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The punctured torus has the homotopy type of a figure-eight. Its fundamental group
is free on two generators: once these are chosen, say a,b, a free homotopy class of
curves on the surface can be uniquely represented as a reduced cyclic word in the
symbols a,b, A, B (where A stands for ™! and B for b71).
equivalence class of words related by a cyclic permutation of their letters; we will write
w = (riry ... 1,) where the r; are the letters of the word, and (ryro...7,) = (ro...7,71),
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Abstract

On the punctured torus the number of essential self-intersections of a homo-
topy class of closed curves is bounded (sharply) by a quadratic function of its
combinatorial length (the number of letters required for its minimal description
in terms of the two generators of the fundamental group and their inverses).
We show that if a homotopy class has combinatorial length L, then its num-
ber of essential self-intersections is bounded by (L — 2)?/4 if L is even, and
(L—1)(L —3)/4if L is odd. The classes attaining this bound can be explicitly
described in terms of the generators; there are (L — 2)? + 4 of them if L is even,
and 2(L — 1)(L — 3) + 8 if L is odd. Similar descriptions and counts are given
for classes with self-intersection number equal to one less than the bound. Proofs
use both combinatorial calculations and topological operations on representative
curves.

Computer-generated data are tabulated counting, for each non-negative in-
teger, how many length-L classes have that self-intersection number, for each
length L less than or equal to 13. Such experiments led to the results above.
Experimental data are also presented for the pair-of-pants surface.
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A cyclic word w is an



etc. Reduced means that the cyclic word contains no juxtapositions of a with A, or
b with B. Note here that we will call a free homotopy class (a reduced cyclic word)
primitive if is not a proper power of another class (another word); and among the non-
primitive classes are words we will call pure powers: those which are a proper power of
a generator. The length (with respect to the generating set (a,b)) of a free homotopy
class of curves is the number of letters occurring in the corresponding reduced cyclic
word.

This work studies the relation between length and the self-intersection number of
a free homotopy class of curves: the smallest number of self-intersections among all
general-position curves in the class. (General position in this context means as usual
that there are no tangencies or multiple intersections). The self-intersection number is
a property of the free homotopy class and hence of the corresponding reduced cyclic
word w; we denote it by SI(w).

Theorem 1.1. The mazimal self-intersection number for a primitive reduced cyclic
word of length L on the punctured torus is:

(L —2)%/4 if L is even,
{ (L—1)(L—3)/4 if L is odd.

The words realizing the mazimal self-intersection number are (see Figure|1):

(1) L even:

(1) (rt/2st/2) v € {a, A}, s € {b, B}

(ii) (risirl/2=iGL2=3) v € {a, A}, s € {b,B}, S = s}, and similar configura-
tions interchanging r and s.

(2) L odd:

(i) (rEAD25L=0/2) " La A}, s € {b, B}, or vice-versa

(ii) (rigipEAD/2miGE=1/2=3) " (pigip(E=1)/2=g(L41)/2=7) € {q, A}, s € {b,B}, S =

s~ and similar configurations interchanging v and s.

Elementary counting with Theorem yields the next result:

Theorem 1.2. The number of distinct primitive free homotopy classes of length L
realizing the mazximal self-intersection number is

(L—2)*+4 if L is even,
2(L—1)(L—3)+8 if L is odd.

Elementary computation with Theorem [1.2 allows the inequality to be reversed:
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Figure 1: Curves of maximal self-intersection on the punctured torus. I. w = (a'd’)
with (i —1)(j —1) intersection points, a maximum when ¢ = j (even length) or ¢ = j+1
(odd length). II. w = (a'b’a*B'). Block “x” has (k—1)(j — 1) intersection points; block
“y” has i(j—1); block “z” has [(k—1); block “w” has i(l—1); and there are an additional
i. The total is (i + kK —1)(j + 1 — 1), a maximum when ¢ + k = j + [ (even length) or
i+k=j+1+1 (odd length). Graphic conventions from Section 2.1; curve II drawn
using the algorithm of [3]. Similar diagrams appear in [9].

Theorem 1.3. Let w be the reduced cyclic word corresponding to a primitive free
homotopy class of curves on the punctured torus. Then if SI(w) > 1, the length of w is
greater than or equal to the smallest integer larger than 2/SI(w) + 2. Moreover, this
bound is sharp.

Remark 1.4. Pure-power words of length L between 2 and 6 do not fit the pattern
of Theorems [1.1/- [1.3. Namely, SI(rY) = L —1 > (L — 2)?/4 and (L — 1)(L — 3)/4
for integers in that range. But these theorems can be extended to all words of length
seven or more, primitive or not.

Remark 1.5. The length of the word representing a free homotopy class depends on
the choice of generating set (a, b) for the fundamental group, while its self-intersection
number does not. Since the theorems above apply for any generating set, they can be
rephrased in terms of the shortest of such lengths.

Remark 1.6. The group of automorophisms of the fundamental group of the punc-
tured torus acts on the set of cyclic words with a fixed self-intersection number n.
Words with maximal self-intersection number minimize length in an orbit of this ac-
tion. Rivin asked us if every orbit contains a word with maximal self-intersection
number for its length. But w = (ababAB) is not in the orbit of such a word (this can
be proved using [15, Proposition 4.19]).



Theorems 4.9/ and [4.11] treat curves, on the punctured torus, of self-intersection
number one less than the maximum for their length; we do not have similar formulas
for the distribution of other self-intersection numbers among curves of a given length.
Here is some numerical evidence, computed using the algorithm given in [11]; see [7]
for a more detailed presentation; the Java program can be found at [10]. This evidence
was in fact the motivation for the research presented here.

Experimental Theorem 1.7. The number of distinct primitive free homotopy classes
with a given number of self-intersections, corresponding to primitive reduced cyclic
words of a given length appears, for length up to 13, in Table 1. (If one entry of a row
of Tablel1 is O then all the entries to its right are also 0.)

Experimental Theorem 1.8. Let k € {1,2,...,30} and let K be the set of all cyclic
reduced words v corresponding to primitive free homotopy classes of curves on the
punctured torus, with SI(v) > k. If w is a word in K with minimal length then the
following statements hold:

(1) The length of w is equal to the smallest integer larger than or equal to Wk + 2.
(2) Sl{w) = k.

1.1 Related results

For a reduced cyclic word w written in the symbols {a, A, b, B}, let a(w) and [(w)
denote the total number of occurrences of a, A and of b, B, respectively. Andrew Blood
[3] gives a simple construction of a representative curve which has at most (a(w) —
1)(B(w) — 1) intersections; he also finds some of the words whose representative curves
require this number of self-intersections, namely those of the form a®b®. Together these
two discoveries constitute a different proof of the first part of our Theorem 1.1/ (compare
Theorem/1.10). In addition, Frank Chemotti and Andrea Rau [9] give elementary proofs
of parts (2), (3) and (4) of our Proposition [3.6. This unpublished work only came to
our attention during the final editing of this paper.

Birman and Series [2] give an algorithm to decide whether a simple representative
exists for a reduced cyclic word in the generators of the fundamental group of a surface
with boundary. These ideas are extended by Cohen and Lustig [11] (see also [6] and
[23]), who give an algorithm to compute the self-intersection of a reduced cyclic word.
The program to compute Table[1.7/is based on these algorithms.

