Superstring scattering amplitudes and modular forms

Samuel Grushevsky

Stony Brook University

Versions given in Hannover and Berlin in 2010

<ロト (個) (目) (目) (目) (0) (0)</p>

• Particle: point traveling in space-time

• Particle: point traveling in space-time

ヘロト ヘ週ト ヘヨト ヘヨト

э

so a singular trajectory

• Particle: point traveling in space-time

so a singular trajectory

 Probability amplitude: integral over all possible trajectories (have a propagator for each free movement, and probabilities for each interaction)

• Particle: point traveling in space-time

so a singular trajectory

 Probability amplitude: integral over all possible trajectories (have a propagator for each free movement, and probabilities for each interaction)

• Problem:

the integral for many (> 4) interactions diverges

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへぐ

• Particle: string = a small circle

• Particle: string = a small circle

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Particle: string = a small circle

- Trajectory:
- Interaction:

• Probability amplitude:

integral over all possible trajectories, i.e. over all possible surfaces with given end-circles.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Particle: string = a small circle

- Trajectory:
- Interaction:

• Probability amplitude:

integral over all possible trajectories, i.e. over all possible surfaces with given end-circles.

• Question:

how to assign a weight to a given surface, i.e. what is the probability distribution on the set of all trajectories?

 k_1, \ldots, k_n the momenta of incoming/outgoing particles X Riemann surface of genus g with n circles as ends M 26-dimensional manifold with a Riemannian metric

 $\phi: X \rightarrow M$ a worldsheet (trajectory of a string)

 $\begin{array}{ll} k_1,\ldots,k_n & \text{the momenta of incoming/outgoing particles} \\ X & \text{Riemann surface of genus } g \text{ with } n \text{ circles as ends} \\ M & 26\text{-dimensional manifold with a Riemannian metric} \\ \phi: X \to M & \text{a worldsheet (trajectory of a string)} \\ \text{We integrate over the space of all such maps: amplitude} \end{array}$

$$A_g(k_1,\ldots,k_n) = \int_{X,\phi} e^{-I(X,\phi)} \prod_{i=1}^n V(k_i,X,\phi) D(X,\phi)$$

 $\begin{array}{ll} k_1,\ldots,k_n & \text{the momenta of incoming/outgoing particles} \\ X & \text{Riemann surface of genus } g \text{ with } n \text{ circles as ends} \\ M & 26\text{-dimensional manifold with a Riemannian metric} \\ \phi: X \to M & \text{a worldsheet (trajectory of a string)} \\ \text{We integrate over the space of all such maps: amplitude} \end{array}$

$$A_g(k_1,\ldots,k_n) = \int_{X,\phi} e^{-I(X,\phi)} \prod_{i=1}^n V(k_i,X,\phi) D(X,\phi)$$

The total probability is then

$$A(k_1,\ldots,k_n)=\sum_{g=0}^{\infty}\lambda^{2g-2}A_g(k_1,\ldots,k_n)$$

 $\begin{array}{ll} k_1,\ldots,k_n & \text{the momenta of incoming/outgoing particles} \\ X & \text{Riemann surface of genus } g \text{ with } n \text{ circles as ends} \\ M & 26\text{-dimensional manifold with a Riemannian metric} \\ \phi: X \to M & \text{a worldsheet (trajectory of a string)} \\ \text{We integrate over the space of all such maps: amplitude} \end{array}$

$$A_g(k_1,\ldots,k_n) = \int_{X,\phi} e^{-I(X,\phi)} \prod_{i=1}^n V(k_i,X,\phi) D(X,\phi)$$

The total probability is then

$$A(k_1,\ldots,k_n)=\sum_{g=0}^{\infty}\lambda^{2g-2}A_g(k_1,\ldots,k_n)$$

Simplest case: no incoming or outgoing particles. Free energy = vacuum-to-vacuum probability.

$$A_g^{bos} := \int_{X, \phi: X \to M} e^{-I(X, \phi)} D(X, \phi)$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

What is the action I (and the measure D)?

$$A_g^{bos} := \int\limits_{X,\phi:X\to M} e^{-I(X,\phi)} D(X,\phi)$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

What is the action I (and the measure D)?

$$\begin{array}{ll} z & \mbox{holomorphic coordinate on } X \\ h_{a,b}(z) & \mbox{metric on } X \\ x^{\mu}(z) & \mbox{the coordinates on } M^{26} \supset \phi(X) \\ s_{\mu\nu}(x) & \mbox{Riemannian metric on } M^{26} \end{array}$$

$$A_g^{bos} := \int\limits_{X,\phi:X\to M} e^{-I(X,\phi)} D(X,\phi)$$

What is the action I (and the measure D)?

zholomorphic coordinate on X
$$h_{a,b}(z)$$
metric on X $x^{\mu}(z)$ the coordinates on $M^{26} \supset \phi(X)$ $s_{\mu\nu}(x)$ Riemannian metric on M^{26}

$$I(X,\phi) := \int_X dz \, d\overline{z} \, \sqrt{\det h(z)} \, h^{ab}(z) \, \partial_a x^{\mu}(z) \, \partial_b \, x^{\nu}(z) s_{\mu\nu}(x(z))$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

$$A_g^{bos} := \int\limits_{X,\phi:X\to M} e^{-I(X,\phi)} D(X,\phi)$$

What is the action I (and the measure D)?

$$\begin{array}{lll}z & \text{holomorphic coordinate on } X \\ h_{a,b}(z) & \text{metric on } X \\ x^{\mu}(z) & \text{the coordinates on } M^{26} \supset \phi(X) \\ s_{\mu\nu}(x) & \text{Riemannian metric on } M^{26} \end{array}$$

$$I(X,\phi) := \int_X dz \, d\overline{z} \, \sqrt{\det h(z)} \, h^{ab}(z) \, \partial_a x^{\mu}(z) \, \partial_b \, x^{\nu}(z) s_{\mu\nu}(x(z))$$

The action is invariant under conformal transformations. Thus the integrand in A_g only depends on the complex structure on X, not the map or the metric on M^{26} .

$$A_g^{bos} := \int\limits_{X,\phi:X\to M} e^{-I(X,\phi)} D(X,\phi)$$

What is the action I (and the measure D)?

$$\begin{array}{ll}z & \text{holomorphic coordinate on } X \\ h_{a,b}(z) & \text{metric on } X \\ x^{\mu}(z) & \text{the coordinates on } M^{26} \supset \phi(X) \\ s_{\mu\nu}(x) & \text{Riemannian metric on } M^{26} \end{array}$$

$$I(X,\phi) := \int_X dz \, d\overline{z} \, \sqrt{\det h(z)} \, h^{ab}(z) \, \partial_a x^{\mu}(z) \, \partial_b \, x^{\nu}(z) s_{\mu\nu}(x(z))$$

The action is invariant under conformal transformations. Thus the integrand in A_g only depends on the complex structure on X, not the map or the metric on M^{26} .

(This is a physical argument: reducing an infinite-dimensional integral over all worldsheets to a finite-dimensional one)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

$$\mathcal{A}_{g}^{bos} = \int_{\mathcal{M}_{g}} ||d\mu_{ ext{bos}}||^2$$

$$\mathcal{A}_g^{bos} = \int_{\mathcal{M}_g} ||d\mu_{ ext{bos}}||^2$$

 $d\mu_{bos}$ is a top degree holomorphic form on \mathcal{M}_g , i.e. a (3g - 3, 0) form, i.e. a canonical form (section of the canonical bundle $K_{\mathcal{M}_g}$).

$$\mathcal{A}_{g}^{bos} = \int_{\mathcal{M}_{g}} ||d\mu_{ ext{bos}}||^{2}$$

 $d\mu_{bos}$ is a top degree holomorphic form on \mathcal{M}_g , i.e. a (3g - 3, 0) form, i.e. a canonical form (section of the canonical bundle $K_{\mathcal{M}_g}$). Genus 0: \mathcal{M}_0 =one point, there is nothing to integrate. (An interesting expression for the 4-point function $A_0(k_1, k_2, k_3, k_4)$)

$$A_g^{bos} = \int_{\mathcal{M}_g} ||d\mu_{ ext{bos}}||^2$$

 $d\mu_{bos}$ is a top degree holomorphic form on \mathcal{M}_g , i.e. a (3g - 3, 0) form, i.e. a canonical form (section of the canonical bundle $K_{\mathcal{M}_g}$).

