Moduli of (complex) abelian varieties: homology and compactifications

Samuel Grushevsky

Stony Brook University

Raum, Zeit, Materie SFB seminar January 5, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

• Geometrically:

- Geometrically:
- Algebraically: $E_{\lambda} = \text{closure of } \{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{C}^2$

- Geometrically:
- Algebraically: $E_{\lambda} = \text{closure of } \{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{C}^2$
- Analytically: $E = \mathbb{C}/\Lambda$, for Λ a lattice of full rank: $\Lambda \approx \mathbb{Z}^2$; $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{C}$; So $E_{\tau} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$.

- Geometrically:
- Algebraically: $E_{\lambda} = \text{closure of } \{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{C}^2$
- Analytically: $E = \mathbb{C}/\Lambda$, for Λ a lattice of full rank: $\Lambda \approx \mathbb{Z}^2$; $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{C}$; So $E_{\tau} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$.

When are two elliptic curves equal?

- Geometrically:
- Algebraically: $E_{\lambda} = \text{closure of } \{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{C}^2$
- Analytically: $E = \mathbb{C}/\Lambda$, for Λ a lattice of full rank: $\Lambda \approx \mathbb{Z}^2$; $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{C}$; So $E_{\tau} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$.

When are two elliptic curves equal? What does "equal" mean?

- Geometrically:
- Algebraically: $E_{\lambda} = \text{closure of } \{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{C}^2$
- Analytically: $E = \mathbb{C}/\Lambda$, for Λ a lattice of full rank: $\Lambda \approx \mathbb{Z}^2$; $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{C}$; So $E_{\tau} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$.

When are two elliptic curves equal? What does "equal" mean?

As complex manifolds, biholomorphic?

- Geometrically:
- Algebraically: $E_{\lambda} = \text{closure of } \{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{C}^2$
- Analytically: $E = \mathbb{C}/\Lambda$, for Λ a lattice of full rank: $\Lambda \approx \mathbb{Z}^2$; $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{C}$; So $E_{\tau} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$.

When are two elliptic curves equal? What does "equal" mean?

As complex manifolds, biholomorphic?

... or isomorphic as algebraic varieties?

• Geometrically:

• Algebraically: $E_{\lambda} = \text{closure of } \{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{C}^2$

• Analytically: $E = \mathbb{C}/\Lambda$, for Λ a lattice of full rank: $\Lambda \approx \mathbb{Z}^2$; $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{C}$; So $E_{\tau} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$.

When are two elliptic curves equal? What does "equal" mean?

> As complex manifolds, biholomorphic? ...or isomorphic as algebraic varieties? ...or as lattices?

Geometrically:

• Algebraically: $E_{\lambda} = \text{closure of } \{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{C}^2$

• Analytically: $E = \mathbb{C}/\Lambda$, for Λ a lattice of full rank: $\Lambda \approx \mathbb{Z}^2$; $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{C}$; So $E_{\tau} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$.

When are two elliptic curves equal? What does "equal" mean?

As complex manifolds, biholomorphic?

... or isomorphic as algebraic varieties?

... or as lattices?

These are all equivalent!

- Geometrically:
- Algebraically: $E_{\lambda} = \text{closure of } \{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{C}^2$
- Analytically: $E = \mathbb{C}/\Lambda$, for Λ a lattice of full rank: $\Lambda \approx \mathbb{Z}^2$; $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{C}$; So $E_{\tau} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$.

When are two elliptic curves biholomorphic?

- Geometrically:
- Algebraically: $E_{\lambda} = \text{closure of } \{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{C}^2$
- Analytically: $E = \mathbb{C}/\Lambda$, for Λ a lattice of full rank: $\Lambda \approx \mathbb{Z}^2$; $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{C}$; So $E_{\tau} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$.

When are two elliptic curves biholomorphic?

Theorem

$$E_{\lambda} \approx E_{\lambda'}$$
 if and only if $j(\lambda) = j(\lambda')$.

- Geometrically:
- Algebraically: $E_{\lambda} = \text{closure of } \{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{C}^2$
- Analytically: $E = \mathbb{C}/\Lambda$, for Λ a lattice of full rank: $\Lambda \approx \mathbb{Z}^2$; $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{C}$; So $E_{\tau} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$.

When are two elliptic curves biholomorphic?

Theorem

$$E_{\lambda} \approx E_{\lambda'}$$
 if and only if $j(\lambda) = j(\lambda')$.

Theorem

Any holomorphic map $E_{\tau} \to E_{\tau'}$ lifts to a linear map $\mathbb{C} \to \mathbb{C}$. Then $E_{\tau} \approx E_{\tau'}$ if and only if $\exists \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$ such that $\tau' = (a\tau + b)(c\tau + d)^{-1}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Moduli of (complex) elliptic curves

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → のへで

Moduli of (complex) elliptic curves Difficulty: any elliptic curve has infinitely many automorphisms $z \mapsto z + a$, for any $a \in \mathbb{C}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Moduli of (complex) elliptic curves

Difficulty: any elliptic curve has infinitely many automorphisms $z \mapsto z + a$, for any $a \in \mathbb{C}$.

Thus mark a point on E and require the automorphisms to fix it.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー 釣ん()~

э

• Global geometry not immediately visible.

- Global geometry not immediately visible.
- Orbifold points $\tau = e^{2\pi i/3}$ and $\tau = i$: extra automorphisms.

イロト イポト イヨト イヨト

э

- Global geometry not immediately visible.
- Orbifold points $\tau = e^{2\pi i/3}$ and $\tau = i$: extra automorphisms.

- 4 同 6 4 回 6 4 回 6

• The moduli space is not compact.

- Global geometry not immediately visible.
- Orbifold points $\tau = e^{2\pi i/3}$ and $\tau = i$: extra automorphisms.
- The moduli space is not compact.
- Compactified by adding the point at infinity, then

$$\mathcal{M}_{1,1} = \mathcal{A}_1 = \mathbb{P}^1$$

(日)、

-

with three "special" points on \mathbb{P}^1 .

- ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 \mathcal{M}_g :=moduli of compact Riemann surfaces of genus $g \ge 1$, up to biholomorphism.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \mathcal{M}_g :=moduli of compact Riemann surfaces of genus $g \ge 1$, up to biholomorphism.

A Riemann surface of genus g > 1 has at most 84(g - 1) automorphisms, thus no need to mark any points to get a good moduli space.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \mathcal{M}_g :=moduli of compact Riemann surfaces of genus $g \ge 1$, up to biholomorphism.

- A Riemann surface of genus g > 1 has at most 84(g 1) automorphisms, thus no need to mark any points to get a good moduli space.
- \mathcal{M}_g is a complex orbifold of dimension 3g 3 [RIEMANN].

 \mathcal{M}_g :=moduli of compact Riemann surfaces of genus $g \ge 1$, up to biholomorphism.

- A Riemann surface of genus g > 1 has at most 84(g 1) automorphisms, thus no need to mark any points to get a good moduli space.
- \mathcal{M}_g is a complex orbifold of dimension 3g 3 [RIEMANN].
- \mathcal{M}_g has a nice *Deligne-Mumford compactification* $\overline{\mathcal{M}}_g$, which is a smooth orbifold, with simple normal crossing boundary.

 \mathcal{M}_g :=moduli of compact Riemann surfaces of genus $g \ge 1$, up to biholomorphism.

- A Riemann surface of genus g > 1 has at most 84(g 1) automorphisms, thus no need to mark any points to get a good moduli space.
- \mathcal{M}_g is a complex orbifold of dimension 3g 3 [RIEMANN].
- \mathcal{M}_g has a nice *Deligne-Mumford compactification* $\overline{\mathcal{M}}_g$, which is a smooth orbifold, with simple normal crossing boundary.

• Geometry and topology of \mathcal{M}_g and $\overline{\mathcal{M}}_g$ are studied extensively.

 \mathcal{M}_g :=moduli of compact Riemann surfaces of genus $g \ge 1$, up to biholomorphism.

- A Riemann surface of genus g > 1 has at most 84(g 1) automorphisms, thus no need to mark any points to get a good moduli space.
- \mathcal{M}_g is a complex orbifold of dimension 3g 3 [RIEMANN].
- \mathcal{M}_g has a nice *Deligne-Mumford compactification* $\overline{\mathcal{M}}_g$, which is a smooth orbifold, with simple normal crossing boundary.
- Geometry and topology of \mathcal{M}_g and $\overline{\mathcal{M}}_g$ are studied extensively.
- The homology or Chow rings of \mathcal{M}_g or $\overline{\mathcal{M}}_g$ are very difficult and very big, but there is a natural tautological subring.

 \mathcal{M}_g :=moduli of compact Riemann surfaces of genus $g \ge 1$, up to biholomorphism.

- A Riemann surface of genus g > 1 has at most 84(g 1) automorphisms, thus no need to mark any points to get a good moduli space.
- \mathcal{M}_g is a complex orbifold of dimension 3g 3 [RIEMANN].
- \mathcal{M}_g has a nice *Deligne-Mumford compactification* $\overline{\mathcal{M}}_g$, which is a smooth orbifold, with simple normal crossing boundary.
- Geometry and topology of \mathcal{M}_g and $\overline{\mathcal{M}}_g$ are studied extensively.
- The homology or Chow rings of \mathcal{M}_g or $\overline{\mathcal{M}}_g$ are very difficult and very big, but there is a natural tautological subring.
- Strong Faber's conjectures on the tautological ring.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Abelian variety: a projective g-dimensional variety A (a compact submanifold of \mathbb{CP}^N), group structure on points.