From the geometric point of view, the punctured torus can be studied as a manifold
with boundary: the complement in S* x S! of an open disc. This manifold admits a
complete hyperbolic metric for which the boundary circle is a geodesic. Since every
free homotopy class contains exactly one geodesic representative, and since a primitive
geodesic cannot have excess intersections [12], the results in this section translate into
results about counting geodesics on that Riemann surface.
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length \ SI | 0| 1 2 3 4 d 6 7 8 9 10
1 4| 0 0 0 0 0 0 0 0 0 0
2 4| 0 0 0 0 0 0 0 0 0 0
3 8| 0 0 0 0 0 0 0 0 0 0
4 10| 8 0 0 0 0 0 0 0 0 0
5 16 | 8| 24 0 0 0 0 0 0 0 0
6 8116 | 32| 40| 20 0 0 0 0 0 0
7 24116 | 32| 48112 | 24 56 0 0 0 0
8 16 (24| 52| 76| 116 | 156 | 136 | 104 90| 40 0
9 24 132 | 641|120 | 144 | 240 | 384 | 208 | 376 | 136 | 304
10 16 | 32| 72168 | 272 | 332 | 492 | 628 | 644 | 700 | 700
11 40 | 48 | 80| 160 | 272 | 584 | 664 | 1200 | 1280 | 1368 | 1608
12 16 | 40 | 104 | 208 | 372 | 660 | 1048 | 1408 | 2044 | 2696 | 3088
13 48 | 48 | 104 | 264 | 456 | 752 | 1216 | 2080 | 2496 | 4464 | 4752
length \ SI 11 12 13 14 15 16 17 18 19 20
9 48| 104 0 0 0 0 0 0 0 0
10 048 | 464 | 360 | 224 | 160 68 0 0 0 0
11 1368 | 2048 | 976 | 1704 | 528 | 1072 | 264 592 80| 168
12 3580 | 3866 | 3792 | 3816 | 3612 | 3272 | 2820 | 2276 | 1808 | 1308
13 7048 | 6976 | 8968 | 8904 | 9328 | 10536 | 7984 | 10392 | 5760 | 8736
length \ SI 21 22 23 24 1 25 26 27 28| 29| 30|31
11 0 0 0 0 0 0 0 0 0 0] 0
12 960 | 680 | 392 | 250|104 0 0 0 0 0] 0
13 3752 | 6616 | 2064 | 4016 | 976 | 2128 | 432 | 976 | 120 | 248 | 0

Table 1: The 7,7 entry in this table is the number of distinct reduced primitive cyclic
words of length ¢ with exactly j self-intersections, up to the maximum possible self-
intersection number for each length. Bold-face numbers and their location correspond

to Theorems and italic numbers to Theorem



(1)

It follows from Cohen and Lustig [11, Main Theorem)] (see also |6, Proposition 2.9
and Remark 3.10]) that for any surface S with non-empty boundary and negative
Euler characteristic, SI(w) < L(L — 1)/2 (using our notation) for w a primitive
word of length L in the generators (and their inverses) of the fundamental group
of S. For the torus with one boundary component, the special case examined
here, our upper bound (Theorem [1.2) is lower.

On the punctured torus choose generators for the fundamental group, and a metric
for which the boundary is a geodesic. That metric, restricted to closed geodesics, is
quasi-isometric to the word-length metric. (This is an elementary argument, based on
the upper bound K for the length of geodesics representing the generators, and on the
lower bound k for the length of a transversal or a corner segment in the fundamental
polygon —see Section 2.1 for this terminology; see also [18, 4]). Hence we can refer to
word-length as combinatorial length. (Note that the union of the four corner segments
is the boundary, so our quasi-isometry evaporates as the length of the boundary goes to
zero, i.e. as our surface approaches the torus minus a point. For a hyperbolic metric on
that surface, the relation between length and self-intersection number can be expected
to be quite different.)

(2)

Lalley [14, Theorem 1] proved that on a compact, hyperbolic, closed surface most
closed geodesics of length approximately ¢ have about C¢* self-intersections for
some positive constant C' depending on the surface. As a consequence of our
Theorem 1.1, in the case of the torus with one geodesic boundary component, for
each hyperbolic metric there exists a positive constant C’ such that the number
of self-intersection points of every geodesic of length £ is less than C"¢2. (This fact
also admits an elementary proof, as Lalley pointed out to us). Lalley also studies
the distribution on the surface of self-intersection points of a typical geodesic;
[14, Theorem 2| may be compared with the patterns in Figure 1!

Basmajian proves in [1, Corollary 1.2| that for any hyperbolic surface there exists
an increasing sequence of constants { My}, k > 1, tending to infinity so that if w
is a closed geodesic with self-intersection number £, then the hyperbolic length
of w is greater than Mj. For the punctured torus and combinatorial length our
Theorem gives explicit values for My, and our bounds are sharp.

In view of the quasi-isometry between combinatorial and hyperbolic length for the
punctured torus (as manifold with boundary) the numbers in Experimental Theo-
rem (1.7 are concordant with numbers or estimates from several other lines of research:

(1) It is known that for any hyperbolic surface the total number of primitive closed
geodesics of length at most L is asymptotic to e/ L (h is the topological entropy
of the geodesic flow; see [5] and references therein; similar results hold for the
variable curvature case, [13|, [16], [20]). On the punctured torus, the number of
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distinct primitive classes of combinatorial length L at most twelve, i.e. the sum of
the numbers in row L of Table 1, appears to be very rapidly asymptotic to 3% /L.

(2) The numbers in the first column of Table 1] giving the number of simple classes
for a given length, can be compared with the results of McShane and Rivin [17]
for the punctured torus and Mirzakhani [19] for a general surface of negative Euler
characteristic (see also |21] for historical brackground). Mirzakhani, McShane and
Rivin prove that the number of simple closed geodesics of hyperbolic length at
most L grows as a quadratic polynomial in L (contrast with Theorem [1.2] where
the number of maximal curves of length ezactly L grows quadratically with L). For
the range of Table [1, we have data consistent with these: the number of simple
curves of length exactly 2n + 1, n > 1, appears to grow more or less linearly with
n; for 2n 4+ 1 a prime, it is exactly 8n.

(3) For L even, the numbers in the second column of Table [1 grow as 4(L — 2).
This is consistent with Rivin’s [22] determination that the number of single-self-
intersection geodesics of length at most L grows quadratically with L.

(4) For a closed surface S, Basmajian proves in [1, Proposition 1.3] that there are
constants Ny (depending on the genus of S) such that the shortest geodesic on S
with at least k intersection points has length bounded above by Nj. Experimental
Theorem 1.8 gives N}, an explicit value for curves of combinatorial length less than
13 on the punctured torus.

(5) Buser proves [5] that the shortest non-simple closed geodesic on a hyperbolic surface
has only one self-intersection; in our notation the shortest v with SI(y) > 1 has
SI(y) = 1. Basmajian [1, Corollary 1.4] shows that there exists an a priori constant,
say K}, depending on the genus of the surface, such that the shortest v with
SI(y) > k has SI(y) < Kj. Our Table [1 shows that for £ < 30, on the punctured
torus and with respect to combinatorial length, K; = k.

1.2 Sketch of proof

The method of proof in this paper keeps track of three integer parameters of a reduced
cyclic word w in the alphabet a,b, A, B: along with a(w) and [(w) (see Section [1.1)
there is h(w), the total number of block-pairs in w; these are defined as follows:

Definition 1.9. A reduced cyclic word w is either a pure power or there exist pairs of
positive integers ji, ki, ... jn, kn, n > 1, such that w = (r/'s¥rJ2sk2  pingkn) where
r € {a,A} and s € {b, B}. Each of the rfsf’ occurring in this expression is a block-pair;
the number of block-pairs of w is defined to be n in the second case, and zero in the

first.

The main theorem in this paper is Theorem [1.10} it will be proved in Section 4.



Theorem 1.10. For the punctured torus, let w be the reduced cyclic word corresponding
to a free homotopy class of curves with a positive number h of block-pairs. If h = 1
then Sl(w) = (a(w) — 1)(B(w) — 1). If h > 2,

SI(w) < (a(w) — 1)(B(w) — 1) — h + 2.

The words w realizing the maximal self-intersection for non-pure-power words with
given « and [ (that is, SI(w) = (a(w) — 1)(B(w) — 1)) have one of the following forms,

(1) (r's’), r € {a, A}, s € {b, B}; here a(w) =i > 0, B3(w) =5 > 0.

(2) (risirkSY, alli,j, k,l > 0, wherer € {a, A} (and theni+k = a(w)) and s € {b, B}
(and then j +1 = B(w)), or vice-versa.

This theorem has two immediate corollaries:

Corollary 1.11. Let w be the reduced cyclic word corresponding to a primitive free
homotopy class of curves on the punctured torus. Then

Sl(w) < ((w) = D (B(w) —1).
Corollary 1.12. Among primitive words those of maximal self-intersection number for

their o and 3 values, i.e. with SI(w) = (a(w) —1)(B(w) — 1), have one of the following
forms:

(1) (r), r € {a,b, A, B},
(2) (r's?), r € {a, A}, s € {b, B}; here a(w) =i >0, f(w) =7 > 0.