In genus 1 we have

$$A_1^{bos} = \int_{\mathcal{M}_1 = \mathbb{H}/SL(2,\mathbb{Z})} \frac{1}{(\operatorname{Im} \tau)^{14}} \left| \frac{d\tau}{\prod \theta_m^8(\tau)} \right|^2$$

$$\mathcal{A}_g^{bos} = \int_{\mathcal{M}_g} ||d\mu_{ ext{bos}}||^2$$

 $d\mu_{bos}$ is a top degree holomorphic form on \mathcal{M}_g , i.e. a (3g - 3, 0) form, i.e. a canonical form (section of the canonical bundle $K_{\mathcal{M}_g}$).

In genus 1 we have

$$A_1^{bos} = \int_{\mathcal{M}_1 = \mathbb{H}/SL(2,\mathbb{Z})} \frac{1}{(\operatorname{Im} \tau)^{14}} \left| \frac{d\tau}{\prod \theta_m^8(\tau)} \right|^2$$

(Explicit expressions also known for g = 2, 3)

$$\mathcal{A}_g^{bos} = \int_{\mathcal{M}_g} ||d\mu_{ ext{bos}}||^2$$

 $d\mu_{bos}$ is a top degree holomorphic form on \mathcal{M}_g , i.e. a (3g - 3, 0) form, i.e. a canonical form (section of the canonical bundle $\mathcal{K}_{\mathcal{M}_g}$).

In genus 1 we have

$$A_1^{bos} = \int_{\mathcal{M}_1 = \mathbb{H}/SL(2,\mathbb{Z})} \frac{1}{(\operatorname{Im} \tau)^{14}} \left| \frac{d\tau}{\prod \theta_m^8(\tau)} \right|^2$$

(Explicit expressions also known for g = 2, 3)

Problem:

The bosonic measure is not integrable: it blows up near $\partial \overline{\mathcal{M}_g}$ as $\frac{dz}{z^2}$, and thus $\int_{\mathcal{M}_g} ||d\mu^2_{bos}|| = \infty$

- X a Riemann surface of genus g with n circles as ends
- *M* 10-dimensional supermanifold with a Riemannian metric

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\phi: X \rightarrow M$ a worldsheet (trajectory of a string)

 $\begin{array}{lll} X & \text{a Riemann surface of genus } g \text{ with } n \text{ circles as ends} \\ M & 10\text{-dimensional supermanifold with a Riemannian metric} \\ \phi: X \to M & \text{a worldsheet (trajectory of a string)} \\ & A_{g}^{ss} := \int e^{-I^{ss}(X,\phi)} D(X,\phi) \end{array}$

$$\sum_{X, \phi: X \to M} e^{-\Delta U}$$

 $\begin{array}{ll} X & \text{a Riemann surface of genus } g \text{ with } n \text{ circles as ends} \\ M & 10\text{-dimensional supermanifold with a Riemannian metric} \\ \phi: X \to M & \text{a worldsheet (trajectory of a string)} \\ & A_g^{ss} := \int\limits_{X, \ \phi: X \to M} e^{-l^{ss}(X, \phi)} D(X, \phi) \end{array}$

Even fields:

coordinates x^{μ} on M^{10} , metric $s_{\mu\nu}$ on M

 $\begin{array}{ll} X & \text{a Riemann surface of genus } g \text{ with } n \text{ circles as ends} \\ M & 10\text{-dimensional supermanifold with a Riemannian metric} \\ \phi: X \to M & \text{a worldsheet (trajectory of a string)} \\ & A_g^{ss} := \int\limits_{X, \phi: X \to M} e^{-I^{ss}(X,\phi)} D(X,\phi) \end{array}$

Even fields:

coordinates x^{μ} on M^{10} , metric $s_{\mu\nu}$ on MOdd fields:

coordinates $\psi_{\pm}(z)(dz)^{1/2}$; gravitino $rac{\chi^-_z(z)}{\chi^+_{\overline{z}}(z)}(d\overline{z})\otimes (dz)^{1/2}$.

 $\begin{array}{ll} X & \text{a Riemann surface of genus } g \text{ with } n \text{ circles as ends} \\ M & 10\text{-dimensional supermanifold with a Riemannian metric} \\ \phi: X \to M & \text{a worldsheet (trajectory of a string)} \\ & A_g^{ss} := \int\limits_{X, \phi: X \to M} e^{-I^{ss}(X,\phi)} D(X,\phi) \end{array}$

Even fields:

coordinates x^{μ} on M^{10} , metric $s_{\mu\nu}$ on MOdd fields:

coordinates $\psi_{\pm}(z)(dz)^{1/2}$; gravitino $\frac{\chi_{\overline{z}}^{-}(z)}{\chi_{\overline{z}}^{+}(z)}(d\overline{z})\otimes (dz)^{1/2}$.

$$I^{ss}(X,\phi) := \frac{1}{4\pi} \int_X dz \, d\overline{z} s_{\mu\nu} \Big(\partial_z x^\mu \partial_{\overline{z}} x^\nu - \psi^\mu_+ \partial_{\overline{z}} \psi^\nu_+ \Big)$$

$$-\psi_-^{\mu}\partial_z\psi_-^{\nu} - \frac{1}{2}\chi_{\overline{z}}^+\chi_z^-\psi_+^{\mu}\psi_-^{\nu} + \chi_{\overline{z}}^+\psi_+^{\mu}\partial_z x^{\nu} + \chi_z^-\psi_-^{\mu}\partial_{\overline{z}}x^{\nu}\right)$$

Superstring measure

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Superstring measure

Physics prediction: superconformal invariance,...; \Rightarrow everything should depend only on the superRiemann surface, so

$$A_g^{ss} = \int_{s\mathcal{M}_g} ||d\mu_{ss}||^2$$

$$\dim s\mathcal{M}_g = (3g-3; 2g-2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Superstring measure

Physics prediction: superconformal invariance,...;

 $\Rightarrow \mathsf{everything}$ should depend only on the superRiemann surface, so

$$A_g^{ss} = \int_{s\mathcal{M}_g} ||d\mu_{ss}||^2$$

$$\dim s\mathcal{M}_g = (3g-3; 2g-2)$$

Gauge-fixing: choose a section $s\mathcal{M}_g \rightarrow$ space of maps (X, ϕ)
Physics prediction: superconformal invariance,...;

 $\Rightarrow \mbox{everything should depend only on the superRiemann surface, so$

$$A_g^{ss} = \int_{s\mathcal{M}_g} ||d\mu_{ss}||^2$$

$$\dim s\mathcal{M}_g = (3g-3; 2g-2)$$

Gauge-fixing: choose a section $sM_g \rightarrow space$ of maps (X, ϕ) Difficulties: (for g > 1)

Physics prediction: superconformal invariance,...;

 \Rightarrow everything should depend only on the superRiemann surface, so

$$A_g^{ss} = \int_{s\mathcal{M}_g} ||d\mu_{ss}||^2$$

$$\dim s\mathcal{M}_g = (3g-3; 2g-2)$$

Gauge-fixing: choose a section $sM_g \rightarrow space$ of maps (X, ϕ) Difficulties: (for g > 1)

— The standard (Faddeev-Popov) gauge-fixing does not work for supermoduli. Have to do chiral splitting first.

Physics prediction: superconformal invariance,...;

 \Rightarrow everything should depend only on the superRiemann surface, so

$$A_g^{ss} = \int_{s\mathcal{M}_g} ||d\mu_{ss}||^2$$

$$\dim s\mathcal{M}_g = (3g-3; 2g-2)$$

Gauge-fixing: choose a section $sM_g \rightarrow space$ of maps (X, ϕ) Difficulties: (for g > 1)

— The standard (Faddeev-Popov) gauge-fixing does not work for supermoduli. Have to do chiral splitting first.