Abelian variety: a projective g-dimensional variety A (a compact submanifold of \mathbb{CP}^N), group structure on points.

Principal polarization: the first Chern class of an ample line bundle Θ with one section.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Abelian variety: a projective g-dimensional variety A (a compact submanifold of \mathbb{CP}^N), group structure on points.

Principal polarization: the first Chern class of an ample line bundle Θ with one section.

(Ample means has positive curvature; equivalently, the space of sections of $\Theta^{\otimes n}$ embeds A into \mathbb{CP}^N , for n large enough)

Abelian variety: a projective g-dimensional variety A (a compact submanifold of \mathbb{CP}^N), group structure on points.

Principal polarization: the first Chern class of an ample line bundle Θ with one section.

(Ample means has positive curvature; equivalently, the space of sections of $\Theta^{\otimes n}$ embeds A into \mathbb{CP}^N , for n large enough)

(for g = 1, this is just one point on A)

Abelian variety: a projective g-dimensional variety A (a compact submanifold of \mathbb{CP}^N), group structure on points.

Principal polarization: the first Chern class of an ample line bundle Θ with one section.

(Ample means has positive curvature; equivalently, the space of sections of $\Theta^{\otimes n}$ embeds A into \mathbb{CP}^N , for n large enough)

(for g = 1, this is just one point on A)

 \mathcal{A}_g : the moduli space of principally polarized abelian varieties up to an algebraic isomorphism.
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Abelian variety $A_{\tau} := \mathbb{C}^g / \mathbb{Z}^g + \mathbb{Z}^g \tau$, where the Period matrix τ lies in the Siegel upper half-space

$$\mathcal{H}_g := \{ \tau \in Mat_{g \times g}(\mathbb{C}) \, | \, \tau = \tau^t, \, Im \, \tau > 0 \}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Abelian variety $A_{\tau} := \mathbb{C}^g / \mathbb{Z}^g + \mathbb{Z}^g \tau$, where the Period matrix τ lies in the Siegel upper half-space

$$\mathcal{H}_{g} := \{ \tau \in \mathit{Mat}_{g \times g}(\mathbb{C}) \, | \, \tau = \tau^{t}, \mathit{Im} \, \tau > 0 \}$$

Polarization Θ_{τ} : the zero locus in A_{τ} of the theta function

$$\theta(z) := \sum_{n \in \mathbb{Z}^g} \exp\left(\left(\pi i \, n^t (\tau n + 2z)\right).$$

Abelian variety $A_{\tau} := \mathbb{C}^g / \mathbb{Z}^g + \mathbb{Z}^g \tau$, where the Period matrix τ lies in the Siegel upper half-space

$$\mathcal{H}_{g} := \{ \tau \in \mathit{Mat}_{g \times g}(\mathbb{C}) \, | \, \tau = \tau^{t}, \mathit{Im} \, \tau > 0 \}$$

Polarization Θ_{τ} : the zero locus in A_{τ} of the theta function

$$\theta(z) := \sum_{n \in \mathbb{Z}^g} \exp\left((\pi i \, n^t (\tau n + 2z)\right).$$

Isomorphism of principally polarized abelian varieties: a biholomorphism that preserves polarization.

Theorem

Any holomorphic map $A_{\tau} \to A_{\tau'}$ lifts to a linear holomorphic map $\mathbb{C}^g \to \mathbb{C}^g$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

Any holomorphic map $A_{\tau} \to A_{\tau'}$ lifts to a linear holomorphic map $\mathbb{C}^g \to \mathbb{C}^g$. It follows that

$$\mathcal{A}_{g} = \mathit{Sp}(2g,\mathbb{Z})ackslash\mathcal{H}_{g}$$

where $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \circ \tau = (C\tau + D)^{-1}(A\tau + B).$

Theorem

Any holomorphic map $A_{\tau} \to A_{\tau'}$ lifts to a linear holomorphic map $\mathbb{C}^g \to \mathbb{C}^g$. It follows that

$$\mathcal{A}_{g} = \mathit{Sp}(2g,\mathbb{Z})ackslash\mathcal{H}_{g}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

where
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \circ \tau = (C\tau + D)^{-1}(A\tau + B).$$

Properties of \mathcal{A}_g :

Theorem

Any holomorphic map $A_{\tau} \to A_{\tau'}$ lifts to a linear holomorphic map $\mathbb{C}^g \to \mathbb{C}^g$. It follows that

$$\mathcal{A}_{g} = \mathit{Sp}(2g,\mathbb{Z})ackslash\mathcal{H}_{g}$$

where $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \circ \tau = (C\tau + D)^{-1}(A\tau + B).$

Properties of \mathcal{A}_g :

• Smooth orbifold: for any τ , $Stab(\tau) \subset Sp(2g,\mathbb{Z})$ is finite.

Theorem

Any holomorphic map $A_{\tau} \to A_{\tau'}$ lifts to a linear holomorphic map $\mathbb{C}^g \to \mathbb{C}^g$. It follows that

$$\mathcal{A}_{g} = \mathit{Sp}(2g,\mathbb{Z})ackslash\mathcal{H}_{g}$$

where $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \circ \tau = (C\tau + D)^{-1}(A\tau + B).$

Properties of \mathcal{A}_g :

• Smooth orbifold: for any τ , $Stab(\tau) \subset Sp(2g,\mathbb{Z})$ is finite.

• dim_{$$\mathbb{C}$$} $\mathcal{A}_g = \frac{g(g+1)}{2} = \dim_{\mathbb{C}}(\text{symmetric } Mat_{g \times g}(\mathbb{C})).$

Theorem

Any holomorphic map $A_{\tau} \to A_{\tau'}$ lifts to a linear holomorphic map $\mathbb{C}^g \to \mathbb{C}^g$. It follows that

$$\mathcal{A}_{g} = \mathit{Sp}(2g,\mathbb{Z})ackslash\mathcal{H}_{g}$$

where $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \circ \tau = (C\tau + D)^{-1}(A\tau + B).$

Properties of \mathcal{A}_g :

- Smooth orbifold: for any τ , $Stab(\tau) \subset Sp(2g, \mathbb{Z})$ is finite.
- dim_{\mathbb{C}} $\mathcal{A}_g = \frac{g(g+1)}{2} = \dim_{\mathbb{C}}(\text{symmetric } Mat_{g \times g}(\mathbb{C})).$
- $H^*(\mathcal{A}_g) = H^*(\operatorname{Sp}(2g,\mathbb{Z}))$ in general is extremely complicated.

Theorem

Any holomorphic map $A_{\tau} \to A_{\tau'}$ lifts to a linear holomorphic map $\mathbb{C}^g \to \mathbb{C}^g$. It follows that

$$\mathcal{A}_{g} = \mathit{Sp}(2g,\mathbb{Z})ackslash\mathcal{H}_{g}$$

where $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \circ \tau = (C\tau + D)^{-1}(A\tau + B).$

Properties of \mathcal{A}_g :

- Smooth orbifold: for any τ , $Stab(\tau) \subset Sp(2g, \mathbb{Z})$ is finite.
- dim_{\mathbb{C}} $\mathcal{A}_g = \frac{g(g+1)}{2} = \dim_{\mathbb{C}}(\text{symmetric } Mat_{g \times g}(\mathbb{C})).$
- $H^*(\mathcal{A}_g) = H^*(\mathsf{Sp}(2g,\mathbb{Z}))$ in general is extremely complicated.

• \mathcal{A}_g is not compact.

Theorem

Any holomorphic map $A_{\tau} \to A_{\tau'}$ lifts to a linear holomorphic map $\mathbb{C}^g \to \mathbb{C}^g$. It follows that

$$\mathcal{A}_{g} = \mathit{Sp}(2g,\mathbb{Z})ackslash\mathcal{H}_{g}$$

where $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \circ \tau = (C\tau + D)^{-1}(A\tau + B).$

Properties of \mathcal{A}_g :

- Smooth orbifold: for any au, $Stab(au) \subset Sp(2g,\mathbb{Z})$ is finite.
- dim_{\mathbb{C}} $\mathcal{A}_g = \frac{g(g+1)}{2} = \dim_{\mathbb{C}}(\text{symmetric } Mat_{g \times g}(\mathbb{C})).$
- $H^*(\mathcal{A}_g) = H^*(\mathsf{Sp}(2g,\mathbb{Z}))$ in general is extremely complicated.
- \mathcal{A}_g is not compact.
- There are many approaches to compactifying $\mathcal{A}_g!$

Hodge vector bundle: the rank g vector bundle $\mathbb{E} \to \mathcal{A}_g$ of holomorphic 1-forms: it has fiber $H^{1,0}(A)$ over [A].

Hodge vector bundle: the rank g vector bundle $\mathbb{E} \to \mathcal{A}_g$ of holomorphic 1-forms: it has fiber $H^{1,0}(A)$ over [A].

Hodge classes $\lambda_i := c_i(\mathbb{E}) \in H^{2i}(\mathcal{A}_g, \mathbb{Q})$ the Chern classes of the Hodge bundle (also in Chow $CH^i(\mathcal{A}_g)$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hodge vector bundle: the rank g vector bundle $\mathbb{E} \to \mathcal{A}_g$ of holomorphic 1-forms: it has fiber $H^{1,0}(A)$ over [A].