(3) (risir*SY, alli, j, k,1 >0, wherer € {a, A} (and theni+k = a(w)) and s € {b, B}
(and then j + 1 = (F(w)), or vice-versa.

Remark 1.13. Since a(w) + B(w) = L, the length of w, an elementary calculation
leads from Corollary and Corollary [1.12 to Theorem 1.1.

The next three sections carry the proof of Theorem [1.10. The strategy is to show
that only words of the types listed in the statement of the theorem, i.e. (rs’) and
(risirkSY, r € {a, A}, s € {b, B}, or vice-versa, can have maximum self-intersection
number for their length; this will be done by exhibiting, for any word which is not of
these types, another word of the same length and with strictly larger self-intersection
number. For most words w, “cross-corner surgery” (defined below) will produce a w’
with the same a and [ values (and so of the same length), with SI(w’) > SI(w) and
with h(w') < h(w) For certain words with two, three or four blocks, not candidates for
surgery, the self-intersection number will be computed explicitly by counting “linked
pairs” of subwords (definition below) and determining that it is indeed smaller than
the self-intersection number of a word of the same length but of one of the two listed
types (whose self-intersection numbers are also computed by counting linked pairs).

This work benefited from discussions with Ara Basmajian, Joel Hass, Stephen Lal-
ley, Hugo Parlier, Igor Rivin and Dennis Sullivan.
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2 Cross-corner surgery

2.1 Preliminaries

b*

:‘ﬁ\& m
WL e

Figure 2: The punctured torus as a polygon with identifications. I, II. The generators
a,b and their inverses A, B can be identified by their intersections with the dual cycles
ax, bx, which appear among the edges of the fundamental polygon. III. When an ori-
ented curve has been lifted to the fundamental polygon, the cyclic word corresponding
to its free homotopy class can can be obained by choosing a starting point and record-
ing in sequence the edges it crosses, reading their names from inside the polygon. The
lifted curve (baBBAba) with self-intersection number 3, is shown as an example.

Here, let M represent the punctured torus as a topological space. The choice of
generators (a, b) for m; M naturally implies a fundamental polygon from which M may
be reconstructed by edge-identification. Namely, we can choose, as representative cycles
for the homological duals a*,b* € H,(M/OM), two disjoint, connected arcs beginning
and ending in M slicing M along these arcs gives a simply-connected polygon which
can serve as fundamental domain (for the action of w1 (M) on the universal cover); for
our purposes we will label a the edge keeping the orientation of a*, and A its opposite

Ne}



edge with the opposite orientation (see Figure(2); similarly for b and B. Lifting a curve
in M to this fundamental polygon means representing the curve as a set of arcs-with-
identifications; each of these curve segments leads from one of the edges a,b, A, B to
another; the orientation of the curve defines a cyclic word in the four symbols: one
records the positive intersections as they occur. By construction, this word represents
the free homotopy class of the curve under consideration.

A curve segment is a transversal if it joins opposite edges of the fundamental domain,
and a corner otherwise. Transversals correspond to consecutive aa, AA,bb, BB in the
word; other combinations give corners. Two corners are opposite if they are diagonally
opposed. Thus ab, ba and ab, AB correspond to diagonally opposed corners; ab and ba
have the same orientation whereas ab and AB have reversed orientations. In Figure |2
the curve (baBBAba) has two ba corner segments diagonally opposed to an ab (same
orientation) and a BA (reversed orientation); one aB corner diagonally opposed to
opposed to an ab (same orientation) and a BA (reversed orientation); one aB corner
diagonally opposed to an Ab corner (reversed orientations) and one BB transversal.

A curve with only transversal self-intersections, and with the smallest number of
self-intersections for its homotopy class (multiple points count with multiplicity: a
multiple intersection of n small arcs counts as (g) intersections) is said to be tight
(compare [24]: “taut”).

Two-component multi-words [w,w'] enter into the surgery process. We define
the intersection number IN(w,w’) of two reduced cyclic words w,w’ to be the min-
imum number of intersections between a general-position curve representing w and
one representing w’. The self-intersection number of the multi-word [w,w’] is then
SI([w, w']) = SI(w) 4+ SI(w') + IN(w, w’), and a pair of curves with that smallest num-
ber of self-intersections is also said to be tight. We also extend the o and [ notation
to multiwords: «a(]w’, w”]) is the total number of occurrences of a or A in w and w';
B([w',w”"]) the total number of occurrences of b or B.

2.2 The surgery

Whenever a cyclic word w contains a pair of opposite corners, it may be cut in two
places, once in the middle of each of the corners, to give two linear words. These
two linear words may be reassembled (the corners themselves are reassembled into
transversals) into either a new word w’ or a new multi-word [w’, w”] (according to the
relative orientation of the corners); if a multi-word [v/,v”] contains a pair of opposite
corners, one in each component, the two corners may be cut and reassembled into two
transversals yielding a new single word v.

For a picture of the surgery on a curve, see Figure |3; in terms of the words, the
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cutting and reassembly take one of the following forms:

(xr|sys|rz) — [(xr|rz), (sys|)]
(xr|syR|Sz) — (Xr|rYS|Sz)
[(xr|sy), (zs|rw)] — (xr|rwzs|sy)
{{xr|sy), (zR|Sw)} — (xr|rZXs|sy)

—~ —~ —~
=W DN
—_ O T —

where x,y,z, w are arbitrary (linear) subwords, and R =r~1, S = s7} X = x71, etc.

Definition 2.1. This cutting and reassembly are called cross-corner surgery on the
word w or the multi-word [v/,v"].

It seems natural that transversals should contribute, more than corners, to the self-
intersection number of a curve. Proposition|2.2/makes this quantitative by showing that
cross-corner surgery, which eliminates two corners and adds two transversals, always
increases the self-intersection number by at least one.

Proposition 2.2. (1) If a word w contains a pair of opposite corners with reversed
orientation then cross-corner surgery will produce a new word w', with a(w’) =
a(w), Bw') = B(w), with one less block-pair, and with SI(w') > SI(w) + 1.

(2) If a word w contains a pair of opposite corners with the same orientation then
cross-corner surgery will produce a multi-word [w',w"], with o([w',w"]) = a(w),
B([w', w"]) = B(w), with one less block-pair, and with SI([w',w"]) > SI(w) + 1.

(3) If a multi-word [v',v"] contains a pair of opposite corners, one in each component,
wrrespective of orientation, then cross-corner surgery will produce a single word
v with a(v) = ao([v',v"]), Bv) = B([v',v"]), with one less block-pair, and with
SI(v) > SI([v',v"]) + 1.

This proposition is stated in terms of words, but its proof, given in the next subsec-
tion, works by examining curves representing the words before and after surgery; we
first must fix a topological procedure for carrying out cross-corner surgery on a curve.
Specifically, given a tight curve, or a tight pair of curves, representing the candidates w
or [v/,v"] for cross-corner surgery, we need to establish a systematic way of generating
curves representing the result w’, [w’, w”] or v of the surgery. We do this as follows:

Definition 2.3. Cross-corner surgery on curves. Suppose r|s and s|r or R|S are
the loci (that is, two diagonally opposite corners) in the word w (or the multi-word
[v/,v"]) chosen for surgery, and let K and L be the corresponding corners in a tight
representative (see Figure (3).

e Preparation for the surgery. If the extension of any corner segment of the same

type as K (i.e. corresponding to the same letter sequence rs or to the inverse
sequence SR) intersects the extension of K in either direction before diverging,
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the curve is prepared for surgery by a homotopy sliding that (necessarily single)
intersection onto the segment K itself. This deformation may be carried out by
a sequence of Reidemeister-type-I1I moves without changing the total number of
intersections (see Figure[3, I and II). A similar operation is carried out on the
corner L.

e Cutting and Sewing. Corresponding to the word permutation, corners K and
L are removed and replaced by transversals U and V. More precisely, a line is
drawn from a point on K to a point on L, in general position with respect to
the rest of the curve, and cutting any segment no more than once; that line is
expanded into an X'-junction: U routes the right edge of K to the left edge of L,
and vice-versa for V.

a a

1.