 Impossible to choose a holomoprhic section and preserve supersymmetry. Thus need to deform the complex structure simultaneously with other coordinates.

Physics prediction: superconformal invariance,...;

 \Rightarrow everything should depend only on the superRiemann surface, so

$$A_g^{ss} = \int_{s\mathcal{M}_g} ||d\mu_{ss}||^2$$

$$\dim s\mathcal{M}_g = (3g-3; 2g-2)$$

Gauge-fixing: choose a section $sM_g \rightarrow space$ of maps (X, ϕ) Difficulties: (for g > 1)

— The standard (Faddeev-Popov) gauge-fixing does not work for supermoduli. Have to do chiral splitting first.

— Impossible to choose a holomoprhic section and preserve supersymmetry. Thus need to deform the complex structure simultaneously with other coordinates.

D'Hoker-Phong: successfully dealt with this for g = 2.

• The bosonic measure is known explicitly for $g \le 4$; for g > 4: known in terms of extra points on the Riemann surface, or of Weil-Petersson volume, ... (Beilinson, Belavin, D'Hoker, Knizhnik, Manin, Morozov, Phong, Verlinde, Verlinde)

- The bosonic measure is known explicitly for g ≤ 4; for g > 4: known in terms of extra points on the Riemann surface, or of Weil-Petersson volume, ... (Beilinson, Belavin, D'Hoker, Knizhnik, Manin, Morozov, Phong, Verlinde, Verlinde)
- Superstring measure known for g = 1 (Green, Schwarz; Gross, Harvey, Martinec, Rohm 1980's).

- The bosonic measure is known explicitly for g ≤ 4; for g > 4: known in terms of extra points on the Riemann surface, or of Weil-Petersson volume, ... (Beilinson, Belavin, D'Hoker, Knizhnik, Manin, Morozov, Phong, Verlinde, Verlinde)
- Superstring measure known for g = 1 (Green, Schwarz; Gross, Harvey, Martinec, Rohm 1980's).

• Supermoduli difficulties overcome for g = 2 (D'Hoker, Phong breakthrough, 2000's).

- The bosonic measure is known explicitly for $g \le 4$; for g > 4: known in terms of extra points on the Riemann surface, or of Weil-Petersson volume, ... (Beilinson, Belavin, D'Hoker, Knizhnik, Manin, Morozov, Phong, Verlinde, Verlinde)
- Superstring measure known for g = 1 (Green, Schwarz; Gross, Harvey, Martinec, Rohm 1980's).
- Supermoduli difficulties overcome for g = 2 (D'Hoker, Phong breakthrough, 2000's).
- Goal for today: a viable ansatz for the superstring measure in terms of the bosonic measure, for $g \le 5$

- The bosonic measure is known explicitly for $g \le 4$; for g > 4: known in terms of extra points on the Riemann surface, or of Weil-Petersson volume, ... (Beilinson, Belavin, D'Hoker, Knizhnik, Manin, Morozov, Phong, Verlinde, Verlinde)
- Superstring measure known for g = 1 (Green, Schwarz; Gross, Harvey, Martinec, Rohm 1980's).
- Supermoduli difficulties overcome for g = 2 (D'Hoker, Phong breakthrough, 2000's).
- Goal for today: a viable ansatz for the superstring measure in terms of the bosonic measure, for $g \le 5$

Ansatz (G.)

$$d\mu_{ss}[m](\tau) = d\mu_{bos} \sum_{i=0}^{g} (-1)^{i} 2^{i(i-1)/2} \sum_{V \subset (\mathbb{Z}/2)^{2g}; \dim V = i} \prod_{n \in V} \theta_{n+m}^{2^{4-i}}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

 $\mathcal{H}_g := \text{Siegel upper half-space of dimension } g \\ = \text{set of period matrices } \{ \tau \in Mat_{g \times g}(\mathbb{C}) \mid \tau^t = \tau, \text{ Im } \tau > 0 \}$

 $\mathcal{H}_g := \text{Siegel upper half-space of dimension } g$ = set of period matrices { $\tau \in Mat_{g \times g}(\mathbb{C}) \mid \tau^t = \tau, \text{ Im } \tau > 0$ }

The action of $\operatorname{Sp}(2g,\mathbb{Z})$ on \mathcal{H}_g is given by

$$\gamma \circ \tau := (C\tau + D)^{-1}(A\tau + B)$$

for an element $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathsf{Sp}(2g, \mathbb{Z})$

 $\mathcal{H}_g := \text{Siegel upper half-space of dimension } g \\ = \text{set of period matrices } \{ \tau \in Mat_{g \times g}(\mathbb{C}) \mid \tau^t = \tau, \text{ Im } \tau > 0 \}$

The action of $\mathsf{Sp}(2g,\mathbb{Z})$ on \mathcal{H}_g is given by

$$\gamma \circ \tau := (C\tau + D)^{-1}(A\tau + B)$$

for an element
$$\gamma = egin{pmatrix} \mathsf{A} & \mathsf{B} \\ \mathsf{C} & \mathsf{D} \end{pmatrix} \in \mathsf{Sp}(2\mathsf{g},\mathbb{Z})$$

Definition

A modular form of weight k with respect to $\Gamma \subset \text{Sp}(2g, \mathbb{Z})$ is a function $F : \mathcal{H}_g \to \mathbb{C}$ such that

$$F(\gamma \circ \tau) = \det(C\tau + D)^k F(\tau) \qquad \forall \gamma \in \Gamma, \forall \tau \in \mathcal{H}_g$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

For $\tau \in \mathcal{H}_g$ let $A_\tau := \mathbb{C}^g / \mathbb{Z}^g + \tau \mathbb{Z}^g$ be the abelian variety.

For $\tau \in \mathcal{H}_g$ let $A_\tau := \mathbb{C}^g / \mathbb{Z}^g + \tau \mathbb{Z}^g$ be the abelian variety. The theta function of $\tau \in \mathcal{H}_g$, $z \in \mathbb{C}^g$ is

$$heta(au,z) := \sum_{n \in \mathbb{Z}^g} e^{\pi i (n^t(au n + 2z))}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For $\tau \in \mathcal{H}_g$ let $A_\tau := \mathbb{C}^g / \mathbb{Z}^g + \tau \mathbb{Z}^g$ be the abelian variety. The theta function of $\tau \in \mathcal{H}_g$, $z \in \mathbb{C}^g$ is

$$heta(au,z) := \sum_{n \in \mathbb{Z}^g} e^{\pi i (n^t(au n + 2z))}$$

The values of the theta function at points of order two $m := (\tau a + b)/2$ for $a, b \in (\mathbb{Z}/2)^g$)

$$\theta_m(\tau) := \theta \begin{bmatrix} a \\ b \end{bmatrix} (\tau) := \theta(\tau, \frac{\tau a + b}{2})$$

are modular forms of weight one half

For $\tau \in \mathcal{H}_g$ let $A_\tau := \mathbb{C}^g / \mathbb{Z}^g + \tau \mathbb{Z}^g$ be the abelian variety. The theta function of $\tau \in \mathcal{H}_g$, $z \in \mathbb{C}^g$ is

$$heta(au,z) := \sum_{n \in \mathbb{Z}^g} e^{\pi i (n^t(au n + 2z))}$$

The values of the theta function at points of order two $m := (\tau a + b)/2$ for $a, b \in (\mathbb{Z}/2)^g$)

$$\theta_m(\tau) := \theta \begin{bmatrix} \mathsf{a} \\ \mathsf{b} \end{bmatrix} (\tau) := \theta(\tau, \frac{\tau \mathsf{a} + \mathsf{b}}{2})$$

are modular forms of weight one half *(for a finite index subgroup* $\Gamma(4,8) \subset Sp(2g,\mathbb{Z})$ *)*, called theta constants.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For $\tau \in \mathcal{H}_g$ let $A_\tau := \mathbb{C}^g / \mathbb{Z}^g + \tau \mathbb{Z}^g$ be the abelian variety. The theta function of $\tau \in \mathcal{H}_g$, $z \in \mathbb{C}^g$ is

$$heta(au,z) := \sum_{n \in \mathbb{Z}^g} e^{\pi i (n^t(au n + 2z))}$$

The values of the theta function at points of order two $m := (\tau a + b)/2$ for $a, b \in (\mathbb{Z}/2)^g$)

$$\theta_m(\tau) := \theta \begin{bmatrix} a \\ b \end{bmatrix} (\tau) := \theta(\tau, \frac{\tau a + b}{2}) e^{\cdots}$$

are modular forms of weight one half *(for a finite index subgroup* $\Gamma(4,8) \subset \operatorname{Sp}(2g,\mathbb{Z})$ *)*, called theta constants. If *m* is odd, i.e. $a \cdot b = 1 \in \mathbb{Z}/2$, then $\theta_m(\tau) \equiv 0$.