Hodge classes $\lambda_i := c_i(\mathbb{E}) \in H^{2i}(\mathcal{A}_g, \mathbb{Q})$ the Chern classes of the Hodge bundle (also in Chow $CH^i(\mathcal{A}_g)$).

Theorem (BOREL)

 $H^{k}(\mathcal{A}_{g},\mathbb{Q})$ is independent of g, for g > k, and is freely generated by $\{\lambda_{2i+1}\}$.

Hodge vector bundle: the rank g vector bundle $\mathbb{E} \to \mathcal{A}_g$ of holomorphic 1-forms: it has fiber $H^{1,0}(A)$ over [A].

Hodge classes $\lambda_i := c_i(\mathbb{E}) \in H^{2i}(\mathcal{A}_g, \mathbb{Q})$ the Chern classes of the Hodge bundle (also in Chow $CH^i(\mathcal{A}_g)$).

Theorem (BOREL)

 $H^{k}(\mathcal{A}_{g},\mathbb{Q})$ is independent of g, for g > k, and is freely generated by $\{\lambda_{2i+1}\}$.

Borel's proof is about group cohomology of $Sp(2g, \mathbb{Z})$. Since \mathcal{H}_g is contractible, $H^*(\mathcal{A}_g) = H^*(Sp(2g, \mathbb{Z}))$.

Hodge vector bundle: the rank g vector bundle $\mathbb{E} \to \mathcal{A}_g$ of holomorphic 1-forms: it has fiber $H^{1,0}(A)$ over [A].

Hodge classes $\lambda_i := c_i(\mathbb{E}) \in H^{2i}(\mathcal{A}_g, \mathbb{Q})$ the Chern classes of the Hodge bundle (also in Chow $CH^i(\mathcal{A}_g)$).

Theorem (BOREL)

 $H^{k}(\mathcal{A}_{g}, \mathbb{Q})$ is independent of g, for g > k, and is freely generated by $\{\lambda_{2i+1}\}$.

Borel's proof is about group cohomology of $Sp(2g, \mathbb{Z})$. Since \mathcal{H}_g is contractible, $H^*(\mathcal{A}_g) = H^*(Sp(2g, \mathbb{Z}))$.

(Of course no approach in sight to stabilization of $CH^k(\mathcal{A}_g)$)

Hodge vector bundle: the rank g vector bundle $\mathbb{E} \to \mathcal{A}_g$ of holomorphic 1-forms: it has fiber $H^{1,0}(A)$ over [A].

Hodge classes $\lambda_i := c_i(\mathbb{E}) \in H^{2i}(\mathcal{A}_g, \mathbb{Q})$ the Chern classes of the Hodge bundle (also in Chow $CH^i(\mathcal{A}_g)$).

Theorem (BOREL)

 $H^{k}(\mathcal{A}_{g},\mathbb{Q})$ is independent of g, for g > k, and is freely generated by $\{\lambda_{2i+1}\}$.

Borel's proof is about group cohomology of $Sp(2g, \mathbb{Z})$. Since \mathcal{H}_g is contractible, $H^*(\mathcal{A}_g) = H^*(Sp(2g, \mathbb{Z}))$.

(Of course no approach in sight to stabilization of $CH^k(\mathcal{A}_g)$)

Question

Why don't the λ_{2i} appear?

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

 $\mathbb{E}\oplus\overline{\mathbb{E}}$ is the rank 2g bundle over \mathcal{A}_g , with fiber

$$H^1(A,\mathbb{C}) = H^{1,0}(A,\mathbb{C}) \oplus H^{0,1}(A,\mathbb{C}).$$

 $\mathbb{E}\oplus\overline{\mathbb{E}}$ is the rank 2g bundle over \mathcal{A}_g , with fiber

$$H^1(A,\mathbb{C}) = H^{1,0}(A,\mathbb{C}) \oplus H^{0,1}(A,\mathbb{C}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thus $c_i(\mathbb{E} \oplus \overline{\mathbb{E}}) = 0$ for i > 0.

 $\mathbb{E}\oplus\overline{\mathbb{E}}$ is the rank 2g bundle over \mathcal{A}_g , with fiber

$$H^1(A,\mathbb{C})=H^{1,0}(A,\mathbb{C})\oplus H^{0,1}(A,\mathbb{C}).$$

Thus $c_i(\mathbb{E} \oplus \overline{\mathbb{E}}) = 0$ for i > 0.

Theorem (MUMFORD'S Basic identity) $(1 + \lambda_1 + \ldots + \lambda_g) \cdot (1 - \lambda_1 + \ldots + (-1)^g \lambda_g) = 1 \in H^*(\mathcal{A}_g).$

 $\mathbb{E}\oplus\overline{\mathbb{E}}$ is the rank 2g bundle over \mathcal{A}_g , with fiber

$$H^1(A,\mathbb{C}) = H^{1,0}(A,\mathbb{C}) \oplus H^{0,1}(A,\mathbb{C}).$$

Thus $c_i(\mathbb{E} \oplus \overline{\mathbb{E}}) = 0$ for i > 0.

Theorem (MUMFORD'S Basic identity) $(1 + \lambda_1 + \ldots + \lambda_g) \cdot (1 - \lambda_1 + \ldots + (-1)^g \lambda_g) = 1 \in H^*(\mathcal{A}_g).$

Corollary

All even λ 's can be expressed as polynomials in odd λ 's:

$$\lambda_2 = rac{\lambda_1^2}{2}, \qquad \lambda_4 = \lambda_1 \lambda_3 - rac{\lambda_1^4}{8}, \qquad \dots$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Torelli map $\mathcal{M}_g \to \mathcal{A}_g$ sends a Riemann surface to its Jacobian.

Torelli map $\mathcal{M}_g \to \mathcal{A}_g$ sends a Riemann surface to its Jacobian. Hodge bundle and classes pull back, the basic identity pulls back.

Torelli map $\mathcal{M}_g \to \mathcal{A}_g$ sends a Riemann surface to its Jacobian. Hodge bundle and classes pull back, the basic identity pulls back.

Theorem (HARER)

 $H^k(\mathcal{M}_g,\mathbb{Q})$ is independent of g, for $g \gg k$.

Torelli map $\mathcal{M}_g \to \mathcal{A}_g$ sends a Riemann surface to its Jacobian. Hodge bundle and classes pull back, the basic identity pulls back.

Theorem (HARER)

 $H^k(\mathcal{M}_g,\mathbb{Q})$ is independent of g, for $g \gg k$.

Theorem (MADSEN-WEISS [MUMFORD'S conjecture]) $H^{k}(\mathcal{M}_{g})$ is freely generated by $\kappa_{i} \in H^{2i}(\mathcal{M}_{g})$ for g > 3k.

Torelli map $\mathcal{M}_g \to \mathcal{A}_g$ sends a Riemann surface to its Jacobian. Hodge bundle and classes pull back, the basic identity pulls back.

Theorem (HARER)

 $H^k(\mathcal{M}_g,\mathbb{Q})$ is independent of g, for $g \gg k$.

Theorem (MADSEN-WEISS [MUMFORD'S conjecture]) $H^{k}(\mathcal{M}_{g})$ is freely generated by $\kappa_{i} \in H^{2i}(\mathcal{M}_{g})$ for g > 3k.

Mumford-Morita-Miller kappa classes:

Torelli map $\mathcal{M}_g \to \mathcal{A}_g$ sends a Riemann surface to its Jacobian. Hodge bundle and classes pull back, the basic identity pulls back.

Theorem (HARER)

 $H^k(\mathcal{M}_g,\mathbb{Q})$ is independent of g, for $g \gg k$.

Theorem (MADSEN-WEISS [MUMFORD'S conjecture]) $H^{k}(\mathcal{M}_{g})$ is freely generated by $\kappa_{i} \in H^{2i}(\mathcal{M}_{g})$ for g > 3k.

 $\begin{array}{l} \text{Mumford-Morita-Miller kappa classes:} \\ \Psi := (c_1 \text{ of}) \text{ the line bundle over } \mathcal{M}_{g,1} \text{ with } \Psi|_{X,p} = T_p^* X. \\ \pi : \mathcal{M}_{g,1} \to \mathcal{M}_g \text{ the forgetful map;} \qquad \qquad \kappa_i := \pi_* (\Psi^{i+1}). \end{array}$

Torelli map $\mathcal{M}_g \to \mathcal{A}_g$ sends a Riemann surface to its Jacobian. Hodge bundle and classes pull back, the basic identity pulls back.

Theorem (HARER)

 $H^k(\mathcal{M}_g,\mathbb{Q})$ is independent of g, for $g \gg k$.

Theorem (MADSEN-WEISS [MUMFORD'S conjecture]) $H^{k}(\mathcal{M}_{g})$ is freely generated by $\kappa_{i} \in H^{2i}(\mathcal{M}_{g})$ for g > 3k.

Mumford-Morita-Miller kappa classes:

$$\begin{split} \Psi :=& (c_1 \text{ of}) \text{ the line bundle over } \mathcal{M}_{g,1} \text{ with } \Psi|_{X,p} = T_p^* X. \\ \pi : \mathcal{M}_{g,1} \to \mathcal{M}_g \text{ the forgetful map;} \qquad \kappa_i := \pi_*(\Psi^{i+1}). \end{split}$$

Proofs are topological: $M_g = T_g/MCG_g$, the Teichmüller space is contractible. HARER, MADSEN-WEISS deal with $H^*(MCG_g)$.