A A

Figure 3: The cross-corner surgery (baBB|Abla) — (baBB|Bala) as carried out on
a tight representative curve. I. The corner K corresponds to bla; L corresponds to
B|A. Note that the extension of K intersects that of one of its parallel corners (circled
intersection). II. Before surgery, that intersection is “pushed,” using a Rademeister-
type-III move, into the center of the surgery. III. K and L are excised, U and V
sewn in. The circled intersection migrates to an intersection with V. The intersection

of V' with the original BB spans a bigon with one of the original vertices (squared
intersections). SI((baBBBaa)) = 6.

2.3 Proof of Proposition (2.2

We will obtain a lower bound on the increase in self-intersection number by counting
the vertices added and those possibly annihilated by the surgery. Annihilation occurs
through the creation of a bigon: an immersed planar polygon with two vertices, and two
edges with disjoint preimages (a “singular 2-gon” in [12]); the bigon defines a homotopy
of the curve leading to the disappearance of its two vertices. An intersection will be

12



called stable if it is not the vertex of a bigon; a curve is tight if all its self-intersections
are stable [12].

Lemma 2.4. Cross-corner surgery does not create any bigons spanned by a pair of
pre-surgery vertices.

Figure 4: Cross-corner surgery cannot produce a bigon linking two pre-surgery vertices.

Proof. Since the initial curve is tight, the only way a pair x, y of curve-portions starting
from a pre-surgery (“old”) vertex P can lead to a bigon with another old vertex is if
one of those curve-portions (say, ) contains one of the new segments U or V', say U.
Suppose the other one, i.e. y, enters inside the corner (L in Figure/4). Then (Figure /4]
I) as y follows x across the frame y must intersect L in an old vertex P’ cancelling P,
contradicting tightness of the original curve. So y must enter outside L; then running
parallel to U across the frame it must intersect the opposite corner K in an old vertex @)
(Figure 4] IT). Now if  and y meet in an old vertex @’ so as to form a bigon cancelling
P, then Q" and @ will span an old-vertex bigon. By tightness, this will require another
use of the new segments. Since each of U and V' can only be used once by each of  and
y, after at most four passes through the frame all the possibilities will be exhausted;
no such bigon can exist.

Proof of Proposition 2.2 The curve surgery described in Definition 2.3 yields one
word if it is applied to a word that contains a pair of opposite corners with reversed
orientation, a multi-word if it is applied to a word that contains a pair of opposite
corners with the same orientation and a single word if it is applied to a multi-word that
contains a pair of opposite corners, one in each component, irrespective of orientation.
Thus, to prove (1), (2) and (3) it is enough to prove that in a cross-corner surgery,
the number of new vertices minus the number of vertices cancelled by new bigons is
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greater than or equal to one. We start by classifying the new vertices introduced by
the surgery and the possible bigons in which they may participate.

Vertices:

Figure 5: The new vertices created by a cross-corner surgery.

The surgery creates three types of new vertices, shown as black, grey and white in

Figure 5, as follows.

(1)

(2)

(black) Stable intersections between U and horizontal transversals (i.e segments
corresponding to bb or BB in the initial word w), between V and vertical transver-
sals, and (bullseye) the stable intersection between U and V.

(grey) Intersections between U and other vertical transversals, and between V' and
other horizontal transversals. These are potentially vertices of bigons.

(white) Intersections between U, V' and remaining corner segments. In Figure 5
only those of type ab or BA are shown; there is typically another family in the
opposite corner corresponding to types ba or AB. These are also potentially vertices
of bigons.

In addition, the circled vertices in Figure |5 are those inherited by the new curve
from the old. These correspond to the intersections between K or L with other
corners of the same type; such a corner is labeled J in Figure 6. Focussing on
K, let us label x and y the two ends of the segment K, and by w the intersection
point of the new segments U and V. The segment K and the broken curve uwv are
fixed-endpoint homotopic; it follows that for any original segment having exactly
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one endpoint between u and v (e.g. J) the intersection with K will migrate to an
intersection with U or V' during that homotopy (with V' if the outside end of J is
on the B side —as in Figure |6/ and with U if it is on the a side).

Figure 6: Vertices inherited by new curve from old; P is an example of a type-3 vertex.

Bigons:

The only bigons that need to be examined are those where one of the spanning
vertices is an old vertex or a type-4 vertex; because if two new vertices form a bigon
and cancel, that does not affect the inequality we need to prove. So, letting 1, 2, 3,
and 4 represent vertices so labeled above, letting x, ' represent self-intersections of
the original curve, and keeping in mind that type-1 vertices are stable, and that bigons
of type (x,z') cannot occur (Lemma[2.4), we need only examine bigons of type (2, x),
(2,4), (3,2), (3,4), (4,z), and (4,4).

(i) (4,z) and (4,4). A vertex of type 4 can span a bigon in only one of its quadrants;
but in that quadrant a bigon would imply a bigon with the old vertex from which
the type-4 vertex was inherited; so a (4,z) would imply an (2/,z), and a (4,4)
would imply a (4, z); so neither (4,4) nor (4,x) can occur.

(ii) (2,z) and (2,4). A type-2 vertex y may span a bigon with an old vertex x; the
type-2 vertex is either the intersection of U with another vertical transversal, or V'
with another horizontal. In the first case (the second case is similar), that vertical
transversal must also intersect V| creating a new (type-1) stable intersection z.
In total we will have added two vertices (y and z), and lost two vertices (y and
x) to a bigon. The inequality is not affected.
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Since, arguing as in (i), a (2,4) bigon would imply a (2, z) bigon, the loss of the 4
would be balanced by the gain of the corresponding new type-1 vertex, and again
the inequality would not be affected.

(iii) (3,2) and (3,4). Figure [6lshows a typical type-3 vertex P. It can only span a
bigon in one quadrant; label x and y the two segments issuing from P in that
direction. Because of the way the curve is prepared for surgery, x and y cannot
be continued with old segments to form a bigon cancelling P. We need to discuss
the possibility that after surgery their extensions could incorporate U or V or
both and then form such a bigon. This P, x and y exactly match the notation of
Lemma 2.4} and the proof of that lemma applies here as well: no such bigon can
exist. Since a (3,4) bigon would imply a (3,z) bigon, no type-(3,4) bigons can
exist either.

In summary, cross-corner surgery generates one special stable vertex (the intersec-
tion of U and V') plus other new vertices of types 1, 2, 3, and displaced vertices of
type 4. Vertices of type 1 are stable. Some of the vertices of type 2 and 3 form bigons
with each other and cancel out. Vertices of type 3 and 4 cannot form bigons with
pre-surgery vertices, and any old or type-4 vertex cancelled by a type-2 vertex can be
replaced in the count by the corresponding type-1 vertex. It follows that cross-corner
surgery increases the self intersection number by at least one.

3 Linked pairs

Ultimately the calculation of SI(w) or IN([w’,w”]) can be made directly from w or
[w',w"], by counting linked pairs. In this section we give a simplified definition appro-
priate for the punctured torus, we list two theorems from [6] giving the correspondence
between linked pairs and intersection points, and we summarize explicit calculations
of intersection and self-intersection numbers for certain families of words with a small
number of block-pairs.

In earlier work [11], Cohen and Lustig defined the similar concept of linking pairs,
and proved that the intersection and self-intersection numbers of primitive words can
be calculated by counting linking pairs. Parts A and B of their Main Theorem are
equivalent, respectively, to parts 1 and 3 of Theorem The linked pairs of Chas [6],
defined below, are somewhat better adapted to our purposes and will be used here. In
particular, we need to be able to extend the calculation to certain non-primitive words.

Notation 3.1. From now on, we will use the symbols p, ¢, 7, s,p1, q1, etc. to represent
letters from the alphabet a,b, A, B, with P = p~!, etc. The symbols v, w,v’,w’, etc
will represent cyclic words in that alphabet, e.g. w = (abbaB) = (aBabb). Sans-serif
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symbols u, v,y will represent linear words in the alphabet {a, b, A, B} with r,s,R,S rep-
resenting homogeneous blocks of letters rr...r ss...s, RR... R, SS ... S respectively.
As before, V=v !} R=r"! etc.

Orientation: For these purposes we identify the boundary of our fundamental domain
with a clock face, with a, b, A, B at 3, 6, 9 and 12 o’clock. Given six letters p,q,r,p', ¢, 1’
from the alphabet a,b, A, B, we say that the triples p,q,r and p/,¢',r" are similarly
oriented if the arcs pgr and p'¢'r’ have the same orientation on the clock face. This
implies that the three points in each triple are distinct.

