Superstring scattering amplitudes and modular forms

Samuel Grushevsky

Stony Brook University
Versions given in Hannover and Berlin in 2010

Quantum field theory

Quantum field theory

- Particle: point traveling in space-time
- Trajectory: \vec{k}

Quantum field theory

- Particle: point traveling in space-time
- Trajectory:

- Interaction:

so a singular trajectory

Quantum field theory

- Particle: point traveling in space-time
- Trajectory:

- Interaction:

so a singular trajectory
- Probability amplitude:
integral over all possible trajectories (have a propagator for each free movement, and probabilities for each interaction)

Quantum field theory

- Particle: point traveling in space-time
- Trajectory:

- Interaction:

so a singular trajectory
- Probability amplitude:
integral over all possible trajectories (have a propagator for each free movement, and probabilities for each interaction)
- Problem:
the integral for many (>4) interactions diverges

String theory

String theory

- Particle: string $=$ a small circle

String theory

- Particle: string $=$ a small circle
- Trajectory: $k \circlearrowleft k$

String theory

- Particle: string $=$ a small circle
- Trajectory:

- Interaction:

- Probability amplitude: integral over all possible trajectories, i.e. over all possible surfaces with given end-circles.

String theory

- Particle: string $=$ a small circle
- Trajectory:

- Interaction:

- Probability amplitude: integral over all possible trajectories, i.e. over all possible surfaces with given end-circles.
- Question:
how to assign a weight to a given surface, i.e. what is the probability distribution on the set of all trajectories?

Bosonic string, Ramond-Neveu-Schwarz formalism

Bosonic string, Ramond-Neveu-Schwarz formalism

k_{1}, \ldots, k_{n} the momenta of incoming/outgoing particles

X

 Riemann surface of genus g with n circles as endsM 26-dimensional manifold with a Riemannian metric
$\phi: X \rightarrow M \quad$ a worldsheet (trajectory of a string)

Bosonic string, Ramond-Neveu-Schwarz formalism

k_{1}, \ldots, k_{n} the momenta of incoming/outgoing particles
$\begin{array}{ll}X & \text { Riemann surface of genus } g \text { with } n \\ M & \text { 26-dimensional manifold with a Riem } \\ X \rightarrow M & \text { a worldsheet (trajectory of a string) }\end{array}$
We integrate over the space of all such maps: amplitude

$$
A_{g}\left(k_{1}, \ldots, k_{n}\right)=\int_{X, \phi} e^{-I(X, \phi)} \prod_{i=1}^{n} V\left(k_{i}, X, \phi\right) D(X, \phi)
$$

Bosonic string, Ramond-Neveu-Schwarz formalism

k_{1}, \ldots, k_{n} the momenta of incoming/outgoing particles
$X \quad$ Riemann surface of genus g with n circles as ends
M 26-dimensional manifold with a Riemannian metric
$\phi: X \rightarrow M \quad$ a worldsheet (trajectory of a string)
We integrate over the space of all such maps: amplitude

$$
A_{g}\left(k_{1}, \ldots, k_{n}\right)=\int_{X, \phi} e^{-l(X, \phi)} \prod_{i=1}^{n} V\left(k_{i}, X, \phi\right) D(X, \phi)
$$

The total probability is then

$$
A\left(k_{1}, \ldots, k_{n}\right)=\sum_{g=0}^{\infty} \lambda^{2 g-2} A_{g}\left(k_{1}, \ldots, k_{n}\right)
$$

Bosonic string, Ramond-Neveu-Schwarz formalism

k_{1}, \ldots, k_{n} the momenta of incoming/outgoing particles
$X \quad$ Riemann surface of genus g with n circles as ends
M 26-dimensional manifold with a Riemannian metric
$\phi: X \rightarrow M \quad$ a worldsheet (trajectory of a string)
We integrate over the space of all such maps: amplitude

$$
A_{g}\left(k_{1}, \ldots, k_{n}\right)=\int_{X, \phi} e^{-l(X, \phi)} \prod_{i=1}^{n} V\left(k_{i}, X, \phi\right) D(X, \phi)
$$

The total probability is then

$$
A\left(k_{1}, \ldots, k_{n}\right)=\sum_{g=0}^{\infty} \lambda^{2 g-2} A_{g}\left(k_{1}, \ldots, k_{n}\right)
$$

Simplest case: no incoming or outgoing particles.
Free energy = vacuum-to-vacuum probability.

Bosonic measure, physics formulation

$$
A_{g}^{b o s}:=\int_{X, \phi: X \rightarrow M} e^{-l(X, \phi)} D(X, \phi)
$$

What is the action I (and the measure D)?