▲□▶▲圖▶▲≣▶▲≣▶ ■ めんの

 λ_i on \mathcal{A}_g and κ_i on \mathcal{M}_g are defined also outside of stable range.

 λ_i on \mathcal{A}_g and κ_i on \mathcal{M}_g are defined also outside of stable range. Tautological ring $R^*(\mathcal{A}_g)$: subring of cohomology generated by λ_i .

 λ_i on \mathcal{A}_g and κ_i on \mathcal{M}_g are defined also outside of stable range.

Tautological ring $R^*(\mathcal{A}_g)$: subring of cohomology generated by λ_i . Tautological ring $R^*(\mathcal{M}_g)$: subring of cohomology generated by κ_i .

 λ_i on \mathcal{A}_g and κ_i on \mathcal{M}_g are defined also outside of stable range.

Tautological ring $R^*(\mathcal{A}_g)$: subring of cohomology generated by λ_i . Tautological ring $R^*(\mathcal{M}_g)$: subring of cohomology generated by κ_i . (Should also consider these as subrings in the Chow).
Tautological rings of \mathcal{A}_g and \mathcal{M}_g

 λ_i on \mathcal{A}_g and κ_i on \mathcal{M}_g are defined also outside of stable range.

Tautological ring $R^*(\mathcal{A}_g)$: subring of cohomology generated by λ_i . Tautological ring $R^*(\mathcal{M}_g)$: subring of cohomology generated by κ_i . (Should also consider these as subrings in the Chow).

Theorem (VAN DER GEER)

The only relations in $R^*(\mathcal{A}_g)$ are $\lambda_g = 0$ and the basic identity $(1 + \lambda_1 + \ldots + \lambda_g) \cdot (1 - \lambda_1 + \ldots + (-1)^g \lambda_g) = 1.$

Tautological rings of \mathcal{A}_g and \mathcal{M}_g

 λ_i on \mathcal{A}_g and κ_i on \mathcal{M}_g are defined also outside of stable range.

Tautological ring $R^*(\mathcal{A}_g)$: subring of cohomology generated by λ_i . Tautological ring $R^*(\mathcal{M}_g)$: subring of cohomology generated by κ_i . (Should also consider these as subrings in the Chow).

Theorem (VAN DER GEER)

The only relations in $R^*(\mathcal{A}_g)$ are $\lambda_g = 0$ and the basic identity $(1 + \lambda_1 + \ldots + \lambda_g) \cdot (1 - \lambda_1 + \ldots + (-1)^g \lambda_g) = 1.$

 $\implies R^*(\mathcal{A}_g)$ has Poincaré duality with socle in dimension $2 \cdot \frac{g(g-1)}{2}$.

Tautological rings of \mathcal{A}_g and \mathcal{M}_g

 λ_i on \mathcal{A}_g and κ_i on \mathcal{M}_g are defined also outside of stable range.

Tautological ring $R^*(\mathcal{A}_g)$: subring of cohomology generated by λ_i . Tautological ring $R^*(\mathcal{M}_g)$: subring of cohomology generated by κ_i . (Should also consider these as subrings in the Chow).

Theorem (VAN DER GEER)

The only relations in $R^*(\mathcal{A}_g)$ are $\lambda_g = 0$ and the basic identity $(1 + \lambda_1 + \ldots + \lambda_g) \cdot (1 - \lambda_1 + \ldots + (-1)^g \lambda_g) = 1.$

 $\implies R^*(\mathcal{A}_g)$ has Poincaré duality with socle in dimension $2 \cdot \frac{g(g-1)}{2}$.

Faber's conjecture

 $R^*(\mathcal{M}_g)$ has Poincaré duality with socle in dimension $2 \cdot (g-2)$.

Faber's conjecture

 $R^*(\mathcal{M}_g)$ has Poincaré duality with socle in dimension $2 \cdot (g-2)$.

Faber's conjecture

 $R^*(\mathcal{M}_g)$ has duality with socle in complex dimension g - 2.

Faber's conjecture

 $R^*(\mathcal{M}_g)$ has duality with socle in complex dimension g-2.

• Vanishing:
$$R^k(\mathcal{M}_g) = 0$$
 for $k > g - 2$.
True [IONEL, LOOIJENGA, GRABER-VAKIL, ...]

Faber's conjecture

 $R^*(\mathcal{M}_g)$ has duality with socle in complex dimension g-2.

Faber's conjecture

 $R^*(\mathcal{M}_g)$ has duality with socle in complex dimension g-2.

Faber's conjecture

 $R^*(\mathcal{M}_g)$ has duality with socle in complex dimension g-2.

Faber's conjecture

 $R^*(\mathcal{M}_g)$ has duality with socle in complex dimension g-2.

Conjecture says $R^*(\mathcal{M}_g)$ "looks like" cohomology of a compact X of dimension $2 \cdot (g-2)$, with no odd cohomology.

Faber's conjecture

 $R^*(\mathcal{M}_g)$ has duality with socle in complex dimension g-2.

Conjecture says $R^*(\mathcal{M}_g)$ "looks like" cohomology of a compact X of dimension $2 \cdot (g-2)$, with no odd cohomology. What is X?

Faber's conjecture

 $R^*(\mathcal{M}_g)$ has duality with socle in complex dimension g-2.

Conjecture says $R^*(\mathcal{M}_g)$ "looks like" cohomology of a compact X of dimension $2 \cdot (g - 2)$, with no odd cohomology. What is X? How to test the conjecture? Want to use intersection theory, but cannot on the open space \mathcal{M}_g . Intersection used for $\overline{\mathcal{M}}_g$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへぐ

Deligne-Mumford compactification $\overline{\mathcal{M}}_g$: boundary is a collection of irreducible divisors, normal crossing.

Deligne-Mumford compactification $\overline{\mathcal{M}}_g$: boundary is a collection of irreducible divisors, normal crossing.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Deligne-Mumford compactification $\overline{\mathcal{M}}_g$: boundary is a collection of irreducible divisors, normal crossing.

Curves of compact type: $\mathcal{M}_g^{ct} = \overline{\mathcal{M}}_g \setminus \delta_0$.

Deligne-Mumford compactification $\overline{\mathcal{M}}_g$: boundary is a collection of irreducible divisors, normal crossing.

Curves of compact type: $\mathcal{M}_g^{ct} = \overline{\mathcal{M}}_g \setminus \delta_0$.

Deligne-Mumford compactification $\overline{\mathcal{M}}_g$: boundary is a collection of irreducible divisors, normal crossing.

Curves of compact type: $\mathcal{M}_g^{ct} = \overline{\mathcal{M}}_g \setminus \delta_0$. Tautological rings of $\overline{\mathcal{M}}_g$ and \mathcal{M}_g^{ct} : generated by κ_i , all boundary strata, κ_i and Ψ pushed from the boundary, ...

Deligne-Mumford compactification $\overline{\mathcal{M}}_g$: boundary is a collection of irreducible divisors, normal crossing.

Curves of compact type: $\mathcal{M}_g^{ct} = \overline{\mathcal{M}}_g \setminus \delta_0$. Tautological rings of $\overline{\mathcal{M}}_g$ and \mathcal{M}_g^{ct} : generated by κ_i , all boundary strata, κ_i and Ψ pushed from the boundary, ...

Faber's questions

Does $R^*(\overline{\mathcal{M}}_g)$ have duality with socle in dimension 3g - 3? Does $R^*(\mathcal{M}_g^{ct})$ have duality with socle in dimension 2g - 3?

Deligne-Mumford compactification $\overline{\mathcal{M}}_g$: boundary is a collection of irreducible divisors, normal crossing.

Curves of compact type: $\mathcal{M}_g^{ct} = \overline{\mathcal{M}}_g \setminus \delta_0$. Tautological rings of $\overline{\mathcal{M}}_g$ and \mathcal{M}_g^{ct} : generated by κ_i , all boundary strata, κ_i and Ψ pushed from the boundary, ...

Faber's questions

Does $R^*(\overline{\mathcal{M}}_g)$ have duality with socle in dimension 3g - 3? Does $R^*(\mathcal{M}_g^{ct})$ have duality with socle in dimension 2g - 3?

Vanishing and socle hold; perfect pairing fails for $\overline{\mathcal{M}}_{g,n}, \mathcal{M}_{g,n}^{ct}$.

Compactifying \mathcal{A}_g : Satake-Baily Borel compactification

Compactifying \mathcal{A}_g : Satake-Baily Borel compactification Satake compactification: As a set, $\mathcal{A}_g^{Sat} = \mathcal{A}_g \sqcup \mathcal{A}_{g-1} \sqcup \ldots \sqcup \mathcal{A}_0$.

・ロト・日本・モート モー うへぐ

Compactifying A_g : Satake-Baily Borel compactification

Satake compactification: As a set, $\mathcal{A}_g^{\text{Sat}} = \mathcal{A}_g \sqcup \mathcal{A}_{g-1} \sqcup \ldots \sqcup \mathcal{A}_0$. To put scheme structure: $\lim_{t\to\infty} \begin{pmatrix} it & z^t \\ z & \tau' \end{pmatrix} := \tau'$.