Abelian variety A: a projective variety with a group structure
 ⇒ A_τ = C^g/Z^g + Z^gτ.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Abelian variety A: a projective variety with a group structure
 ⇒ A_τ = C^g/Z^g + Z^gτ.
- Principal polarization Θ on A: an ample divisor on A with $h^0(A, \Theta) = 1$. $\iff \Theta_{\tau} = \{z \in A_{\tau} | \theta(\tau, z) = 0\}.$

- Abelian variety A: a projective variety with a group structure
 ⇒ A_τ = C^g/Z^g + Z^gτ.
- Principal polarization Θ on A: an ample divisor on A with h⁰(A, Θ) = 1. ⇔ Θ_τ = {z ∈ A_τ |θ(τ, z) = 0}. (Theta function is a section of a line bundle on A_τ, i.e. ∀a, b ∈ Z^g we have θ(τ, z + τa + b) = exp(·)θ(τ, z))

- Abelian variety A: a projective variety with a group structure
 ⇒ A_τ = C^g/Z^g + Z^gτ.
- Principal polarization Θ on A: an ample divisor on A with h⁰(A, Θ) = 1. ⇔ Θ_τ = {z ∈ A_τ |θ(τ, z) = 0}. (Theta function is a section of a line bundle on A_τ, i.e. ∀a, b ∈ Z^g we have θ(τ, z + τa + b) = exp(·)θ(τ, z))
- A_g : moduli space of principally polarized abelian varieties.

- Abelian variety A: a projective variety with a group structure
 ⇒ A_τ = C^g/Z^g + Z^gτ.
- Principal polarization Θ on A: an ample divisor on A with h⁰(A, Θ) = 1. ⇔ Θ_τ = {z ∈ A_τ |θ(τ, z) = 0}. (Theta function is a section of a line bundle on A_τ, i.e. ∀a, b ∈ Z^g we have θ(τ, z + τa + b) = exp(·)θ(τ, z))
- A_g : moduli space of principally polarized abelian varieties.
- Then H_g → A_g (sending τ to (A_τ, Θ_τ)) is the universal cover, and A_g = H_g/Sp(2g, Z).

(日) (同) (三) (三) (三) (○) (○)

Jacobians of Riemann surfaces

 \mathcal{M}_g :=moduli of curves/Riemann surfaces of genus g

 $\mathcal{M}_g :=$ moduli of curves/Riemann surfaces of genus gFor $X \in \mathcal{M}_g$ the Jacobian $Jac(X) := \operatorname{Pic}^{g-1}(X) \in \mathcal{A}_g$.

$$\begin{split} \mathcal{M}_g := & \text{moduli of curves/Riemann surfaces of genus } g \\ \text{For } X \in \mathcal{M}_g \text{ the Jacobian } Jac(X) := \operatorname{Pic}^{g-1}(X) \in \mathcal{A}_g. \\ \text{Equivalently for a basis } A_1, \ldots, A_g, B_1, \ldots, B_g \text{ of } H_1(X, \mathbb{Z}), \text{ and a} \\ \text{basis } \omega_1, \ldots, \omega_g \in H^{1,0}(X, \mathbb{C}) \text{ with } \int_{\mathcal{A}_i} \omega_j = \delta_{i,j} \text{ let } \tau_{ij} := \int_{B_i} \omega_j. \end{split}$$

$$\begin{split} \mathcal{M}_g := & \text{moduli of curves/Riemann surfaces of genus } g \\ \text{For } X \in \mathcal{M}_g \text{ the Jacobian } Jac(X) := \operatorname{Pic}^{g-1}(X) \in \mathcal{A}_g. \\ \text{Equivalently for a basis } A_1, \ldots, A_g, B_1, \ldots, B_g \text{ of } H_1(X, \mathbb{Z}), \text{ and a} \\ \text{basis } \omega_1, \ldots, \omega_g \in H^{1,0}(X, \mathbb{C}) \text{ with } \int_{\mathcal{A}_i} \omega_j = \delta_{i,j} \text{ let } \tau_{ij} := \int_{B_i} \omega_j. \end{split}$$

Torelli theorem

The map $X \to Jac(X)$ is an embedding $\mathcal{M}_g \hookrightarrow \mathcal{A}_g$.

The image is called the Jacobian locus $\mathcal{J}_g \subset \mathcal{A}_g$.

$$\begin{split} \mathcal{M}_g := & \text{moduli of curves}/\text{Riemann surfaces of genus } g \\ \text{For } X \in \mathcal{M}_g \text{ the Jacobian } Jac(X) := \operatorname{Pic}^{g-1}(X) \in \mathcal{A}_g. \\ \text{Equivalently for a basis } A_1, \ldots, A_g, B_1, \ldots, B_g \text{ of } H_1(X, \mathbb{Z}), \text{ and a} \\ \text{basis } \omega_1, \ldots, \omega_g \in H^{1,0}(X, \mathbb{C}) \text{ with } \int_{\mathcal{A}_i} \omega_j = \delta_{i,j} \text{ let } \tau_{ij} := \int_{B_i} \omega_j. \end{split}$$

Torelli theorem

The map $X \to Jac(X)$ is an embedding $\mathcal{M}_g \hookrightarrow \mathcal{A}_g$.

The image is called the Jacobian locus $\mathcal{J}_g \subset \mathcal{A}_g$.

Hodge bundle L:= the line bundle of modular forms of weight 1 on \mathcal{A}_g , and its restriction to \mathcal{M}_g

$$\begin{split} \mathcal{M}_g := & \text{moduli of curves}/\text{Riemann surfaces of genus } g \\ \text{For } X \in \mathcal{M}_g \text{ the Jacobian } Jac(X) := \operatorname{Pic}^{g-1}(X) \in \mathcal{A}_g. \\ \text{Equivalently for a basis } A_1, \ldots, A_g, B_1, \ldots, B_g \text{ of } H_1(X, \mathbb{Z}), \text{ and a} \\ \text{basis } \omega_1, \ldots, \omega_g \in H^{1,0}(X, \mathbb{C}) \text{ with } \int_{\mathcal{A}_i} \omega_j = \delta_{i,j} \text{ let } \tau_{ij} := \int_{B_i} \omega_j. \end{split}$$

Torelli theorem

The map $X \to Jac(X)$ is an embedding $\mathcal{M}_g \hookrightarrow \mathcal{A}_g$.

The image is called the Jacobian locus $\mathcal{J}_g \subset \mathcal{A}_g$.

Hodge bundle L:= the line bundle of modular forms of weight 1 on \mathcal{A}_g , and its restriction to \mathcal{M}_g

Theorem (Mumford)

$$K_{\mathcal{M}_g} = L^{\otimes 13}$$

$$\begin{split} \mathcal{M}_g := & \text{moduli of curves}/\text{Riemann surfaces of genus } g \\ \text{For } X \in \mathcal{M}_g \text{ the Jacobian } Jac(X) := \operatorname{Pic}^{g-1}(X) \in \mathcal{A}_g. \\ \text{Equivalently for a basis } A_1, \ldots, A_g, B_1, \ldots, B_g \text{ of } H_1(X, \mathbb{Z}), \text{ and a} \\ \text{basis } \omega_1, \ldots, \omega_g \in H^{1,0}(X, \mathbb{C}) \text{ with } \int_{\mathcal{A}_i} \omega_j = \delta_{i,j} \text{ let } \tau_{ij} := \int_{B_i} \omega_j. \end{split}$$

Torelli theorem

The map $X \to Jac(X)$ is an embedding $\mathcal{M}_g \hookrightarrow \mathcal{A}_g$.