Bosonic measure, physics formulation

$$
A_{g}^{\text {bos }}:=\int_{X, \phi: X \rightarrow M} e^{-l(X, \phi)} D(X, \phi)
$$

What is the action $/$ (and the measure D)?
$z \quad$ holomorphic coordinate on X
$h_{a, b}(z)$ metric on X
$x^{\mu}(z) \quad$ the coordinates on $M^{26} \supset \phi(X)$
$s_{\mu \nu}(x)$ Riemannian metric on M^{26}

Bosonic measure, physics formulation

$$
A_{g}^{\text {bos }}:=\int_{X, \phi: X \rightarrow M} e^{-l(X, \phi)} D(X, \phi)
$$

What is the action I (and the measure D)?
$z \quad$ holomorphic coordinate on X
$h_{a, b}(z)$ metric on X
$x^{\mu}(z) \quad$ the coordinates on $M^{26} \supset \phi(X)$
$s_{\mu \nu}(x)$ Riemannian metric on M^{26}

$$
I(X, \phi):=\int_{X} d z d \bar{z} \sqrt{\operatorname{det} h(z)} h^{a b}(z) \partial_{a} x^{\mu}(z) \partial_{b} x^{\nu}(z) s_{\mu \nu}(x(z))
$$

Bosonic measure, physics formulation

$$
A_{g}^{b o s}:=\int_{X, \phi: X \rightarrow M} e^{-l(X, \phi)} D(X, \phi)
$$

What is the action I (and the measure D)?
$z \quad$ holomorphic coordinate on X
$h_{a, b}(z)$ metric on X
$x^{\mu}(z) \quad$ the coordinates on $M^{26} \supset \phi(X)$
$s_{\mu \nu}(x)$ Riemannian metric on M^{26}

$$
I(X, \phi):=\int_{X} d z d \bar{z} \sqrt{\operatorname{det} h(z)} h^{a b}(z) \partial_{a} x^{\mu}(z) \partial_{b} x^{\nu}(z) s_{\mu \nu}(x(z))
$$

The action is invariant under conformal transformations. Thus the integrand in A_{g} only depends on the complex structure on X, not the map or the metric on M^{26}.

Bosonic measure, physics formulation

$$
A_{g}^{b o s}:=\int_{X, \phi: X \rightarrow M} e^{-l(X, \phi)} D(X, \phi)
$$

What is the action I (and the measure D)?
$z \quad$ holomorphic coordinate on X
$h_{a, b}(z)$ metric on X
$x^{\mu}(z) \quad$ the coordinates on $M^{26} \supset \phi(X)$
$s_{\mu \nu}(x)$ Riemannian metric on M^{26}

$$
I(X, \phi):=\int_{X} d z d \bar{z} \sqrt{\operatorname{det} h(z)} h^{a b}(z) \partial_{a} x^{\mu}(z) \partial_{b} x^{\nu}(z) s_{\mu \nu}(x(z))
$$

The action is invariant under conformal transformations. Thus the integrand in A_{g} only depends on the complex structure on X, not the map or the metric on M^{26}.
(This is a physical argument: reducing an infinite-dimensional integral over all worldsheets to a finite-dimensional one)

Bosonic measure, mathematics formulation

Bosonic measure, mathematics formulation

$$
A_{g}^{\text {bos }}=\int_{\mathcal{M}_{g}}\left\|d \mu_{\text {bos }}\right\|^{2}
$$

Bosonic measure, mathematics formulation

$$
A_{g}^{\text {bos }}=\int_{\mathcal{M}_{g}}\left\|d \mu_{\mathrm{bos}}\right\|^{2}
$$

$d \mu_{\text {bos }}$ is a top degree holomorphic form on \mathcal{M}_{g}, i.e. a $(3 g-3,0)$ form, i.e. a canonical form (section of the canonical bundle $K_{\mathcal{M}_{g}}$).

Bosonic measure, mathematics formulation

$$
A_{g}^{b o s}=\int_{\mathcal{M}_{g}}\left\|d \mu_{\mathrm{bos}}\right\|^{2}
$$

$d \mu_{\text {bos }}$ is a top degree holomorphic form on \mathcal{M}_{g}, i.e. a $(3 g-3,0)$ form, i.e. a canonical form (section of the canonical bundle $K_{\mathcal{M}_{g}}$).
Genus $0: \mathcal{M}_{0}=$ one point, there is nothing to integrate. (An interesting expression for the 4-point function $A_{0}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$)

Bosonic measure, mathematics formulation

$$
A_{g}^{\text {bos }}=\int_{\mathcal{M}_{g}}\left\|d \mu_{\text {bos }}\right\|^{2}
$$

$d \mu_{\text {bos }}$ is a top degree holomorphic form on \mathcal{M}_{g}, i.e. a $(3 g-3,0)$ form, i.e. a canonical form (section of the canonical bundle $K_{\mathcal{M}_{g}}$).