More generally, cross out all rows and columns with infinities (in fact, take out the kernel of $Im \tau$):

(in fact, take out the kernel of $Im \tau$):

$$\lim_{t_1,t_2\to\infty} \begin{pmatrix} \tau_1 & * & * & * & \tau_2 \\ * & * & it_1 & * & * \\ * & it_1 & * & * & * \\ * & * & * & it_2 & * \\ \tau_2^t & * & * & * & \tau_3 \end{pmatrix} := \begin{pmatrix} \tau_1 & \tau_2 \\ \tau_2^t & \tau_3 \end{pmatrix}.$$

(in fact, take out the kernel of $Im \tau$):

$$\lim_{t_1, t_2 \to \infty} \begin{pmatrix} \tau_1 & * & * & * & \tau_2 \\ * & * & it_1 & * & * \\ * & it_1 & * & * & * \\ * & * & * & it_2 & * \\ \tau_2^t & * & * & * & \tau_3 \end{pmatrix} := \begin{pmatrix} \tau_1 & \tau_2 \\ \tau_2^t & \tau_3 \end{pmatrix}.$$

• As a set, \mathcal{A}_g^{Sat} is very easy to describe.

(in fact, take out the kernel of $Im \tau$):

$$\lim_{t_1, t_2 \to \infty} \begin{pmatrix} \tau_1 & * & * & * & \tau_2 \\ * & * & it_1 & * & * \\ * & it_1 & * & * & * \\ * & * & * & it_2 & * \\ \tau_2^t & * & * & * & \tau_3 \end{pmatrix} := \begin{pmatrix} \tau_1 & \tau_2 \\ \tau_2^t & \tau_3 \end{pmatrix}.$$

- As a set, \mathcal{A}_g^{Sat} is very easy to describe.
- There is no reasonable universal family of abelian varieties over A^{Sat}_g.

(in fact, take out the kernel of $Im \tau$):

$$\lim_{t_1, t_2 \to \infty} \begin{pmatrix} \tau_1 & * & * & * & \tau_2 \\ * & * & it_1 & * & * \\ * & it_1 & * & * & * \\ * & * & * & it_2 & * \\ \tau_2^t & * & * & * & \tau_3 \end{pmatrix} := \begin{pmatrix} \tau_1 & \tau_2 \\ \tau_2^t & \tau_3 \end{pmatrix}.$$

- As a set, $\mathcal{A}_g^{\mathsf{Sat}}$ is very easy to describe.
- There is no reasonable universal family of abelian varieties over A^{Sat}_g.
- $\mathcal{A}_g^{\text{Sat}}$ is very singular, boundary is codimension g.

Tautological ring of $\mathcal{A}_g^{\rm Sat}$

 $R^*(\mathcal{A}_g^{Sat})$ is the ring generated by Hodge classes λ_i .

 $R^*(\mathcal{A}_g^{Sat})$ is the ring generated by Hodge classes λ_i .

・ロト・日本・モート モー うへぐ

Theorem (EKEDAHL-OORT)

The class of $\mathcal{A}_{g-1} \subset \mathcal{A}_g^{Sat}$ is a multiple of λ_g .

 $R^*(\mathcal{A}_g^{Sat})$ is the ring generated by Hodge classes λ_i .

Theorem (EKEDAHL-OORT)

The class of $\mathcal{A}_{g-1} \subset \mathcal{A}_g^{Sat}$ is a multiple of λ_g .

Theorem (VAN DER GEER in H^* , ESNAULT-VIEHWEG in CH^*)

The only relation in $R^*(\mathcal{A}_g^{\text{Sat}})$ is the basic identity $(1 + \lambda_1 + \ldots + \lambda_g) \cdot (1 - \lambda_1 + \ldots + (-1)^g \lambda_g) = 1.$

 $R^*(\mathcal{A}_g^{Sat})$ is the ring generated by Hodge classes λ_i .

Theorem (EKEDAHL-OORT)

The class of $\mathcal{A}_{g-1} \subset \mathcal{A}_g^{Sat}$ is a multiple of λ_g .

Theorem (VAN DER GEER in H^* , ESNAULT-VIEHWEG in CH^*)

The only relation in $R^*(\mathcal{A}_g^{\text{Sat}})$ is the basic identity $(1 + \lambda_1 + \ldots + \lambda_g) \cdot (1 - \lambda_1 + \ldots + (-1)^g \lambda_g) = 1.$

Curiosity

Note that
$$R^*(\mathcal{A}_g^{\mathsf{Sat}}) = R^*(\mathcal{A}_{g+1})$$
. Why?

Toroidal compactifications of \mathcal{A}_g

Toroidal compactifications of \mathcal{A}_g

Idea: bigger than \mathcal{A}_g^{Sat} , with a universal family.

Toroidal compactifications of \mathcal{A}_g

Idea: bigger than \mathcal{A}_{g}^{Sat} , with a universal family.

Universal family of abelian varieties $\mathcal{X}_g \to \mathcal{A}_g$: fiber A over [A].
Toroidal compactifications of \mathcal{A}_g

Idea: bigger than $\mathcal{A}_g^{\text{Sat}}$, with a universal family. Universal family of abelian varieties $\mathcal{X}_g \to \mathcal{A}_g$: fiber A over [A]. Then set $\lim_{t\to\infty} \begin{pmatrix} it & z^t \\ z & \tau' \end{pmatrix} := (\tau', z) \in \mathcal{X}_{g-1}$.

Toroidal compactifications of \mathcal{A}_g

Idea: bigger than $\mathcal{A}_g^{\text{Sat}}$, with a universal family. Universal family of abelian varieties $\mathcal{X}_g \to \mathcal{A}_g$: fiber A over [A]. Then set $\lim_{t\to\infty} \begin{pmatrix} it & z^t \\ z & \tau' \end{pmatrix} := (\tau', z) \in \mathcal{X}_{g-1}$.

So $\mathcal{A}_{g}^{Tor} = \mathcal{A}_{g} \ \sqcup \ \mathcal{X}_{g-1} \sqcup ??$. How to continue further?

Toroidal compactifications of \mathcal{A}_{g}

Idea: bigger than $\mathcal{A}_g^{\text{Sat}}$, with a universal family. Universal family of abelian varieties $\mathcal{X}_g \to \mathcal{A}_g$: fiber A over [A]. Then set $\lim_{t\to\infty} \begin{pmatrix} it & z^t \\ z & \tau' \end{pmatrix} := (\tau', z) \in \mathcal{X}_{g-1}$.

So $\mathcal{A}_{g}^{Tor} = \mathcal{A}_{g} \ \sqcup \ \mathcal{X}_{g-1} \sqcup$???. How to continue further? Maybe

$$\lim_{t_1, t_2 \to \infty} \begin{pmatrix} it_1 & x & z_1^t \\ x & it_2 & z_2^t \\ z_1 & z_2 & \tau' \end{pmatrix} := (\tau', z_1, z_2) \in \mathcal{X}_{g-2}^{\times 2}$$
?

Toroidal compactifications of \mathcal{A}_{g}

Idea: bigger than $\mathcal{A}_g^{\text{Sat}}$, with a universal family. Universal family of abelian varieties $\mathcal{X}_g \to \mathcal{A}_g$: fiber A over [A]. Then set $\lim_{t\to\infty} \begin{pmatrix} it & z^t \\ z & \tau' \end{pmatrix} := (\tau', z) \in \mathcal{X}_{g-1}$.

So $\mathcal{A}_{g}^{Tor} = \mathcal{A}_{g} \ \sqcup \ \mathcal{X}_{g-1} \sqcup$???. How to continue further? Maybe

$$\lim_{t_1, t_2 \to \infty} \begin{pmatrix} it_1 & x & z_1^t \\ x & it_2 & z_2^t \\ z_1 & z_2 & \tau' \end{pmatrix} := (\tau', z_1, z_2) \in \mathcal{X}_{g-2}^{\times 2} ?$$

No good! Codimension 2 degeneration, need to record x.

Toroidal compactifications of \mathcal{A}_g

Idea: bigger than $\mathcal{A}_{g}^{\text{Sat}}$, with a universal family. Universal family of abelian varieties $\mathcal{X}_{g} \to \mathcal{A}_{g}$: fiber A over [A]. Then set $\lim_{t\to\infty} \begin{pmatrix} it & z^{t} \\ z & \tau' \end{pmatrix} := (\tau', z) \in \mathcal{X}_{g-1}$.

So $\mathcal{A}_{g}^{Tor} = \mathcal{A}_{g} \ \sqcup \ \mathcal{X}_{g-1} \sqcup$???. How to continue further? Maybe

$$\lim_{t_1, t_2 \to \infty} \begin{pmatrix} it_1 & x & z_1^t \\ x & it_2 & z_2^t \\ z_1 & z_2 & \tau' \end{pmatrix} := (\tau', z_1, z_2) \in \mathcal{X}_{g-2}^{\times 2}$$
?

No good! Codimension 2 degeneration, need to record x. Correct approach: don't go to infinity, consider $Ker(Im(\tau))$.

Toroidal compactifications of \mathcal{A}_g

Idea: bigger than $\mathcal{A}_{g}^{\text{Sat}}$, with a universal family. Universal family of abelian varieties $\mathcal{X}_{g} \to \mathcal{A}_{g}$: fiber A over [A]. Then set $\lim_{t\to\infty} \begin{pmatrix} it & z^{t} \\ z & \tau' \end{pmatrix} := (\tau', z) \in \mathcal{X}_{g-1}$.

So $\mathcal{A}_{g}^{Tor} = \mathcal{A}_{g} \ \sqcup \ \mathcal{X}_{g-1} \sqcup$???. How to continue further? Maybe

$$\lim_{t_1,t_2\to\infty} \begin{pmatrix} it_1 & x & z_1^t \\ x & it_2 & z_2^t \\ z_1 & z_2 & \tau' \end{pmatrix} := (\tau',z_1,z_2) \in \mathcal{X}_{g-2}^{\times 2}$$
?