Definition 3.2. Let u’ and u” be two linear words, both of the same length > 2. The
pair of words {u’,u”} is a linked pair if one of the following criteria is satisfied (see
Figure [7).

I. {u’;u"} is one of the following pairs: {aa,bb},{aa, BB}, {AA,bb},{AA, BB}.

II. (i) (length 3) u" = p,rpy, U = q7rgy (same r) with PiQr and pogo R similarly
oriented, or

(ii) (length n) u" = pryps, U = q1yqe, y = ;v (v possibly empty) with PyQqxq
and poqo Xs similarly oriented.

1. (i) (length 3) u’ = py7rps, u” = @ Rg (R = r~1) with Pigor and pyQ, R similarly
oriented, or

(ii) (length n) u’ = pryps, U” = 1Y q2, y = mvan (v possibly empty) with Pjgex;
and ps()1 X5 similarly oriented.

Let w (resp. [w’,w"]) be a reduced cyclic word (resp. a multi-word with reduced cyclic
components), corresponding to a free homotopy class (resp. a pair of free homotopy
classes) of curves on the punctured torus. We will say {u’,u”} is a linked pair of w
(resp. of [w',w"]) if v C w and u” C w (resp. v’ C w', and v” C w").

Remark 3.3. {u,u’} is a linked pair of type (II) if and only if {u, U’} is a linked pair
of type (III).

Tables 2, 3/ and |4/ summarize for future reference the pairing between various sub-
words of a cyclic word w. In these tables an “=" means that the row word and the
column word have the same first or last letter (so they cannot form a linked pair); “N”
means that there is no end matching but that the pair fails the orientation criterion;
“Y” means that the row word and the column word form a linked pair.

The following theorem will be used to compute the self-intersection numbers of
certain words and multi-words (see Proposition [3.6/and Appendix|A). This theorem is
a direct consequence of [6, Theorems 3.9 and 3.10 and Remarks 3.10 and 3.11] and |6,
Theorem 3.12 and Remark 3.13].

17



Words | a'T'b  ba'™t o'B  Bat' ba'b o t? Ba'B
a't1b = N = Y = = Y
ba't! N = Y = = = Y
a1 B = Y = N Y = =
Bait! Y = N = Y = =
ba'b = = Y Y = Y Y
ai+? - - - Y - Y
BaB | Y Y - - Y Y -

Table 2: Linking of pairs of words with Y = a* (notation from Definition 3.2, =, Y, N
explained in the text).

Words | aa't’b  ba'ba ba't’b aa'la
aa't’b = N — —
ba't/ a N = — =
ba'b’b = = — Y
aa'ba = = Y =

Table 3: Linking of pairs of words with Y = a’}’ (notation as in Definition [3.2).

Words | aa’t/a*b  ba't’a*a ba'ba*b  aad'ba*a
aa't/a*b — N — =
ba't’ a*a N = = =
ba'ti akb = = = Y
aa't/ aka = = Y =

Table 4: Linking of pairs of words with Y = a’b’a* (notation as in Definition [3.2).
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Figure 7: Linked pairs. Here y = zyvas. a) The linked pair is (p1yp2, qiygz). Since
the orientations of (P, Q1,x1) and (pe, g2, X2) are the same, the curve segments must
intersect.  b) The linked pair is (p1yps, ¢2Yq1). Since the orientations of (P, ga, x1)
and (pe2, Q1, X3) are the same, the curve segments must intersect.

Theorem 3.4. Let v and w be a cyclic reduced words in the alphabet {a,b, A, B}.
Suppose that w = (u¥) is the kth power (k > 0) of the primitive reduced cyclic word u.

(1) If k =1, so w is primitive, SI(w) is equal to the number of linked pairs of w, i.e.
the cardinality of the set of unordered pairs {u,u’}, u and v’ linear subwords of w,

with u and u’ linked as in Definition 3.2.

(2) In general, SI(w) is less than or equal to (k — 1) plus the number of linked pairs of
w.

(3) IN({v,w}) equals the number of ordered pairs (u,u’) for which there exist positive
integers j and k such that u is an occurrence of a subword of v7, but not a subword
of v/=1, U is an occurrence of a subword of w*, but not a subword of w*!, and u,

u’ are linked as in Definition[3.2. (See Remark 3.5.)

In this work, only the following simple instances of Theorem[3.4(3) will be necessary.

Remark 3.5. (1) IN({(a't?), (a*B')) equals the number of ordered pairs (u,u’) such
that u is an occurrence of a subword of {a’d’), u’ is an occurrence of a subword of
{(a*B'Y and u, u’ are linked as in Definition 3.2.

(2) IN({a’t’a*b'), (a™B™)) equals the number of ordered pairs (u,u’) such that u is an
occurrence of a subword of {(a’b’a*b!), u’ is an occurrence of a subword of (a™B™)
and u, u" are linked as in Definition 3.2
This is because if [v,w] = [{a'b), (a*BY)] or (v,w) = [{a’b/a*b'), (a™B")], J and K

are non-negative integers, u is a linear word which is an occurrence of a subword of v’/

and w® then u is an occurence of a subword of v and w.
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In principle the self-intersection number corresponding to any particular word can
be ascertained combinatorially by a count of linked pairs. The number of steps in
this calculation increases rapidly with the length of the word, but it can be carried
out completely for words with a small number of block pairs. The results of these

calculations are given in Proposition with the work itself presented in Appendix
A,

Proposition 3.6. (1) SI({(a’t?)) = (i — 1)(j — 1).

(2)
sttabe ) { = (LRI T ok —t-1 s
(5)
(3) SI({(a’¥a*B")) = (i +k—1)(j +1—1).
(4) SI(a'PA*BYY = (i + k- 1)(j+1—1) — 1.
(5) SI({a’¥aFbla™B™)) = (i + k+m —1)(j +1+n —1) — 2(k + min(j, 1) — 1).
(6) IN((a'D), (a*BY)) = il + kj.
(7) IN((a'bP kb, (a™B™)) = (i + k)n +m(j +1).

Corollary 3.7.

=1 ifit=Fk andj=1
andi=1o0orj=1
(it+k—1)G+1l-1)—4 ifk=i>2andl=j>2,

SI({a't?a*b')) <
<litk—1)(G+1-1)—2 ifidtkorj#L

Proof. 1t follows from Proposition (3.6 (2) that if = k and j = [ and either pair is 1,
then the SI < 1; and if both are > 2 then

(t+k=2)J+1-2)+1=(+k-1)(y+I-1)—(G+k—-1)—(G+1—-1)+2
<@+k-10G+1-1)—4

If i # k or j # | then Proposition 3.6/ (2) gives

SI(a' Vb)) = (i+k=2)(j+1—2)+|i—k|+]j -1 -1
=G+k-1)0G+I-1D)—(G+k)+1-G+D+1+1+i—FK+]|j-1-1
= (i4+k—1)(j+1—1)—2min(i, k) — 2min(j, 1) + 2
<@+k-1D0@+1-1)-2.
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The next remark is useful in the proof of Proposition A.6.

Remark 3.8. In the punctured torus, it follows from Definition (3.2 that if P = rsusR,
where r and s are distinct letters and u is an arbitrary linear word, then {P,Q} is not
a linked pair for any Q.

4 Proof of Theorem 1.10

4.1 Detailed Strategy of Proof

This subsection amplifies the sketch presented in Subsection continuing with the
notation from Definition [1.9/and Section 2.

Given an arbitrary reduced cyclic word, we prove that its self-intersection number
must be less than or equal to that of a word of the same length with few enough
block-pairs to be amenable to a linked-pair self-intersection-number calculation.

This “amalgamate and conquer” strategy is implemented by cross-corner surgery,
which reduces the number of block-pairs in w while conserving a(w) and f(w) and
increasing SI(w).

The detailed procedure at each step in the reduction depends on the number of
different letters occurring in the word Figure[8). As we will see,

e a word that uses all four letters is always a candidate for cross-corner surgery
using opposite corners with reversed orientation; the result will be a single word
with one less block-pair (since this surgery reverses the orientation of part of the
word, the number of different letters may change);

e if a word uses exactly three of the four letters and has at least five block-pairs, or
if it uses only two of the four letters and has at least three block-pairs, then two
cross-corner surgeries will reduce the number of block pairs by two (the inter-
mediate stage is a two-component multi-word) and increase the self-intersection
number by at least two; these surgeries permute the letters in the word, and so
the new word still uses three letters or two letters if the old one did.