The image is called the Jacobian locus $\mathcal{J}_g \subset \mathcal{A}_g$.

Hodge bundle L:= the line bundle of modular forms of weight 1 on \mathcal{A}_g , and its restriction to \mathcal{M}_g

Theorem (Mumford)

 $K_{\mathcal{M}_g} = L^{\otimes 13}$

Thus to construct $d\mu_{bos}$ could try to write a modular form of weight 13 on A_g , and restrict it to M_g .

Bosonic measure in low genus (Belavin, Knizhnik)

Bosonic measure in low genus (Belavin, Knizhnik)

$$A_1^{bos} = \int_{\mathcal{M}_1} |d\tau|^2 (\operatorname{Im} \tau)^{-14} \prod_{m \text{ even}} |\theta_m^{-8}(\tau)|^2$$

$$A_1^{bos} = \int_{\mathcal{M}_1} |d\tau|^2 (\operatorname{Im} \tau)^{-14} \prod_{m \text{ even}} |\theta_m^{-8}(\tau)|^2$$
$$A_2^{bos} = \int_{\mathcal{M}_2} \prod_{1 \le i \le j \le 2} |d\tau_{ij}|^2 (\det \operatorname{Im} \tau)^{-13} \prod_{m \text{ even}} |\theta_m^{-2}(\tau)|^2$$
$$A_3^{bos} = \int_{\mathcal{M}_3} \prod_{1 \le i \le j \le 3} |d\tau_{ij}|^2 (\det \operatorname{Im} \tau)^{-13} \prod_{m \text{ even}} |\theta_m^{-\frac{1}{2}}(\tau)|^2$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$A_1^{bos} = \int_{\mathcal{M}_1} |d\tau|^2 (\operatorname{Im} \tau)^{-14} \prod_{m \text{ even}} |\theta_m^{-8}(\tau)|^2$$
$$A_2^{bos} = \int_{\mathcal{M}_2} \prod_{1 \le i \le j \le 2} |d\tau_{ij}|^2 (\det \operatorname{Im} \tau)^{-13} \prod_{m \text{ even}} |\theta_m^{-2}(\tau)|^2$$
$$A_3^{bos} = \int_{\mathcal{M}_3} \prod_{1 \le i \le j \le 3} |d\tau_{ij}|^2 (\det \operatorname{Im} \tau)^{-13} \prod_{m \text{ even}} |\theta_m^{-\frac{1}{2}}(\tau)|^2$$

No reason to expect such formulas for $g \ge 4$, when $\mathcal{M}_g \subsetneq \mathcal{A}_g$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$A_{1}^{bos} = \int_{\mathcal{M}_{1}} |d\tau|^{2} (\operatorname{Im} \tau)^{-14} \prod_{m \text{ even}} |\theta_{m}^{-8}(\tau)|^{2}$$
$$A_{2}^{bos} = \int_{\mathcal{M}_{2}} \prod_{1 \le i \le j \le 2} |d\tau_{ij}|^{2} (\det \operatorname{Im} \tau)^{-13} \prod_{m \text{ even}} |\theta_{m}^{-2}(\tau)|^{2}$$
$$A_{3}^{bos} = \int_{\mathcal{M}_{3}} \prod_{1 \le i \le j \le 3} |d\tau_{ij}|^{2} (\det \operatorname{Im} \tau)^{-13} \prod_{m \text{ even}} |\theta_{m}^{-\frac{1}{2}}(\tau)|^{2}$$

No reason to expect such formulas for $g \ge 4$, when $\mathcal{M}_g \subsetneq \mathcal{A}_g$.

				e - · · · · · · · · · · · · · · · · · ·
g	$\dim \mathcal{M}_{g}$		$dim\mathcal{A}_{g}$	
1	1	=	1	
2	3	=	3	$\mathcal{M}_{m{g}}=\mathcal{A}_{m{g}}^{indecomposable}$
3	6	=	6	
4	9	+1 =	10	Schottky's equation for $\mathcal{J}_4 \subset \mathcal{A}_4$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへぐ

$$A_1^{bos} = \int_{\mathcal{M}_1} |d\tau|^2 (\operatorname{Im} \tau)^{-14} \prod_{m \text{ even}} |\theta_m^{-8}(\tau)|^2$$
$$A_2^{bos} = \int_{\mathcal{M}_2} \prod_{1 \le i \le j \le 2} |d\tau_{ij}|^2 (\det \operatorname{Im} \tau)^{-13} \prod_{m \text{ even}} |\theta_m^{-2}(\tau)|^2$$
$$A_3^{bos} = \int_{\mathcal{M}_3} \prod_{1 \le i \le j \le 3} |d\tau_{ij}|^2 (\det \operatorname{Im} \tau)^{-13} \prod_{m \text{ even}} |\theta_m^{-\frac{1}{2}}(\tau)|^2$$

No reason to expect such formulas for $g \ge 4$, when $\mathcal{M}_g \subsetneq \mathcal{A}_g$.

g	$\dim \mathcal{M}_{g}$		$\dim \mathcal{A}_g$	
1	1	=	1	
2	3	=	3	$\mathcal{M}_g = \mathcal{A}_g^{indecomposable}$
3	6	=	6	
4	9	+1 =	10	Schottky's equation for $\mathcal{J}_4 \subset \mathcal{A}_4$
g	3g - 3	$+\frac{(g-3)(g-2)}{2} =$	$\frac{g(g+1)}{2}$	partial results

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$A_g^{ss} = \int_{s\mathcal{M}_g} ||d\mu_{s\mathcal{M}_g}||^2$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$$A_g^{ss} = \int_{s\mathcal{M}_g} ||d\mu_{s\mathcal{M}_g}||^2$$

Expect to have the pullback of $d\mu_{bos}$ from \mathcal{M}_g to $s\mathcal{M}_g$ as a factor in $d\mu_{s\mathcal{M}_g}$.

$$A_g^{ss} = \int_{s\mathcal{M}_g} ||d\mu_{s\mathcal{M}_g}||^2$$

Expect to have the pullback of $d\mu_{bos}$ from \mathcal{M}_g to $s\mathcal{M}_g$ as a factor in $d\mu_{s\mathcal{M}_g}$.

Need to integrate out the odd supermoduli.

Physics prediction: invariance under the superconformal group, so integrate over a section of $s\mathcal{M}_g \rightarrow$ space of maps (X, ϕ) .

$$A_g^{ss} = \int_{s\mathcal{M}_g} ||d\mu_{s\mathcal{M}_g}||^2$$

Expect to have the pullback of $d\mu_{bos}$ from \mathcal{M}_g to $s\mathcal{M}_g$ as a factor in $d\mu_{s\mathcal{M}_g}$.

Need to integrate out the odd supermoduli.

Physics prediction: invariance under the superconformal group, so integrate over a section of $s\mathcal{M}_g \rightarrow$ space of maps (X, ϕ) . Difficulties: the standard gauge-fixing methods do not work; cannot choose a holomorphic section preserving supersymmetry.

$$A_g^{ss} = \int_{s\mathcal{M}_g} ||d\mu_{s\mathcal{M}_g}||^2$$

Expect to have the pullback of $d\mu_{bos}$ from \mathcal{M}_g to $s\mathcal{M}_g$ as a factor in $d\mu_{s\mathcal{M}_g}$.

Need to integrate out the odd supermoduli.

Physics prediction: invariance under the superconformal group, so integrate over a section of $s\mathcal{M}_g \rightarrow$ space of maps (X, ϕ) . Difficulties: the standard gauge-fixing methods do not work; cannot choose a holomorphic section preserving supersymmetry. Mathematics approach: construct a finite cover $\mathcal{S}_g \rightarrow \mathcal{M}_g$ such that $s\mathcal{M}_g \rightarrow \mathcal{S}_g$

What is $\psi_{\pm}(z)(dz)^{1/2}$? It is a section of $\mathcal{K}_{X}^{\otimes(1/2)}$.

What is $\psi_{\pm}(z)(dz)^{1/2}$? It is a section of $K_X^{\otimes(1/2)}$.