No good! Codimension 2 degeneration, need to record x. Correct approach: don't go to infinity, consider $Ker(Im(\tau))$.

Data for compactification: for each $k \leq g$ a decomposition of $Sym^2_{\geq 0}(\mathbb{R}^k)$ into polyhedral cones, invariant under $GL_k(\mathbb{Z})$.

<□ > < @ > < E > < E > E のQ @

 $\begin{array}{l} \mbox{Toroidal compactifications } \mathcal{A}_g^{\rm Perf} \mbox{ and } \mathcal{A}_g^{\rm Vor} \\ \mbox{Perfect cone compactification } \mathcal{A}_g^{\rm Perf} \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Perfect cone compactification $\mathcal{A}_{g}^{\mathsf{Perf}}$

• The boundary $\partial \mathcal{A}_g^{\mathsf{Perf}}$ is irreducible, \mathcal{X}_{g-1} is dense within it.

Perfect cone compactification $\mathcal{A}_{g}^{\mathsf{Perf}}$

- The boundary $\partial \mathcal{A}_g^{\mathsf{Perf}}$ is irreducible, \mathcal{X}_{g-1} is dense within it.
- Maps to \$\mathcal{A}_g^{Sat}\$, the structure over \$\mathcal{A}_{g-k}\$ is some toric variety bundle over \$\mathcal{X}_{g-k}^{\times k}\$ independent of \$g\$ only depends on \$k\$.

Perfect cone compactification $\mathcal{A}_{g}^{\mathsf{Perf}}$

- The boundary $\partial \mathcal{A}_g^{\mathsf{Perf}}$ is irreducible, \mathcal{X}_{g-1} is dense within it.
- Maps to \$\mathcal{A}_g^{Sat}\$, the structure over \$\mathcal{A}_{g-k}\$ is some toric variety bundle over \$\mathcal{X}_{g-k}^{\times k}\$ independent of \$g\$ only depends on \$k\$.
- Is the canonical model of A_g for g ≥ 12 for the minimal model program, i.e. K_{APerf} is ample. [SHEPHERD-BARRON]

Perfect cone compactification $\mathcal{A}_{g}^{\mathsf{Perf}}$

- \bullet The boundary $\partial \mathcal{A}_g^{\mathsf{Perf}}$ is irreducible, \mathcal{X}_{g-1} is dense within it.
- Maps to A^{Sat}_g, the structure over A_{g-k} is some toric variety bundle over X^{×k}_{g-k} independent of g only depends on k.
- Is the canonical model of A_g for g ≥ 12 for the minimal model program, i.e. K_{APerf} is ample. [SHEPHERD-BARRON]

• No known universal family over $\mathcal{A}_g^{\mathsf{Perf}}$.

Perfect cone compactification $\mathcal{A}_{g}^{\mathsf{Perf}}$

- \bullet The boundary $\partial \mathcal{A}_g^{\mathsf{Perf}}$ is irreducible, \mathcal{X}_{g-1} is dense within it.
- Maps to \$\mathcal{A}_g^{Sat}\$, the structure over \$\mathcal{A}_{g-k}\$ is some toric variety bundle over \$\mathcal{X}_{g-k}^{\times k}\$ independent of \$g\$ only depends on \$k\$.
- Is the canonical model of A_g for g ≥ 12 for the minimal model program, i.e. K_{APerf} is ample. [SHEPHERD-BARRON]

• No known universal family over $\mathcal{A}_{g}^{\mathsf{Perf}}$.

Second Voronoi compactification $\mathcal{A}_g^{\mathsf{Vor}}$

Perfect cone compactification $\mathcal{A}_{g}^{\mathsf{Perf}}$

- \bullet The boundary $\partial \mathcal{A}_g^{\mathsf{Perf}}$ is irreducible, \mathcal{X}_{g-1} is dense within it.
- Maps to \$\mathcal{A}_g^{Sat}\$, the structure over \$\mathcal{A}_{g-k}\$ is some toric variety bundle over \$\mathcal{X}_{g-k}^{\times k}\$ independent of \$g\$ only depends on \$k\$.
- Is the canonical model of A_g for g ≥ 12 for the minimal model program, i.e. K_{APerf} is ample. [SHEPHERD-BARRON]

• No known universal family over $\mathcal{A}_{g}^{\mathsf{Perf}}$.

Second Voronoi compactification $\mathcal{A}_g^{\mathsf{Vor}}$

• The boundary ∂A_g^{Vor} has many (likely $\gg g$) irreducible divisorial components.

Perfect cone compactification $\mathcal{A}_{g}^{\mathsf{Perf}}$

- \bullet The boundary $\partial \mathcal{A}_g^{\mathsf{Perf}}$ is irreducible, \mathcal{X}_{g-1} is dense within it.
- Maps to \$\mathcal{A}_g^{Sat}\$, the structure over \$\mathcal{A}_{g-k}\$ is some toric variety bundle over \$\mathcal{X}_{g-k}^{\times k}\$ independent of \$g\$ only depends on \$k\$.
- Is the canonical model of A_g for g ≥ 12 for the minimal model program, i.e. K_{A^{Perf}} is ample. [SHEPHERD-BARRON]
- No known universal family over $\mathcal{A}_g^{\mathsf{Perf}}$.

Second Voronoi compactification $\mathcal{A}_g^{\mathsf{Vor}}$

- The boundary ∂A_g^{Vor} has many (likely $\gg g$) irreducible divisorial components.
- Maps to A^{Sat}_g, exist boundary divisors mapping to A_k for small k.

Perfect cone compactification $\mathcal{A}_{g}^{\mathsf{Perf}}$

- \bullet The boundary $\partial \mathcal{A}_g^{\mathsf{Perf}}$ is irreducible, \mathcal{X}_{g-1} is dense within it.
- Maps to \$\mathcal{A}_g^{Sat}\$, the structure over \$\mathcal{A}_{g-k}\$ is some toric variety bundle over \$\mathcal{X}_{g-k}^{\times k}\$ independent of \$g\$ only depends on \$k\$.
- Is the canonical model of A_g for g ≥ 12 for the minimal model program, i.e. K_{A^{Perf}} is ample. [SHEPHERD-BARRON]
- No known universal family over $\mathcal{A}_{g}^{\mathsf{Perf}}$.

Second Voronoi compactification $\mathcal{A}_g^{\mathsf{Vor}}$

- The boundary ∂A_g^{Vor} has many (likely $\gg g$) irreducible divisorial components.
- Maps to $\mathcal{A}_g^{\text{Sat}}$, exist boundary divisors mapping to \mathcal{A}_k for small k.
- There exists a universal family of semiabelic varieties over $\mathcal{A}_g^{\text{Vor}}$. [ALEXEEV]

<□ > < @ > < E > < E > E のQ @

 $L := \lambda_1$; D := the sum of all boundary divisors.

 $L := \lambda_1$; D :=the sum of all boundary divisors. (L and D span $H^2(\mathcal{A}_g^{\mathsf{Perf}}) = \mathsf{Pic}(\mathcal{A}_g^{\mathsf{Perf}})$)

 $L := \lambda_1$; D :=the sum of all boundary divisors. (L and D span $H^2(\mathcal{A}_g^{\mathsf{Perf}}) = \mathsf{Pic}(\mathcal{A}_g^{\mathsf{Perf}})$)

Conjecture [G.-HULEK]

The intersection number $L^a D^{\frac{g(g+1)}{2}-a}$ is zero unless $a = \frac{k(k+1)}{2}$.

 $L := \lambda_1$; D :=the sum of all boundary divisors. (L and D span $H^2(\mathcal{A}_g^{\text{Perf}}) = \text{Pic}(\mathcal{A}_g^{\text{Perf}})$)

Conjecture [G.-HULEK]

The intersection number $L^a D^{\frac{g(g+1)}{2}-a}$ is zero unless $a = \frac{k(k+1)}{2}$.

Theorem (ERDENBERGER-G.-HULEK)

The conjecture holds for $g \leq 4$ for any a.

 $L := \lambda_1$; D :=the sum of all boundary divisors. (L and D span $H^2(\mathcal{A}_g^{\mathsf{Perf}}) = \mathsf{Pic}(\mathcal{A}_g^{\mathsf{Perf}})$)

Conjecture [G.-HULEK]

The intersection number $L^a D^{\frac{g(g+1)}{2}-a}$ is zero unless $a = \frac{k(k+1)}{2}$.

Theorem (ERDENBERGER-G.-HULEK)

The conjecture holds for $g \leq 4$ for any a.

Theorem (G.-HULEK)

The conjecture holds for $a > \frac{(g-3)(g-2)}{2}$ for any g.

 $L := \lambda_1$; D :=the sum of all boundary divisors. (L and D span $H^2(\mathcal{A}_g^{\mathsf{Perf}}) = \mathsf{Pic}(\mathcal{A}_g^{\mathsf{Perf}})$)

Conjecture [G.-HULEK]

The intersection number $L^a D^{\frac{g(g+1)}{2}-a}$ is zero unless $a = \frac{k(k+1)}{2}$.

Theorem (ERDENBERGER-G.-HULEK)

The conjecture holds for $g \leq 4$ for any a.