So the words remaining are:

e words with three letters and

(a) 4 block-pairs ((rsrsrsrS), (rsrsrSrS) and (rsrSrsrS)),
(b) 3 block-pairs ({rsrsrS)), or
(c) 2 block-pairs ({rsrS));
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e words with two letters and

(d) 2 block-pairs ({rsrs)) or
(e) 1 block-pair ({rs)).

e pure powers.

|  h block-pairs

| h-1 block-pairs

| h-2 block-pairs

[ 5 block-pairs

| 4 block-pairs

[ 3 block-pairs

| 2 block-pairs
| 1 block-pair [ ] |

Figure 8: Flow chart of proof. The arrows correspond to possible cross-corner surg-
eries. Straight-line-arrows: Lemma [4.1; dashed arrows: Lemma dotted arrows:
Lemma 4.4. Terminal cases: (a) = Lemma (b) = Proposition (5); (c) =
Proposition [3.6] (3); (d) = Corollary [3.7; (e) = Proposition 3.6/ (1). Note that the
self-intersection number of a pure power (word with 1 letter) can be calculated directly

(SI(r*) = k — 1) and then compared with the maximum for general words of the same
length; see Remark

4.2 Preparatory Lemmas

In these lemmas and their proofs, Notation 3.1 will be used.

Lemma 4.1. If a reduced cyclic word w contains all four letters a, A,b, B then there

exists a word w' with the same o and 3 wvalues, with one less block-pair, and with
SI(w") > SI(w) + 1.
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Proof. Claim: such a word must contain two corners with reverse orientation. In fact,
let w be a reduced cyclic word which contains all four letters (such a word must have
at least two block-pairs) and which does not contain two subwords of the form xy and
XY, where z € {a, A} and y € {b, B} or vice-versa. Now w must contain at least one
of ab and aB; suppose w contains ab. Then w does not contain AB. So every B-block
must be preceded by an a. Since there is at least one such block, w must contain
aB, which implies that w does not contain Ab. Since w does not contain AB or Ab,
there is no letter possible after an A-block. Since there is at least one such block, our
hypothesis leads to a contradiction.

The lemma now follows from Proposition 2.2}(1). u

Lemma 4.2. Suppose a cyclic word w uses exactly three distinct letters from the set
{a, A,b, B} and has five or more block-pairs. Then there ezists a word w', with two
fewer block-pairs, with the same « and (3 values, and such that ST(w') > SI(w) + 2.

Proof. Suppose the three letters are a, b and B. The block-pairs are either ab’s or aB’s.
We may suppose there are at least three ab’s. Hence w has the form (ab au ab av ab ay),
where u, v,y represent (possibly empty) blocks of letters.

We pick two consecutive ab block-pairs and apply Proposition 2.2 (Cross Corner
Surgery) as follows: (a|b au ablav ab ay) — [(b au abl), (a|av ab ay)] = [(baua), (avabay)]
= [v/,0"].

We have lost one ab corner and one ba corner, so the number of block-pairs has

gone down by one. On the other hand, Proposition 2.2/ guarantees that SI([v/,v"]) >
SI(w) + 1.

Our consecutive corner condition guarantees that both v and v” contain both ab
and ba, so the multi-word [v/,v"] is a candidate for a second surgery, for example:
[(|baua), (avablay)] — (|baualayavab) = (bauayava) = w'.

We have lost another pair of corners, so the number of block-pairs has gone down by
one more; Proposition 2.2 guarantees that SI(w’) > SI([v/,v"]) + 1, and thus SI(w’) >
SI(w) + 2. The a and [ values are clearly the same. n

Lemma 4.3. If w has one of the forms (abababaB), (abaBabaB), (ababaBaB) then
there exists a word w' with two block-pairs, the same « and 3 as w and such that
SI(w') > SI(w) + 2.

Proof. 1. (abababaB). We apply cross corner surgery (Proposition[2.2) as follows:
(ablabalbaB) — [(ab|baB), (Jaba] = [(abaB), (ba] = [¢/,v”]. The multiword [v', v"]
has the same « and [ values as w. Furthermore, SI([v/,v"]) > SI(w)+1. Another
application of Proposition[2.2; [(a|baB), (b|a)] — (alab|baB) = (abaB) = w’ yields
a word w’ with two block-pairs, the same a and 3 values as w, and SI(w') >
SI(w) + 2.
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2. (abaBabaB). Cross-corner surgery (abaB|aba|B) — [(abaB|B), (aba|)] = [(abaB), (ba)]
leads to the same half-way step as the previous case.

3. (ababaBaB). Apply Proposition [2.2:
(ababa|BaB|) — [(ababal), (BaB|)] = [(abab), (aB)] = [(a't’a"V"), (a™B™)],
say, (so a(w) =i+ k+m, f(w)=7+1+n), and
SI(w) < SI([{a’b/a*b'), (a™B™)]) — 1.
Now
SI([{a’t/a™V"), (a™B™)]) = SI({a't/a"b")) + SI({a™B™)) + IN((a't’a*b"), (a™B™)).
Because of the format of Corollary 3.7 we need to consider two cases:

(i) i = k and j =1 = 1 (by the construction, i and k cannot be 1). In that
case SI({a't’a*b')) = 1. By Proposition [3.6 (7), IN((a’b’a*¥!), (a™B")) =
(i+k)n+m(j+1), and by Proposition[3.6/(1) SI((a™B")) = (m—1)(n—1).
This gives

SI([(a'ba'by, (a™B™)]) = 1+2in+2m+(m—1)(n—1) = (2i—1)n+m(n+1)+2

and SI(w) < (2¢ — 1)n + m(n 4+ 1) + 1. On the other hand the word
w' = (a®b?*a™B") has the same « and 3-values as w and (Proposition 3.6
3)) SI(w') = (2i+m—1)(n+1)=(2i — 1)n+m(n+ 1) + (2i — 1). Since
as remarked above i > 2, it follows that SI(w’) > SI(w) + 2.

(ii) For all other (a‘b/a*d'), Corollary 3.7 gives SI({a't/a*b")) < (i +k — 1)(j +
[—1)—2, and

SI([{a'ba’b), (a™B™)]) < (i+k—1)(j+I—1)—=2+(i+k)n+m(j+1)+(m—1)(n—1)

=(i+k+m—-1)G+l4+n—-1)—1,

so SI(w) < (i+k+m—1)(j +1+n—1) —2. Comparing this estimate with
SI({atkp/HamB™)) = (i + k +m — 1)(j + [ +n — 1) (Proposition 3.6] (3)
again) completes the proof.

Lemma 4.4. If w uses exactly two letters and w has three or more block-pairs, then

there exists a word w' with two fewer block-pairs, with the same « and [ values, and
such that SI(w’) > SI(w) + 2.

Proof. Suppose the two letters are a and b, so w = (ababab...). Now proceed as in
the proof of Lemma 4.2 [ ]
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4.3 End of the proof

Proposition 4.5. Let w be the reduced cyclic word corresponding to a free homo-
topy class of curves on the punctured torus, with h(w) = h > 0. Then there exists a
word w' such that w' has one or two blocks, a(w') = a(w) and (W) = B(w), and

SI(w") > Sw)+h —2.

Proof. If h =1 or 2, then taking w’ = w satisfies the conclusions of the Proposition.

For h > 2, we proceed by complete induction, and assume that the result holds for
any word with a number of block-pairs smaller than h. Since h is positive, w contains
2, 3 or 4 distinct letters. We consider the cases separately.

(2 letters) Suppose that w contains exactly two distinct letters. If w has more than
two block-pairs, then by Lemma 4.4 there exists a word v with h — 2 block-pairs,
with the same « and /3 values, and such that SI(v) > SI(w)+2. By the induction
hypothesis, there exists w’ with one or two blocks, the same o and 3 as v and such
that SI(w’) > SI(v) + (h—2) —2 > SI(w)+ h — 2, as desired.