Difficulty: there are many square roots. Can add any point of order two on Jac(X), so there are 2^{2g} different square roots $\eta^{\otimes 2} = K_X$.

What is $\psi_{\pm}(z)(dz)^{1/2}$? It is a section of $K_X^{\otimes(1/2)}$.

Difficulty: there are many square roots. Can add any point of order two on Jac(X), so there are 2^{2g} different square roots $\eta^{\otimes 2} = K_X$. Let $S_g := \{ \text{moduli of pairs } (X, \eta) \}; S_g \to \mathcal{M}_g \text{ is a } 2^{2g} : 1 \text{ cover.}$ Integrating out the odd moduli gives the superstring measure as a function on S_g .

What is $\psi_{\pm}(z)(dz)^{1/2}$? It is a section of $K_X^{\otimes(1/2)}$.

Difficulty: there are many square roots. Can add any point of order two on Jac(X), so there are 2^{2g} different square roots $\eta^{\otimes 2} = K_X$. Let $S_g := \{ \text{moduli of pairs } (X, \eta) \}; S_g \to \mathcal{M}_g \text{ is a } 2^{2g} : 1 \text{ cover.}$ Integrating out the odd moduli gives the superstring measure as a function on S_g .

Depending on whether $h^0(X, \eta)$ is even or odd (generically 0 or 1), have two irreducible components $S_g = S_g^+ \sqcup S_g^-$.

For supersymmetry reasons, the measure on S_g^- (where η has a non-trivial section) is identically zero.

$$A_g^{ss} = \int_{\mathcal{S}_g^+} ||d\mu_{ss}||^2$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$$A_g^{ss} = \int_{\mathcal{S}_g^+} ||d\mu_{ss}||^2$$

Expect to have a product

$$d\mu_{ss}(\tau,\eta) = (\det \operatorname{Im} \tau)^{-8} \Xi[m](\tau) d\mu_{bos}(\tau)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for Ξ holomorphic

$$A_g^{ss} = \int_{\mathcal{S}_g^+} ||d\mu_{ss}||^2$$

Expect to have a product

$$d\mu_{ss}(\tau,\eta) = (\det \operatorname{Im} \tau)^{-8} \Xi[m](\tau) d\mu_{bos}(\tau)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for Ξ holomorphic modular form of weight 8.

$$A_g^{ss} = \int_{\mathcal{S}_g^+} ||d\mu_{ss}||^2$$

Expect to have a product

$$d\mu_{ss}(\tau,\eta) = (\det \operatorname{Im} \tau)^{-8} \Xi[m](\tau) d\mu_{bos}(\tau)$$

for \equiv holomorphic modular form of weight 8. $\equiv^{(1)}[m](\tau) = \theta_m^4(\tau) \prod_{\text{all three even } n} \theta_n^4(\tau)$ (Green-Schwarz)

$$A^{ss}_g = \int_{\mathcal{S}^+_g} ||d\mu_{ss}||^2$$

Expect to have a product

$$d\mu_{ss}(\tau,\eta) = (\det \operatorname{Im} \tau)^{-8} \Xi[m](\tau) d\mu_{bos}(\tau)$$

for \equiv holomorphic modular form of weight 8. $\equiv^{(1)}[m](\tau) = \theta_m^4(\tau) \prod_{\text{all three even } n} \theta_n^4(\tau)$ (Green-Schwarz)

Theorem (D'Hoker-Phong)

$$\Xi^{(2)}[m](\tau) = \theta_m^4(\tau) \cdot \sum_{1 \le i \le j \le 3} (-1)^{\nu_i \cdot \nu_j} \prod_{k=4,5,6} \theta[\nu_i + \nu_j + \nu_k]^4(\tau)$$

where ν_1, \ldots, ν_6 are the 6 odd spin structures such that
 $m = \nu_1 + \nu_2 + \nu_3.$

(It is natural to expect the $\theta_m^4(\tau)$ factor to have 0-3 point functions vanishing.)

$$A_g^{ss} = \int_{\mathcal{S}_g^+} ||d\mu_{ss}||^2$$

Expect to have a product

$$d\mu_{ss}(\tau,\eta) = (\det \operatorname{Im} \tau)^{-8} \Xi[m](\tau) d\mu_{bos}(\tau)$$

for \equiv holomorphic modular form of weight 8. $\equiv^{(1)}[m](\tau) = \theta_m^4(\tau) \prod_{\text{all three even } n} \theta_n^4(\tau)$ (Green-Schwarz)

Theorem (D'Hoker-Phong)

$$\Xi^{(2)}[m](\tau) = \theta_m^4(\tau) \cdot \sum_{1 \le i \le j \le 3} (-1)^{\nu_i \cdot \nu_j} \prod_{k=4,5,6} \theta[\nu_i + \nu_j + \nu_k]^4(\tau)$$

where ν_1, \ldots, ν_6 are the 6 odd spin structures such that
 $m = \nu_1 + \nu_2 + \nu_3.$

(It is natural to expect the $\theta_m^4(\tau)$ factor to have 0-3 point functions vanishing.)

This is very hard, uses heavily the hyperelliptic representation of genus 2 surfaces. So how one can generalize to higher genus?

Study the degeneration of $d\mu_{ss}$ and $d\mu_{bos}$ under degeneration

Expect no transfer of momentum over the long cylinder.

Study the degeneration of $d\mu_{ss}$ and $d\mu_{bos}$ under degeneration

Expect no transfer of momentum over the long cylinder. Both $d\mu_{ss}$ and $d\mu_{bos}$ become infinite in the limit, extract the lowest order term.

Study the degeneration of $d\mu_{ss}$ and $d\mu_{bos}$ under degeneration

Expect no transfer of momentum over the long cylinder. Both $d\mu_{ss}$ and $d\mu_{bos}$ become infinite in the limit, extract the lowest order term.

Factorization constraint (D'Hoker-Phong)

$$\Xi^{(g)}[m]\begin{pmatrix} \tau_1 & 0\\ 0 & \tau_2 \end{pmatrix} = \Xi^{(g_1)}[m_1](\tau_1) \cdot \Xi^{(g_2)}[m_2](\tau_2)$$

Study the degeneration of $d\mu_{ss}$ and $d\mu_{bos}$ under degeneration

Expect no transfer of momentum over the long cylinder. Both $d\mu_{ss}$ and $d\mu_{bos}$ become infinite in the limit, extract the lowest order term.

Factorization constraint (D'Hoker-Phong)

$$\Xi^{(g)}[m]\begin{pmatrix} \tau_1 & 0\\ 0 & \tau_2 \end{pmatrix} = \Xi^{(g_1)}[m_1](\tau_1) \cdot \Xi^{(g_2)}[m_2](\tau_2)$$

(Mathematically, $\overline{\mathcal{M}_g} \supset \mathcal{M}_{g_1,1} \times \mathcal{M}_{g_2,1}$; note that we in fact get a formula on $\mathcal{M}_{g_1} \times \mathcal{M}_{g_2}$, i.e. on the Satake compactification)

Study the degeneration of $d\mu_{ss}$ and $d\mu_{bos}$ under degeneration

Expect no transfer of momentum over the long cylinder. Both $d\mu_{ss}$ and $d\mu_{bos}$ become infinite in the limit, extract the lowest order term.