Theorem (G.-HULEK)

The conjecture holds for $a > \frac{(g-3)(g-2)}{2}$ for any g.

Any reason for this to hold?

 $L := \lambda_1$; D :=the sum of all boundary divisors. (L and D span $H^2(\mathcal{A}_g^{Perf}) = Pic(\mathcal{A}_g^{Perf})$)

Conjecture [G.-HULEK]

The intersection number $L^a D^{\frac{g(g+1)}{2}-a}$ is zero unless $a = \frac{k(k+1)}{2}$.

Theorem (ERDENBERGER-G.-HULEK)

The conjecture holds for $g \leq 4$ for any a.

Theorem (G.-HULEK)

The conjecture holds for a $> \frac{(g-3)(g-2)}{2}$ for any g.

Any reason for this to hold?

Note $\frac{k(k+1)}{2}$ are dimensions of boundary strata of $\mathcal{A}_g^{\mathsf{Sat}}\dots$

Theorem (CHARNEY-LEE)

The cohomology $H^k(\mathcal{A}_g^{Sat})$ is independent of g for g > k, and is freely generated by $\lambda_1, \lambda_3, \lambda_5, \ldots$ and $\alpha_3, \alpha_5, \ldots$.

Theorem (CHARNEY-LEE)

The cohomology $H^k(\mathcal{A}_g^{Sat})$ is independent of g for g > k, and is freely generated by $\lambda_1, \lambda_3, \lambda_5, \ldots$ and $\alpha_3, \alpha_5, \ldots$.

Proof purely topological.

Theorem (CHARNEY-LEE)

The cohomology $H^k(\mathcal{A}_g^{Sat})$ is independent of g for g > k, and is freely generated by $\lambda_1, \lambda_3, \lambda_5, \ldots$ and $\alpha_3, \alpha_5, \ldots$.

Proof purely topological.

Theorem (CHEN-LOOIJENGA)

No polynomial in the classes α_i is algebraic.

Theorem (CHARNEY-LEE)

The cohomology $H^k(\mathcal{A}_g^{Sat})$ is independent of g for g > k, and is freely generated by $\lambda_1, \lambda_3, \lambda_5, \ldots$ and $\alpha_3, \alpha_5, \ldots$.

Proof purely topological.

Theorem (CHEN-LOOIJENGA)

No polynomial in the classes α_i is algebraic.

Also gives a more algebraic proof.

Theorem (CHARNEY-LEE)

The cohomology $H^k(\mathcal{A}_g^{Sat})$ is independent of g for g > k, and is freely generated by $\lambda_1, \lambda_3, \lambda_5, \ldots$ and $\alpha_3, \alpha_5, \ldots$.

Proof purely topological.

Theorem (CHEN-LOOIJENGA)

No polynomial in the classes α_i is algebraic.

Also gives a more algebraic proof.

Thus it is natural to still define the (algebraic) tautological ring of $\mathcal{A}_{g}^{\text{Sat}}$ to be generated by λ_{i} .

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ■ のへで

Theorem (G.-HULEK-TOMMASI)

The cohomology $H^{g(g+1)-k}(\mathcal{A}_g^{\mathsf{Perf}})$ is independent of g for g > k,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (G.-HULEK-TOMMASI)

The cohomology $H^{g(g+1)-k}(\mathcal{A}_g^{\mathsf{Perf}})$ is independent of g for g > k, and is purely algebraic.

Theorem (G.-HULEK-TOMMASI)

The cohomology $H^{g(g+1)-k}(\mathcal{A}_g^{\mathsf{Perf}})$ is independent of g for g > k, and is purely algebraic.

 $\mathcal{A}_g^{\mathsf{Perf}}$ is singular, so there is no Poincaré duality, can have

$$H^{g(g+1)-k}(\mathcal{A}_g^{\mathsf{Perf}}) \not\simeq H_k(\mathcal{A}_g^{\mathsf{Perf}}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (G.-HULEK-TOMMASI)

The cohomology $H^{g(g+1)-k}(\mathcal{A}_g^{\mathsf{Perf}})$ is independent of g for g > k, and is purely algebraic.

 $\mathcal{A}_g^{\mathsf{Perf}}$ is singular, so there is no Poincaré duality, can have

$$H^{g(g+1)-k}(\mathcal{A}_g^{\mathsf{Perf}}) \not\simeq H_k(\mathcal{A}_g^{\mathsf{Perf}}).$$

Smooth matroidal locus $\mathcal{A}_g^{Matr} = \mathcal{A}_g^{Perf} \cap \mathcal{A}_g^{Vor}$. [Melo-Viviani]

Theorem (G.-HULEK-TOMMASI)

The cohomology $H^{g(g+1)-k}(\mathcal{A}_g^{\mathsf{Perf}})$ is independent of g for g > k, and is purely algebraic.

 $\mathcal{A}_g^{\mathsf{Perf}}$ is singular, so there is no Poincaré duality, can have

$$H^{g(g+1)-k}(\mathcal{A}_g^{\mathsf{Perf}}) \not\simeq H_k(\mathcal{A}_g^{\mathsf{Perf}}).$$

 $\label{eq:matrix} \mbox{Smooth matroidal locus } \mathcal{A}_g^{Matr} = \mathcal{A}_g^{Perf} \cap \mathcal{A}_g^{Vor}. \quad \mbox{[Melo-Viviani]}$

Theorem (G.-HULEK-TOMMASI)

The cohomology $H^k(\mathcal{A}_g^{Matr})$ is independent of g for g > k, and is purely algebraic.
Dream

<□> <□> <□> <□> <=> <=> <=> <=> <<

Dream

• Prove that
$$H^k(\mathcal{A}_g^{\text{Perf}})$$
 stabilizes.
[J. GIANSIRACUSA-SANKARAN, in progress]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dream

- Prove that $H^k(\mathcal{A}_g^{\text{Perf}})$ stabilizes. [J. GIANSIRACUSA-SANKARAN, in progress]
- Understand the stable failure of Poincaré duality on $\mathcal{A}_g^{\mathsf{Perf}}$.

Dream

- Prove that $H^k(\mathcal{A}_g^{\text{Perf}})$ stabilizes. [J. GIANSIRACUSA-SANKARAN, in progress]
- Understand the stable failure of Poincaré duality on $\mathcal{A}_g^{\mathsf{Perf}}$.
- Understand the algebraic generators x_i of stable cohomology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dream

- Prove that $H^k(\mathcal{A}_g^{\text{Perf}})$ stabilizes. [J. GIANSIRACUSA-SANKARAN, in progress]
- Understand the stable failure of Poincaré duality on $\mathcal{A}_g^{\mathsf{Perf}}$.
- Understand the algebraic generators x_i of stable cohomology.

• Define extended tautological ring of $\mathcal{A}_g^{\text{Perf}}$, generated by x_i .

Dream

- Prove that $H^k(\mathcal{A}_g^{\text{Perf}})$ stabilizes. [J. GIANSIRACUSA-SANKARAN, in progress]
- Understand the stable failure of Poincaré duality on $\mathcal{A}_g^{\mathsf{Perf}}$.
- Understand the algebraic generators x_i of stable cohomology.

- Define extended tautological ring of $\mathcal{A}_g^{\text{Perf}}$, generated by x_i .
- Formulate an analog of extended Faber's conjecture.

Dream

- Prove that $H^k(\mathcal{A}_g^{\text{Perf}})$ stabilizes. [J. GIANSIRACUSA-SANKARAN, in progress]
- Understand the stable failure of Poincaré duality on $\mathcal{A}_g^{\mathsf{Perf}}$.
- Understand the algebraic generators x_i of stable cohomology.
- Define extended tautological ring of $\mathcal{A}_{g}^{\text{Perf}}$, generated by x_{i} .
- Formulate an analog of extended Faber's conjecture.
- Prove that the extended tautological ring contains the classes of natural geometric subvarieties, starting with A^{Perf}_i × A^{Perf}_{g-i}.

Dream

- Prove that $H^k(\mathcal{A}_g^{\text{Perf}})$ stabilizes. [J. GIANSIRACUSA-SANKARAN, in progress]
- Understand the stable failure of Poincaré duality on $\mathcal{A}_g^{\mathsf{Perf}}$.
- Understand the algebraic generators x_i of stable cohomology.
- Define extended tautological ring of $\mathcal{A}_{g}^{\text{Perf}}$, generated by x_{i} .
- Formulate an analog of extended Faber's conjecture.
- Prove that the extended tautological ring contains the classes of natural geometric subvarieties, starting with A^{Perf}_i × A^{Perf}_{g-i}.

Theorem (G.-HULEK)

The class of the locus of products in $\mathcal{A}_4^{\mathsf{Perf}}$ is tautological. The (more or less) class of the locus of intermediate Jacobians of cubic threefolds is tautological in $\mathcal{A}_5^{\mathsf{Perf}}$.

<□ > < @ > < E > < E > E のQ @

Since dim $H^2(\overline{\mathcal{M}}_g) = 1 + \lfloor g/2 \rfloor$, can't have stabilization.

Since dim $H^2(\overline{\mathcal{M}}_g) = 1 + \lfloor g/2 \rfloor$, can't have stabilization. Conjecturally, dim $H^2(\mathcal{A}_g^{Vor}) \gtrsim g$, so no stabilization either.

Since dim $H^2(\overline{\mathcal{M}}_g) = 1 + \lfloor g/2 \rfloor$, can't have stabilization. Conjecturally, dim $H^2(\mathcal{A}_g^{Vor}) \gtrsim g$, so no stabilization either.

