1) 0.

3. 1 − 6x

4. x − 4

5. 6
5

6. (1) simplified



1. 3
2(x − 1)

2.
−

6a
2a + 3

3. x
4

4. 4a2

a − b

5. 20

x2y

6. 14
11

− 8

−
3
11

7.
−

17
48

2
7

−
2
7

8.
A. , B. 

− x
− 7 + x

− x
x − 7

9. (1) addition and subtraction.

10. Division

11. (1) multiplication.

12. − x + 6
2x



13.
−

2
x

14. 83
45x

15. 35 − 4y

10y2

16. − 17x − 20
(x − 4)(x + 4)

17. 91
12(x + 2)



1. 23

25

27

2. 4y

3. 4x + 6

4. 13x + 18

5. 2x + 8

6. 90x + 25



1. (1) solution

2.
B. x 5 is an expression.

1
3 −

3. D. It is an  equation, because it contains an equal sign.

4.
B. x x is an equation.

5
9 +

1
3 =

2
9 −

5. A. It is an  expression, because it contains the sum and difference of  terms, and does not contain an equal sign.



1. A. The solution is .6  (Simplify your  answer.)

2. A. The solution is .− 26  (Simplify your  answer.)

3. A. The solution is .5  (Simplify your  answer.)

4. A. The solution is .− 7  (Simplify your  answer.)

5. A. The solution is .0  (Simplify your  answer.)

6. A. The solution is .2  (Simplify your  answer.)

7. A. The solution is .
21
16  (Type an integer or a simplified  fraction.)

8. A. The solution is .
49
22  (Type an integer or a simplified  fraction.)

9. A. The solution is .  
59
2  (Type an integer or a simplified  fraction.)

10. A. The solution is . 
6
7  (Type an integer or a simplified  fraction.)

11. B. The solution is all real numbers.

12. C. There is no solution.



1. 9 − x

2. 54,27,127

3. y
g

4. 7x − 19
6

5. P − 2M
2

6. 140

50

C. Divide both sides of the equation by .50

2.8

2

48

7. 173

8. 30

(1) m.

9. 4500π

(1) cu mm.

14,137.17

(2) cu mm.



1. (1) [ − 1.1,∞).

2. (1) ( −∞, − 2.1).

3. (1) ( −∞,2.7].

4. (1) the same

(2) reverse

5.

D. -10 100

-5

( −∞, − 5)

6.

B. -10 100

-5 4

( − 5,4)

7.

C. -4 -2 0 2 4 6 8 10

-3 4

( − 3,4]

8. C. -14 140

-4

A. The solution is .[ − 4, ∞)  (Type your answer in interval  notation.)

9. A. -5 150

3

A. The solution set is .( −∞,3)  (Type your answer in interval  notation.)

10. D. -10 -8 -6 -4 -2 0 2 4 6 8 10

A. The solution is .− , ∞
27
8

 (Use integers or fractions for any numbers in the expression. Type your answer in interval  notation.)



11. B. -10 -8 -6 -4 -2 0 2 4 6 8 10

-6

A. The solution set is . ( −∞, − 6]  (Type your answer in interval  notation.)

12. A. The solution set is .[ − 7,∞)
 (Type your answer in interval notation. Use integers or fractions for any numbers in the expression. Simplify your  answer.)

13. A. The solution set is .( − 27,∞)  (Simplify your answer. Type your answer in interval  notation.).)

14. A. The solution set is .−∞, −
29
2

 (Type your answer in interval notation. Use integers or fractions for any numbers in the  expression.)

15. A. The solution set is .[ − 25,∞)
 (Type your answer in interval notation. Use integers or fractions for any numbers in the  expression.)



1. A. The solution set is .16, − 16
 (Type an integer or a simplified fraction. Use a comma to separate answers as  needed.)

2. A. The solution is an interval. The solution is .[ − 4,4]
 (Simplify your answer. Type your answer in interval notation. Use integers or fractions for any numbers in the  expression.)

A. -13 130

-4 4

3. A. The solution set is .14, − 3
 (Type an integer or a simplified fraction. Use a comma to separate answers as  needed.)

4. A. The solution set is . 8,16
 (Type an integer or a simplified fraction. Use a comma to separate answers as  needed.)

5. B. The solution set is .∅

6. A. The solution set is .16, − 11
 (Type an integer or a simplified fraction. Use a comma to separate answers as  needed.)

7. A. The solution is an interval. The solution is .( − 8,2)
 (Simplify your answer. Type your answer in interval notation. Use integers or fractions for any numbers in the  expression.)