Factorization constraint (D'Hoker-Phong)

$$\Xi^{(g)}[m]\begin{pmatrix} \tau_1 & 0\\ 0 & \tau_2 \end{pmatrix} = \Xi^{(g_1)}[m_1](\tau_1) \cdot \Xi^{(g_2)}[m_2](\tau_2)$$

(Mathematically, $\overline{\mathcal{M}_g} \supset \mathcal{M}_{g_1,1} \times \mathcal{M}_{g_2,1}$; note that we in fact get a formula on $\mathcal{M}_{g_1} \times \mathcal{M}_{g_2}$, i.e. on the Satake compactification) (Degeneration to $\mathcal{M}_{g-1,2} \subset \overline{\mathcal{M}_g}$ is not clear — off-shell amplitudes)

$$\Xi^{(1)}[m] = \theta_m^4(\tau) \prod \theta_n^4(\tau)$$

<□ > < @ > < E > < E > E のQ @

$$\Xi^{(1)}[m] = \theta_m^4(\tau) \prod \theta_n^4(\tau)$$

D'Hoker-Phong:

— An explicit expression for $\Xi^{(2)}[m]$ in terms of theta

・ロト・日本・モート モー うへぐ

— Conjectures for
$$\Xi^{(3)}[m] = \theta_m^4(\tau) \cdot \ldots$$

$$\Xi^{(1)}[m] = \theta_m^4(\tau) \prod \theta_n^4(\tau)$$

D'Hoker-Phong:

— An explicit expression for $\Xi^{(2)}[m]$ in terms of theta — Conjectures for $\Xi^{(3)}[m] = \theta_m^4(\tau) \cdot \ldots$

(Natural to expect the θ_m^4 for 0-3 point vanishing)

$$\Xi^{(1)}[m] = \theta_m^4(\tau) \prod \theta_n^4(\tau)$$

D'Hoker-Phong:

— An explicit expression for $\Xi^{(2)}[m]$ in terms of theta

— Conjectures for $\Xi^{(3)}[m] = \theta_m^4(\tau) \cdot \ldots$

(Natural to expect the θ_m^4 for 0-3 point vanishing)

Theorem (Cacciatori-Dalla Piazza-van Geemen)

There exists a unique modular form $\Xi^{(3)}[m]$ satisfying factorization; it is given explicitly, and is **not** divisible by $\theta_m^4(\tau)$.

(日) (同) (三) (三) (三) (○) (○)

$$\Xi^{(1)}[m] = \theta_m^4(\tau) \prod \theta_n^4(\tau)$$

D'Hoker-Phong:

— An explicit expression for $\Xi^{(2)}[m]$ in terms of theta — Conjectures for $\Xi^{(3)}[m] = \theta_m^4(\tau) \cdot \ldots$

(Natural to expect the θ_m^4 for 0-3 point vanishing)

Theorem (Cacciatori-Dalla Piazza-van Geemen)

There exists a unique modular form $\Xi^{(3)}[m]$ satisfying factorization; it is given explicitly, and is not divisible by $\theta_m^4(\tau)$.

Theorem (G.)

The following modular form of weight 8 satisfies factorization:

$$\Xi^{(g)}[m](\tau) := \sum_{i=0}^{g} (-1)^{i} 2^{i(i-1)/2} \sum_{V \subset (\mathbb{Z}/2)^{2g}; \text{ dim } V = i} \prod_{n \in V} \theta_{n+m}^{2^{4-i}}$$

$$\Xi^{(1)}[m] = \theta_m^4(\tau) \prod \theta_n^4(\tau)$$

D'Hoker-Phong:

— An explicit expression for $\Xi^{(2)}[m]$ in terms of theta — Conjectures for $\Xi^{(3)}[m] = \theta_m^4(\tau) \cdot \ldots$

(Natural to expect the θ_m^4 for 0-3 point vanishing)

Theorem (Cacciatori-Dalla Piazza-van Geemen)

There exists a unique modular form $\Xi^{(3)}[m]$ satisfying factorization; it is given explicitly, and is not divisible by $\theta_m^4(\tau)$.

Theorem (G.)

The following modular form of weight 8 satisfies factorization:

$$\Xi^{(g)}[m](\tau) := \sum_{i=0}^{g} (-1)^{i} 2^{i(i-1)/2} \sum_{V \subset (\mathbb{Z}/2)^{2g}; \text{ dim } V=i} \prod_{n \in V} \theta_{n+m}^{2^{4-i}}$$

(日) (同) (三) (三) (三) (○) (○)

(Provided the roots can be chosen consistently)

For $g \leq 4$ there are no roots involved, so $\Xi^{(g)}[m]$ is well-defined.

For $g \leq 4$ there are no roots involved, so $\Xi^{(g)}[m]$ is well-defined. The ansatz reproduces the formulas of D'Hoker-Phong for g = 2 and Cacciatori-Dalla Piazza-van Geemen for g = 3.

For $g \le 4$ there are no roots involved, so $\Xi^{(g)}[m]$ is well-defined. The ansatz reproduces the formulas of D'Hoker-Phong for g = 2and Cacciatori-Dalla Piazza-van Geemen for g = 3.

Theorem (Salvati Manni)

The square roots can be chosen consistently for the above ansatz for g = 5, i.e. $\Xi^{(5)}[m]$ is well-defined on \mathcal{J}_5 .

For $g \le 4$ there are no roots involved, so $\Xi^{(g)}[m]$ is well-defined. The ansatz reproduces the formulas of D'Hoker-Phong for g = 2and Cacciatori-Dalla Piazza-van Geemen for g = 3.

Theorem (Salvati Manni)

The square roots can be chosen consistently for the above ansatz for g = 5, i.e. $\Xi^{(5)}[m]$ is well-defined on \mathcal{J}_5 .

Theorem (Dalla Piazza-van Geemen)

 $\Xi^{(4)}[m]$ is the unique modular form satisfying factorization.

For $g \leq 4$ there are no roots involved, so $\Xi^{(g)}[m]$ is well-defined. The ansatz reproduces the formulas of D'Hoker-Phong for g = 2 and Cacciatori-Dalla Piazza-van Geemen for g = 3.

Theorem (Salvati Manni)

The square roots can be chosen consistently for the above ansatz for g = 5, i.e. $\Xi^{(5)}[m]$ is well-defined on \mathcal{J}_5 .

Theorem (Dalla Piazza-van Geemen)

 $\Xi^{(4)}[m]$ is the unique modular form satisfying factorization.

Theorem (Oura-Poor-Salvati Manni-Yuen)

 $\Xi^{(5)}[m]$ extends holomorphically to all of \mathcal{A}_5 .
Expect the vanishing of the 0-3 point functions under the Gliozzi-Scherk-Olive projection, i.e. summing over all even *m*.

Expect the vanishing of the 0-3 point functions under the Gliozzi-Scherk-Olive projection, i.e. summing over all even *m*. The vanishing of the 0-point function (cosmological constant) is

$$\Xi^{(g)}(\tau) := \sum_{m} \Xi^{(g)}[m](\tau) \equiv 0$$

Expect the vanishing of the 0-3 point functions under the Gliozzi-Scherk-Olive projection, i.e. summing over all even *m*. The vanishing of the 0-point function (cosmological constant) is

$$\Xi^{(g)}(\tau) := \sum_{m} \Xi^{(g)}[m](\tau) \equiv 0$$

 $\Xi^{(g)}(\tau)$ is a modular form for the entire group $\text{Sp}(2g, \mathbb{Z})$, of weight 8, vanishing on the boundary. It follows by general principles (*slope of the effective divisors on* \mathcal{M}_g) that it vanishes on \mathcal{J}_g for $g \leq 4$.

Expect the vanishing of the 0-3 point functions under the Gliozzi-Scherk-Olive projection, i.e. summing over all even *m*. The vanishing of the 0-point function (cosmological constant) is

$$\Xi^{(g)}(\tau) := \sum_{m} \Xi^{(g)}[m](\tau) \equiv 0$$

 $\Xi^{(g)}(\tau)$ is a modular form for the entire group $\text{Sp}(2g, \mathbb{Z})$, of weight 8, vanishing on the boundary. It follows by general principles (*slope of the effective divisors on* \mathcal{M}_g) that it vanishes on \mathcal{J}_g for $g \leq 4$.