Maybe other compactifications of \mathcal{M}_g ?

Since dim $H^2(\overline{\mathcal{M}}_g) = 1 + \lfloor g/2 \rfloor$, can't have stabilization. Conjecturally, dim $H^2(\mathcal{A}_g^{Vor}) \gtrsim g$, so no stabilization either.

Maybe other compactifications of \mathcal{M}_g ?

The Torelli map $\mathcal{M}_g \to \mathcal{A}_g$ extends to $\overline{\mathcal{M}}_g \to \mathcal{A}_g^{\mathsf{Perf}}$. [ALEXEEV-BRUNYATE].

Since dim $H^2(\overline{\mathcal{M}}_g) = 1 + \lfloor g/2 \rfloor$, can't have stabilization. Conjecturally, dim $H^2(\mathcal{A}_g^{Vor}) \gtrsim g$, so no stabilization either.

Maybe other compactifications of \mathcal{M}_g ?

The Torelli map $\mathcal{M}_g \to \mathcal{A}_g$ extends to $\overline{\mathcal{M}}_g \to \mathcal{A}_g^{\mathsf{Perf}}$. [ALEXEEV-BRUNYATE].

However, $\mathcal{M}_g^{ct} \to \mathcal{A}_g$, contracts each δ_i to a codimension 3 locus. Thus \mathcal{H}^6 of the image does not stabilize.

Since dim $H^2(\overline{\mathcal{M}}_g) = 1 + \lfloor g/2 \rfloor$, can't have stabilization. Conjecturally, dim $H^2(\mathcal{A}_g^{Vor}) \gtrsim g$, so no stabilization either.

Maybe other compactifications of \mathcal{M}_g ?

The Torelli map $\mathcal{M}_g \to \mathcal{A}_g$ extends to $\overline{\mathcal{M}}_g \to \mathcal{A}_g^{\mathsf{Perf}}$. [ALEXEEV-BRUNYATE].

However, $\mathcal{M}_g^{ct} \to \mathcal{A}_g$, contracts each δ_i to a codimension 3 locus. Thus H^6 of the image does not stabilize.

Question

Is there any reasonable compactification of \mathcal{M}_g whose homology stabilizes?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

 $\mathcal{A}_{g}^{\mathsf{Sat}}, \mathcal{A}_{g}^{\mathsf{Perf}}, \mathcal{A}_{g}^{\mathsf{Vor}}$ are singular (even as stacks/orbifolds).

 $\mathcal{A}_{g}^{\mathsf{Sat}}, \mathcal{A}_{g}^{\mathsf{Perf}}, \mathcal{A}_{g}^{\mathsf{Vor}}$ are singular (even as stacks/orbifolds).

Goresky-Macpherson intersection homology for singular spaces.

 $\mathcal{A}_{g}^{\mathsf{Sat}}, \mathcal{A}_{g}^{\mathsf{Perf}}, \mathcal{A}_{g}^{\mathsf{Vor}}$ are singular (even as stacks/orbifolds).

Goresky-Macpherson intersection homology for singular spaces.

• For smooth X, $IH^*(X) = H^*(X)$; so $IH^*(\mathcal{A}_g) = H^*(\mathcal{A}_g)$.

 $\mathcal{A}_{g}^{\mathsf{Sat}}, \mathcal{A}_{g}^{\mathsf{Perf}}, \mathcal{A}_{g}^{\mathsf{Vor}}$ are singular (even as stacks/orbifolds).

Goresky-Macpherson intersection homology for singular spaces.

• For smooth X, $IH^*(X) = H^*(X)$; so $IH^*(\mathcal{A}_g) = H^*(\mathcal{A}_g)$.

• For X compact, IH^{*}(X) satisfies Poincaré duality.

 $\mathcal{A}_{g}^{\text{Sat}}, \mathcal{A}_{g}^{\text{Perf}}, \mathcal{A}_{g}^{\text{Vor}}$ are singular (even as stacks/orbifolds).

Goresky-Macpherson intersection homology for singular spaces.

- For smooth X, $IH^*(X) = H^*(X)$; so $IH^*(\mathcal{A}_g) = H^*(\mathcal{A}_g)$.
- For X compact, $IH^*(X)$ satisfies Poincaré duality.
- For any X, have IH_k(X) → H_k(X), such that the image is contained in the set of algebraic classes.

Theorem [BOREL+LOOIJENGA, SAPER-STERN]

The stable intersection cohomology of $\mathcal{A}_g^{\text{Sat}}$ is equal to the stable cohomology of \mathcal{A}_g (i.e. is generated by λ_{2i+1}).

Theorem [BOREL+LOOIJENGA, SAPER-STERN]

The stable intersection cohomology of $\mathcal{A}_{g}^{\text{Sat}}$ is equal to the stable cohomology of \mathcal{A}_{g} (i.e. is generated by λ_{2i+1}).

(Recall that stable $H^k(\mathcal{A}_g^{Sat})$ is freely generated by $\lambda_1, \lambda_3, \lambda_5, \ldots$ and $\alpha_3, \alpha_5, \ldots$, and that no polynomial in α_i is algebraic.) [CHARNEY-LEE, LOOIJENGA]

Theorem [BOREL+LOOIJENGA, SAPER-STERN]

The stable intersection cohomology of $\mathcal{A}_{g}^{\text{Sat}}$ is equal to the stable cohomology of \mathcal{A}_{g} (i.e. is generated by λ_{2i+1}).

(Recall that stable $H^k(\mathcal{A}_g^{Sat})$ is freely generated by $\lambda_1, \lambda_3, \lambda_5, \ldots$ and $\alpha_3, \alpha_5, \ldots$, and that no polynomial in α_i is algebraic.) [CHARNEY-LEE, LOOIJENGA]

Theorem (G.-HULEK)

For $g \leq 4$, $IH^*(\mathcal{A}_g^{\mathsf{Sat}}) = R^*(\mathcal{A}_g^{\mathsf{Sat}})$, except possibly for $IH^{10}(\mathcal{A}_4^{\mathsf{Sat}})$.

Theorem [BOREL+LOOIJENGA, SAPER-STERN]

The stable intersection cohomology of $\mathcal{A}_{g}^{\text{Sat}}$ is equal to the stable cohomology of \mathcal{A}_{g} (i.e. is generated by λ_{2i+1}).

(Recall that stable $H^k(\mathcal{A}_g^{Sat})$ is freely generated by $\lambda_1, \lambda_3, \lambda_5, \ldots$ and $\alpha_3, \alpha_5, \ldots$, and that no polynomial in α_i is algebraic.) [CHARNEY-LEE, LOOIJENGA]

Theorem (G.-HULEK) For $g \leq 4$, $IH^*(\mathcal{A}_g^{Sat}) = R^*(\mathcal{A}_g^{Sat})$, except possibly for $IH^{10}(\mathcal{A}_4^{Sat})$.

Question

Is there a stable decomposition theorem for $\mathcal{A}_g^{\mathsf{Perf}} o \mathcal{A}_g^{\mathsf{Sat}}$?

Theorem [BOREL+LOOIJENGA, SAPER-STERN]

The stable intersection cohomology of $\mathcal{A}_g^{\text{Sat}}$ is equal to the stable cohomology of \mathcal{A}_g (i.e. is generated by λ_{2i+1}).

(Recall that stable $H^k(\mathcal{A}_g^{Sat})$ is freely generated by $\lambda_1, \lambda_3, \lambda_5, \ldots$ and $\alpha_3, \alpha_5, \ldots$, and that no polynomial in α_i is algebraic.) [CHARNEY-LEE, LOOIJENGA]

Theorem (G.-HULEK) For $g \leq 4$, $IH^*(\mathcal{A}_g^{Sat}) = R^*(\mathcal{A}_g^{Sat})$, except possibly for $IH^{10}(\mathcal{A}_4^{Sat})$.

Question

Is there a stable decomposition theorem for $\mathcal{A}_g^{\mathsf{Perf}} \to \mathcal{A}_g^{\mathsf{Sat}}$? Does $IH^k(\mathcal{A}_g^{\mathsf{Perf}})$ stabilize?

Theorem [BOREL+LOOIJENGA, SAPER-STERN]

The stable intersection cohomology of $\mathcal{A}_g^{\text{Sat}}$ is equal to the stable cohomology of \mathcal{A}_g (i.e. is generated by λ_{2i+1}).

(Recall that stable $H^k(\mathcal{A}_g^{Sat})$ is freely generated by $\lambda_1, \lambda_3, \lambda_5, \ldots$ and $\alpha_3, \alpha_5, \ldots$, and that no polynomial in α_i is algebraic.) [CHARNEY-LEE, LOOIJENGA]

Theorem (G.-HULEK) For $g \leq 4$, $IH^*(\mathcal{A}_g^{Sat}) = R^*(\mathcal{A}_g^{Sat})$, except possibly for $IH^{10}(\mathcal{A}_4^{Sat})$.

Question

Is there a stable decomposition theorem for $\mathcal{A}_{g}^{\text{Perf}} \to \mathcal{A}_{g}^{\text{Sat}}$? Does $IH^{k}(\mathcal{A}_{g}^{\text{Perf}})$ stabilize? Is it equal to stable $H^{k}(\mathcal{A}_{g}^{\text{Perf}})$ or to stable $H^{g(g+1)-k}(\mathcal{A}_{g}^{\text{Perf}})$?