A. -20 -10 0 10 20

-8 2

8. A. The solution is an interval. The solution is .( −∞, − 24]∪[16,∞)
 (Simplify your answer. Type your answer in interval notation. Use integers or fractions for any numbers in the  expression.)

C. -30 -20 -10 0 10 20 30

-24 16

9. A. The solution set is .[ − 1,9]
 (Simplify your answer. Type your answer in interval notation. Use integers or fractions for any numbers in the  expression.)

A. -20 -10 0 10 20



10. A. Written in interval  notation, the solution is .∪(5,∞)−∞,
2
3

 (Simplify your answer. Type your answer in interval notation. Use integers or fractions for any numbers in the  expression.)

C. -10 -5 0 5 10

11. A. The solution is one or more intervals. The solution is .[ − 3,7]
 (Simplify your answer. Type your answer in interval notation. Use integers or fractions for any numbers in the  expression.)

B. -10 -8 -6 -4 -2 0 2 4 6 8 10



1. A. The slope is . − 3  (Simplify your answer.  Type an integer or a  fraction.)

A. The  y-intercept is . (0,7)
 (Simplify your answer.  Type an ordered pair.  Use integers or fractions for any numbers in the  expression.)

2. A. The slope is .  10  (Type an integer or a simplified  fraction.) 

A. The  y-intercept is .(0,0)  (Type an ordered  pair, using integers or  fractions.)

3. y = − 4x + 8

4.
y = x

1
5

5. y = 8x − 39

6.
y = x + 7

3
4

7.
y = − x −

4
5

12
5

8. Parallel

9. C. The lines are neither parallel nor perpendicular.

10. 3x − 7

11. − 5x + 2

12.
− x − 5

1
2

13.
− x +

1
10

27
35

14. 3x + y = 2

15. 3x + 4y = 12



16. A. 4x + 5y = 31

17. − 8x + 31



1.

D. 

-10 10

-10

10

x

y

2.

C. 

-10 10

-10

10

x

y

3.

B. 

-10 10

-10

10

x

y

4. Yes

5. A. There is one solution. The solution of the system is . (2,3)  (Simplify your answer. Type an ordered  pair.)

6. A. There is one solution. The solution of the system is . − ,
1
8

1
2  (Simplify your answer. Type an ordered  pair.)



1. A. There is one solution. The solution of the system is . (2,10)  (Simplify your answer. Type an ordered  pair.)

2. A. There is one solution. The solution of the system is . (8, − 6)  (Simplify your answer. Type an ordered  pair.)

3. A. There is one solution. The solution of the system is . ,
1
2

1
4

 (Simplify your answer. Type an ordered pair. Use integers or fractions for any numbers in the  expression.)

4. A. There is one solution. The solution of the system is .(3, − 2)  (Simplify your answer. Type an ordered  pair.)

5. A. There is one solution. The solution of the system is . (3,3)
 (Simplify your answer. Type an ordered pair. Use integers or fractions for any numbers in the  expression.)

6. B. The solution set of the system is .{ }(x,y)| x = 2y + 3

7. A. There is one solution. The solution of the system is . − ,
5
14

5
2  (Simplify your answer. Type an ordered  pair.)

8. C. There is no solution.

9. B. There are an infinite number of solutions.



1. 10

19

2. − 42

− 33

3. 1.50

2.25

4. A. There is one solution. The solution of the system is . (9,8)  (Simplify your answer. Type an ordered  pair.)

5. A. There is one solution. The solution of the system is .(3, − 7)  (Simplify your answer. Type an ordered  pair.)



1. A. The square root is .11

2. A. − =
1
81 −

1
9

3. A. The square root is a real number. − 100 = − 10

4. A. x8 = x4

5. A. 49x6 = 7x3  (Type an exact  answer, using radicals as  needed.)

6. A.  = ( − 8)2 8  (Type an exact  answer, using radicals as  needed.)

7. A. =100x2 10 x

8. 70
7

9. 149
149

10. 11 x
x

11. 9 7x
14x

12. 7x
x

13. 5 6
2

14. 34xy
2y



15. 15x
25

16. 3z
9z

17. − 3 1 + 3

18. 27 − 2 182



1. 3 42

2. 4 6x3

3. 3
7

3

4. 33 5

5. 6

6. 7
3

36
6



1. , −14 14

2. 2 , − 25 5

3. , −14 14

4. 1, − 5

5. , −11 11

6. 3 i , − 3 i5 5



1. 1,3

2. 2, − 1

3. 5

4.
,

− 1 − 17
2

− 1 + 17
2

5.
,

1 − 91
10

1 + 91
10

6. − 6 + 2 , − 6 − 26 6

7.
5, −

5
3

8. (1) two real solutions.

9. (1) one real solution.

10. (1) two complex but not real solutions.
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