(3 letters) Suppose that w contains exactly three distinct letters. If h > 4, the result
follows from combining Lemma [4.2 and the induction hypothesis. If A = 4 then
w must have one of the following forms: (abababaB), (abaBabaB) or (ababaBaB).
Lemma covers these three cases. In the case h = 3, the word can be supposed
to be w = (a't’a*bla™Bm™). Taking w' = (a"™*¥*a™B"), and applying Proposi-
tion [3.6(3) and (5), yields the desired result.

(4 letters) Suppose that w contains all four letters a,b, A, B. By Lemma 4.1, there
exists a word v with h — 1 block-pairs, with a(v) = a(w), B(v) = S(w) and such
that SI(v) > SI(w)+ 1. Now the result follows from our induction hypothesis.
More explicitly, there exists a word w’, with same « and ( as v, with one or two
block-pairs and such that SI(w") > SI(v)+(h—1)—2 > S(w)+h—2.

Proof of Theorem[1.10. 1f h = 1 or 2 the result follows from Proposition (3.6 (1-4).
So suppose that h > 2, By Proposition there exists a word w’ with a(w’) = a(w)
and B(w') = B(w), SI(w) < SI(w') — h + 2 < SI(w’), and such that w’ has one
or two blocks. Referring to Proposition [3.6(1-4), any such word satisfies SI(w') <
(a(w") — 1)(B(w") — 1). This proves part (1).

Part (2) of the theorem follows also, by inspection, from Proposition [3.6(1-4). ®
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4.4 Words with sub-maximal intersection number

Lemma 4.6. If w is one of the following words: (ababAB), (abAbaB), (abaBAB), and
(abABaB), then

Sl(w) < ((w) = 1)(B(w) — 1) —2.
Proof. Proposition 3.6 and Corollary[3.7 can be applied after one or two cross-corner

surgeries (Proposition [2.2), each of which increases the self-intersection number by at
least one:

azbgakbl‘AmBnD N <aibjakbl‘bnam‘> — <ai+mbjakbl+n>

azb]’AkblamBnD N <azb]|bnAmBlak|> — <ai+kbn+jAmBl>
@Vt BIAMB)  [(aiba ). (BA"BY|)] = [(a*b), (A" 5"
<az’+k|bj>7 <Am|Bn+l>] — <ai+k|ambn+l|bj> — <ai+k+mbj+n+l>‘

{
{
{
[

<ai]bjAk\BlamB”> N <ai’akBj|BlamBn> — <ai+kBl+jamBn>
|

The following lemma will be used in the proof of Theorem [4.91 Note that the
special case it covers admits a bound for the self-intersection number sharper than
that of Theorem [1.11.

Lemma 4.7. If w is a word with three block-pairs, then SI(w) < (a(w) — 1)(B(w) —
1) — 2. In particular, if length L = a(w) + G(w) then

(L —2)%/4—2 if L is even,
SI(w) 3{ (L—1)(L—3)/4—2 if L is odd.

Proof. Without loss of generality, we may suppose that the number N of A and B
blocks in w is at most three.

If N =0, the result follows from Lemma|4.4/ and Theorem [1.11.

If N = 1, we may suppose that w = (ababaB) which is covered by Proposition[3.6(5).

If N = 2, we may suppose that w is one of (abAbaB) or (ababAB); if N = 3, we
may suppose that w is one of (abaBAB) or (abABaB); for these cases, the result follows
from Lemma 4.6. u

Lemma 4.8. Let w be a word with two block-pairs and two letters, say a and b with
length L > 4. FEither L = 4 and w = abab with SI(w) =1, or

(L —2)%/4—2 iof L is even,
S(w) 3{ (L—1)(L—3)/4—2 if L is odd
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Proof. Refer to Corollary 3.7.
First notice that ab’ab’ has length L = 2j + 2, an even number, and if j > 2

(L—2)?/4—2=3>-2>1=SI(abtal’).

So the lemma holds for all words of the form ab’ab’ and a‘ba’d.
For the rest of the words in question, SI(w) < (i+k—1)(j+{—1) —2, so the result
follows as in Remark [ |

Theorem 4.9. Let w be a primitive reduced cyclic word of length L > 3 and self-
intersection number

(L—-2)*/4—-1 if L is even,
Si(w) = { (L—1)(L—3)/4—1 ifL is odd.

i.e. one less than the mazimum possible for its length. Then if L is odd, w = r's’ RFS!

withi—i—k’:% or%.

And if L is even, w has one of the following forms.

(1) (rb/2-1gL/2+1y.
(2) (r's’RESY, i+ k= £%;

(3) (risirkSh, i+ k=% —1o0orL4+1.

Here r =a or A and s = b or B, or vice-versa.

Remark 4.10. The primitive reduced cyclic words of length L < 3, namely those
of the form a,ab, abb all have self-intersection number zero, the maximum for those
lengths (cf. Table[T).

Proof of Theorem 4.9 By Proposition and Lemma h(w) = 1or 2 (the
only primitive words with zero block-pairs are singletons, which do not satisfy the
hypothesis.).

We begin with the case h(w) = 2. By Lemma we can assume that w =
(abaB) or (abAB).

First suppose w = (abaB). By Proposition 3.6/ (3), SI(w) = (a(w) — 1)(B(w) — 1).

If L is odd, then SI(w) = (L — 1)(L — 3)/4 — 1. Since f(w) = L — a(w), it follows
that (L—1)(L—3)/4—1 = (a(w) — 1)(L — a(w) —1). This implies a(w) = (L+/5)/2,
which is not an integer, a contradiction.

So L is even, and (L/2 — 1)> =1 = (a(w) — 1)(L — a(w) — 1). This implies
a(w) = 4§ —1or § +1, as desired.
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Now suppose w = (abAB). The result follows from Proposition[3.6/(4). This settles
the case h(w) = 2.

If h(w) = 1 then by Proposition 3.6(1), SI(w) = (a(w) — 1)(L — a(w) — 1). The
solutions of the equation

(a(w) —1)(L—a(w)—1)=(L-1)(L-3)/4—-1

are a(w) = %5 and a(w) = % Hence there are no words of sub-maximal self-

intersection with odd length L and one block-pair.

On the other hand, the solutions of the equation
(a(w) = 1)(L—a(w)—1)=(L/2-1)* -1
are a(w) = L/2 — 1 and L/2 + 1; the result follows. u

Theorem 4.11. If L is odd, there are (L —1)(L —3) distinct reduced cyclic words with
self-intersection number one less than the mazimum for their length.

If L is even, there are 5(L—2)*/2 distinct reduced cyclic words with self-intersection
number one less than the maximum for their length.

Proof. Refer to Theorem [4.9. Suppose L is odd. If i + k = 51, there are 1,..., 553
possibilities for ¢, and 1..., % possibilities for j. The total is %% Interchanging
the roles of 7 and j, and those of a and b, we obtain (L — 1)(L — 3).

Suppose L is even: there are 8 words of the form (r?/2=1sL/2+1) " together with
2(L/2—1)* words of the form (ris’ R*S') and 4L(L/2—2) words of the form (risir*S');
the total is 5L2/2 — 10L + 10 = 5(L — 2)?/2. u

Remark 4.12. The leading coefficient of the polynomial expression for the number of
maximal words of odd length is two times larger than that for even length, whereas for
sub-maximal words the even leading coefficient is 2.5 times the odd leading coefficient.
The discrepancies balance out to some extent, when one considers maximal and sub-
maximal words together. For odd length L, this number is 3L? — 12L + 17, while for
even length it is 7L?/2 — 14L + 18.

5 Experimental results and conjectures for the pair
of pants

The “pair of pants” is the usual name for the surface with boundary, obtained by delet-
ing three open discs from the sphere. The same computational methods that yielded
Experimental Theorem [1.7 suggest that the dependance of maximum self-intersection
number on length for the pair of pants is quadratic, just as it was for the punctured
torus.
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Experimental Theorem 5.1. For L < 18, the maximal self-intersection number for
a primitive reduced cyclic word of length L on the pair of pants is:

(L*> —1)/4 if L is odd,

L*/4—1 4fL=0 (mod4),

[?/4—2 4fL>2and L=2 (mod 4),
1 ifL =2

moreover, if L is odd, the (primitive) words realizing the above mazximal self-intersection
number are r(rs) = , where {r, s} = {a, B} or {r, s} = {A,b}; (primitive words of even

length follow a more complicated pattern, which cannot be easily reduced to a formula).