Theorem (G.-Salvati Manni)

For $g \leq 5$ the cosmological constant $\Xi^{(g)}(\tau)$ is proportional to the Schottky-Igusa form

$$F_g(au) := 2^g \sum_{m \in (\mathbb{Z}/2)^{2g}} heta_m^{16}(au) - \left(\sum_{m \in (\mathbb{Z}/2)^{2g}} heta_m^8(au)
ight)^2$$

In terms of lattice theta functions,

$$\sum \theta_m^{16}(\tau) = \theta_{D_{16}^+}(\tau), \qquad \sum \theta_m^8(\tau) = \theta_{E_8}(\tau),$$

In terms of lattice theta functions,

SO

$$\sum \theta_m^{16}(\tau) = \theta_{D_{16}^+}(\tau), \qquad \sum \theta_m^8(\tau) = \theta_{E_8}(\tau),$$
$$F_g(\tau) \sim \theta_{SO(32)}(\tau) - \theta_{E_8 \times E_8}(\tau)$$

In terms of lattice theta functions,

SO

$$\sum \theta_m^{16}(\tau) = \theta_{D_{16}^+}(\tau), \qquad \sum \theta_m^8(\tau) = \theta_{E_8}(\tau),$$
$$F_g(\tau) \sim \theta_{SO(32)}(\tau) - \theta_{E_8 \times E_8}(\tau)$$

Physics conjecture (Belavin-Knizhnik, D'Hoker-Phong) From the duality of the SO(32) and $E_8 \times E_8$ superstring theories one expects F_g to vanish identically on \mathcal{J}_g for any g.

In terms of lattice theta functions,

$$\sum \theta_m^{16}(\tau) = \theta_{D_{16}^+}(\tau), \qquad \sum \theta_m^8(\tau) = \theta_{E_8}(\tau),$$
$$F_g(\tau) \sim \theta_{SO(32)}(\tau) - \theta_{E_8 \times E_8}(\tau)$$

Physics conjecture (Belavin-Knizhnik, D'Hoker-Phong) From the duality of the SO(32) and $E_8 \times E_8$ superstring theories one expects F_g to vanish identically on \mathcal{J}_g for any g.

Theorem (Igusa)

SO

 $F_g(\tau)$ vanishes identically on A_g for $g \leq 3$, and gives the defining equation for $M_4 \subset A_4$.

In terms of lattice theta functions,

$$\sum \theta_m^{16}(\tau) = \theta_{D_{16}^+}(\tau), \qquad \sum \theta_m^8(\tau) = \theta_{E_8}(\tau),$$
$$F_g(\tau) \sim \theta_{SO(32)}(\tau) - \theta_{E_8 \times E_8}(\tau)$$

SO

Physics conjecture (Belavin-Knizhnik, D'Hoker-Phong) From the duality of the SO(32) and $E_8 \times E_8$ superstring theories one expects F_g to vanish identically on \mathcal{J}_g for any g.

Theorem (Igusa)

 $F_g(\tau)$ vanishes identically on A_g for $g \leq 3$, and gives the defining equation for $M_4 \subset A_4$.

Theorem (G.-Salvati Manni)

This conjecture is false for any $g \ge 5$.

In terms of lattice theta functions,

$$\sum \theta_m^{16}(\tau) = \theta_{D_{16}^+}(\tau), \qquad \sum \theta_m^8(\tau) = \theta_{E_8}(\tau),$$
$$F_g(\tau) \sim \theta_{SO(32)}(\tau) - \theta_{E_8 \times E_8}(\tau)$$

SO

Physics conjecture (Belavin-Knizhnik, D'Hoker-Phong) From the duality of the SO(32) and $E_8 \times E_8$ superstring theories one expects F_g to vanish identically on \mathcal{J}_g for any g.

Theorem (Igusa)

 $F_g(\tau)$ vanishes identically on A_g for $g \leq 3$, and gives the defining equation for $M_4 \subset A_4$.

Theorem (G.-Salvati Manni)

This conjecture is false for any $g \ge 5$. (in fact the zero locus of F_5 on \mathcal{M}_5 is the divisor of trigonal curves)

Higher genus cosmological constant

Thus $\Xi^{(5)}(\tau) = \text{const} \cdot F_5(\tau) \neq 0$ on \mathcal{J}_5 , i.e. the cosmological constant for the proposed ansatz does not vanish for genus 5.

Higher genus cosmological constant

Thus $\Xi^{(5)}(\tau) = \text{const} \cdot F_5(\tau) \neq 0$ on \mathcal{J}_5 , i.e. the cosmological constant for the proposed ansatz does not vanish for genus 5.

Observation: G.-Salvati Manni

The modified ansatz

$$\Xi^{\prime(5)}[m](\tau) := \Xi^{(5)}[m](\tau) - \operatorname{const} F_5(\tau)$$

still satisfies the factorization constraint (F_5 factorizes to identically zero), and gives vanishing cosmological constant

Higher genus cosmological constant

Thus $\Xi^{(5)}(\tau) = \text{const} \cdot F_5(\tau) \neq 0$ on \mathcal{J}_5 , i.e. the cosmological constant for the proposed ansatz does not vanish for genus 5.

Observation: G.-Salvati Manni

The modified ansatz

$$\Xi^{\prime(5)}[m](\tau) := \Xi^{(5)}[m](\tau) - \operatorname{const} F_5(\tau)$$

still satisfies the factorization constraint (F_5 factorizes to identically zero), and gives vanishing cosmological constant

What happens for higher genera?

(日) (個) (目) (日) (日) (の)

• Find a holomorphic adjustment of $\Xi^{(6)}[m](\tau)$ satisfying the factorization constraint (to $\Xi'^{(5)}[m](\tau)$), and giving a vanishing cosmological constant.

Find a holomorphic adjustment of Ξ⁽⁶⁾[m](τ) satisfying the factorization constraint (to Ξ'⁽⁵⁾[m](τ)), and giving a vanishing cosmological constant. Here subtracting a multiple of F₆ would not work, as it does not factorize to zero.

- Find a holomorphic adjustment of Ξ⁽⁶⁾[m](τ) satisfying the factorization constraint (to Ξ'⁽⁵⁾[m](τ)), and giving a vanishing cosmological constant. Here subtracting a multiple of F₆ would not work, as it does not factorize to zero.
- Verify the vanishing of two-point function for the proposed ansatz after the GSO projection: known for g = 2(D'Hoker-Phong) and for g = 3 (G.-Salvati Manni), trouble for g = 4 (Matone-Volpato)

- Find a holomorphic adjustment of Ξ⁽⁶⁾[m](τ) satisfying the factorization constraint (to Ξ'⁽⁵⁾[m](τ)), and giving a vanishing cosmological constant. Here subtracting a multiple of F₆ would not work, as it does not factorize to zero.
- Verify the vanishing of two-point function for the proposed ansatz after the GSO projection: known for g = 2 (D'Hoker-Phong) and for g = 3 (G.-Salvati Manni), trouble for g = 4 (Matone-Volpato)
- Verify the vanishing of the three-point function for the proposed ansatz after the GSO projection: known for g = 2 (D'Hoker-Phong), trouble for g = 3 (Matone-Volpato)

- Find a holomorphic adjustment of Ξ⁽⁶⁾[m](τ) satisfying the factorization constraint (to Ξ'⁽⁵⁾[m](τ)), and giving a vanishing cosmological constant. Here subtracting a multiple of F₆ would not work, as it does not factorize to zero.
- Verify the vanishing of two-point function for the proposed ansatz after the GSO projection: known for g = 2 (D'Hoker-Phong) and for g = 3 (G.-Salvati Manni), trouble for g = 4 (Matone-Volpato)
- Verify the vanishing of the three-point function for the proposed ansatz after the GSO projection: known for g = 2 (D'Hoker-Phong), trouble for g = 3 (Matone-Volpato)
- Compute the (non-vanishing) 4-point function: only known for g = 2 (D'Hoker-Phong)

- Find a holomorphic adjustment of Ξ⁽⁶⁾[m](τ) satisfying the factorization constraint (to Ξ'⁽⁵⁾[m](τ)), and giving a vanishing cosmological constant. Here subtracting a multiple of F₆ would not work, as it does not factorize to zero.
- Verify the vanishing of two-point function for the proposed ansatz after the GSO projection: known for g = 2 (D'Hoker-Phong) and for g = 3 (G.-Salvati Manni), trouble for g = 4 (Matone-Volpato)
- Verify the vanishing of the three-point function for the proposed ansatz after the GSO projection: known for g = 2 (D'Hoker-Phong), trouble for g = 3 (Matone-Volpato)
- Compute the (non-vanishing) 4-point function: only known for g = 2 (D'Hoker-Phong)
- Apply these modular forms to approach the Schottky problem in genus 5 and higher.