Removing the restriction “primitive” leads to:

Experimental Theorem 5.2. For L < 17 the mazximal self-intersection number for
a reduced cyclic word of length L on the pair of pants is:

(L? —1)/4 if L is odd,
L?/4+ L/2 -1 if L is even;

moreover, if L is even, the words realizing the maximal self-intersection number are
(Ab)% and (aB)%; words of odd length L realizing the maximal self-intersection
number can have the form r(rs)" = , where {r,s} = {a, B} or {r,s} = {A,b}; but if L
is mot prime, this list of words is not always exhaustive.

The next two experimental theorems show radically different behavior from what
we know for the punctured torus.

Experimental Theorem 5.3. On the pair of pants, for L < 12 the number of dis-
tinct free homotopy classes of curves of length L realizing the maximal self-intersection
number is

if L =2,

if L is even and L > 2,

if L is odd but not a multiple of 3,

if L is an odd multiple of 3.

0 = DN D

Experimental Theorem 5.4. On the pair of pants, for L < 15 the minimal self-
intersection number for the free homotopy class representing a primitive reduced cyclic
word of length L is 0 for L = 1,2 and [L/2] (the integer part of L/2) for L > 3.

It seems reasonable to conjecture that all this behavior will persist for higher values
of L.

Remark 5.5. Note that an analogue of Proposition 2.2 can be proved for any surface
with boundary. So words with maximal self-interesection number cannot contain (the
generalization of) diagonally opposed corners with reversed orientations.
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A Appendix: Proof of Proposition 3.6

The seven parts of Proposition 3.6/ correspond to Propositions A.1,[A.2/[A.3,/A.4,/A.5]
'A.6,/A.7. In this Appendix, the proofs of Propositions |A.1, /A.2, and /A.3 are given
in detail; Proposition [A.4, Proposition A.5 and Proposition can be proved along
the same lines as Proposition Proposition can be proved like Proposition
those proofs are omitted here but appear in full in the arXiv version [8] of this work.
The method of proof for each of these propositions is via Theorem [3.4: a counting of
all occurrences of each of the three types of linked pairs given in Definition 3.2.

[. These pairs are easy to count. They have the form {rr, ss}, where r € {a, A} and
s € {b, B}.

II. These have the form {p1yps, 1yg2}, with p; # py and ¢1 # ¢2. One locates all
subwords y with two occurrences and ckecks for each pair if the corresponding
p1yp2 and q1yqe are linked.

ITI. Analogously, these pairs are found by locating subwords y which occur in our
word or multiword along with their inverse Y. Such a pair will contribute to the
count if the corresponding piyp, and G,yq, are linked, see Remark [3.3.

Proposition A.1. SI({(a'V/)) = (i — 1)(5 — 1).

Proof. There are i — 1 occurrences of aa and j — 1 occurrences of bb in (a’0’). Thus
there are (i — 1)(j — 1) pairs of type I. There are no pairs of the other two types. W

Proposition A.2. SI((a'b/a*)) = (i+k—2)(j+1—2)+1ifk =1 and j =1; and
(i+k—2)G+1—-2)+1]i—k|+ |7 =1 — 1, otherwise.
Proof. 1. There are (i + k — 2)(j + [ — 2) pairs of this kind.

I1. In this case, y € {a®, B, a®b’ b%a’, a®b’al, b’ a®bL} for some positive integers
J, K and L.

(i) y = a*. Analysis: Table[5, using Table 2. The total number is |i — k| — 1 if
i # k and zero otherwise.

configuration with if add
{a**2 ba*b} | a* PP ina |k+2<i|i—k—1
{a*? ba’d} |aPina® | i+2<k|k—i—1

Table 5: Linked pairs in (a'b/a*b!) of type II with y = af.
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(i) y = b%. With similar arguments as in the case (i), it can be shown that the
number of pairs here is |j — | — 1 if j # [ and zero otherwise.

(iii) y = a®b’. By Table 3, the linked words of pairs with this y have the form
ba®b’b and aab”’a. Analysis: Tablel6!

configuration with if add
{ba’b'b, aa'b'a} | ba'b'b in ba't?, aa’bla in a*bla |i<kand j>1] 1
{ba*t’b, aa*ba} | ba*b7b in ba*b!, aa*a in a'Va | k <iand j<1| 1

Table 6: Linked pairs in (a‘b/a*b!) of type II with y = a®b’.The three types of linked
pairs can be added as follows:

(iv) y =b¥a’. By Table 3, the linked words have the form ab®™a’a and 00" a’b.
Analysis: Table|7.

configuration with if add
{bba'b, ab’lala} | bW a'b in b'a'b, ab’a’a in abla® | i <kand j<l| 1
{bb'a*b, abla*a} | bb'a*b in b a"b, ab'a”a in abla’ | k <iand j >1| 1

Table 7: Linked pairs in (a‘t/a*t') of type II with y = b%a”.

By (iii) and (iv) we add 1 if k # ¢ and j # .

(v) y =a®b’ar. Since y has two occurrences, j = [. By Table 4 the linked
pairs have the form {aa®ba’a,ba® b/ a’b}. There are two pairs of this kind,
namely {aa’t/a*a,ba’t’a*b} and {aa*b'a‘a,ba*blaib}. Each of the possibili-
ties implies that ¢+ < k and k < i. Hence, such pairs are not possible.

(vi) y = b%a’b*. Asin case (v), there are no linked pairs of this form.

ITI. There are no pairs of type III because the word contains no occurrence of a letter
and its inverse.

If i = k and j = [ add 1, because the word has the form w?, where w is a primitive
word. Adding up all the contributions completes the proof. [ |

Proposition A.3. IN({(a'V’), (a™B")) = in + mj.

Proof. 1. There are (i —1)(n — 1) + (j — 1)(m — 1) linked pairs of this type.

II. y = o for some positive integer K. Analysis: Table |8, using Table 2. The
contributions of the different rows may be grouped in the following way: (a + ¢
+d)=i—1,(b+f+h=m-—1and (e + g+ 1i)=1.

II1. y = b¥. Combining Remark with Table 2| we analyze these pairs in Table (9.
Here (a +c+f)=n—1,(b+g+i)=j—1land (d+ e+ h)=1.

Adding the contributions from each of the three types yields the result. |
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configuration with if add

a| {a®b,Ba*} | a"bin a'b, Ba®™ in Ba™ | K € {2...min(m,)} | min(m,7) — 1
b {a'B,ba'} ba® in ba', a® Bin aB | K € {2...min(m, i)} | min(m,7) — 1
c | {a™? Ba™B} a™? in a' m+2<i i—m—1
d | {a™™b, Ba™ B} a™in o m+1<i 1

e | {ba™" Ba™B} a™in o m<i 1

f | {a""'B,ba'b} ain a™ i<m 1

g | {Ba", ba'b} ain a™ i<m 1
h {a™, ba'b} a'™ in a™ i+2<m m—i—1
i | {ba'b, Ba™B} i=m 1

Table 8: Linked pairs of {(a'’) and (a™B") of type II with y = af.
configuration with if add

a| {ab®,aB"} | ab® inab,aB® inaB" | K € {2...min(j,n)} | min(j,n) — 1
b | {b%a,B%a} |ab® inab’,aB" inaB" | K € {2...min(j,n)} | min(j,n) — 1
c | {aa, B’ ta} B’*a in B"a j<n 1

d | {aba,aB’ 1} aB’* in aB" j<n 1

e | {aVa,aB"a} j=n 1

f | {abla, B} Bt in B" j+2<n n—j—1
g | {b""ta,aB"a} b"la in Va n<j 1

h | {ab"™, aB"a} ab™ in ab’ n<j 1

i | {b""2 aB"a} b2 in b n+2<j j—n—1

Table 9: Linked pairs of (a’’) and (a™B") of type III with y = b,
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Proposition A.4. SI({(a't’a*B')) = (i + k- 1)(j +1—1).

Proposition A.5. SI((a'WV A*BY) = (i +k—1)(j+1—1) — 1.

Proposition A.6.

SI({a't'a*b'a™B™)) = (i + k+m —1)(j + 1 +n — 1) — 2(k 4+ min(j, 1) — 1).

Proposition A.7. IN({a'b/a*b"), (a™B")) = (i + k)n +m(j +1).
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