In genus 1 we have

$$
A_{1}^{\text {bos }}=\int_{\mathcal{M}_{1}=\mathbb{H} / S L(2, \mathbb{Z})} \frac{1}{(\operatorname{lm} \tau)^{14}}\left|\frac{d \tau}{\prod \theta_{m}^{8}(\tau)}\right|^{2}
$$

Bosonic measure, mathematics formulation

$$
A_{g}^{\text {bos }}=\int_{\mathcal{M}_{g}}\left\|d \mu_{\mathrm{bos}}\right\|^{2}
$$

$d \mu_{\text {bos }}$ is a top degree holomorphic form on $\mathcal{M g}_{g}$, i.e. a $(3 g-3,0)$ form, i.e. a canonical form (section of the canonical bundle $K_{\mathcal{M}_{g}}$).

In genus 1 we have

$$
A_{1}^{\text {bos }}=\int_{\mathcal{M}_{1}=\mathbb{H} / S L(2, \mathbb{Z})} \frac{1}{(\operatorname{lm} \tau)^{14}}\left|\frac{d \tau}{\prod \theta_{m}^{8}(\tau)}\right|^{2}
$$

(Explicit expressions also known for $g=2,3$)

Bosonic measure, mathematics formulation

$$
A_{g}^{\text {bos }}=\int_{\mathcal{M}_{g}}\left\|d \mu_{\mathrm{bos}}\right\|^{2}
$$

$d \mu_{\text {bos }}$ is a top degree holomorphic form on $\mathcal{M g}_{g}$, i.e. a $(3 g-3,0)$ form, i.e. a canonical form (section of the canonical bundle $K_{\mathcal{M}_{g}}$).

In genus 1 we have

$$
A_{1}^{\text {bos }}=\int_{\mathcal{M}_{1}=\mathbb{H} / S L(2, \mathbb{Z})} \frac{1}{(\operatorname{lm} \tau)^{14}}\left|\frac{d \tau}{\prod \theta_{m}^{8}(\tau)}\right|^{2}
$$

(Explicit expressions also known for $g=2,3$)

Problem:

The bosonic measure is not integrable: it blows up near $\partial \overline{\mathcal{M}_{g}}$ as $\frac{d z}{z^{2}}$, and thus $\int_{\mathcal{M}_{g}}\left\|d \mu_{\text {bos }}^{2}\right\|=\infty$

Superstrings, Ramond-Neveu-Schwarz formalism

$$
\begin{array}{cl}
X & \text { a Riemann surface of genus } g \text { with } n \text { circles as ends } \\
M & \text { 10-dimensional supermanifold with a Riemannian metric } \\
\phi: X \rightarrow M & \text { a worldsheet (trajectory of a string) }
\end{array}
$$

Superstrings, Ramond-Neveu-Schwarz formalism

$X \quad$ a Riemann surface of genus g with n circles as ends
M 10-dimensional supermanifold with a Riemannian metric
$\phi: X \rightarrow M \quad$ a worldsheet (trajectory of a string)

$$
A_{g}^{s s}:=\int_{X, \phi: X \rightarrow M} e^{-I^{s s}(X, \phi)} D(X, \phi)
$$

Superstrings, Ramond-Neveu-Schwarz formalism

$X \quad$ a Riemann surface of genus g with n circles as ends
M 10-dimensional supermanifold with a Riemannian metric
$\phi: X \rightarrow M \quad$ a worldsheet (trajectory of a string)

$$
A_{g}^{s s}:=\int_{X, \phi: X \rightarrow M} e^{-I^{s s}(X, \phi)} D(X, \phi)
$$

Even fields:
coordinates x^{μ} on M^{10}, metric $s_{\mu \nu}$ on M

Superstrings, Ramond-Neveu-Schwarz formalism

$X \quad$ a Riemann surface of genus g with n circles as ends
M 10-dimensional supermanifold with a Riemannian metric
$\phi: X \rightarrow M \quad$ a worldsheet (trajectory of a string)

$$
A_{g}^{s s}:=\int_{X, \phi: X \rightarrow M} e^{-l^{s s}(X, \phi)} D(X, \phi)
$$

Even fields:
coordinates x^{μ} on M^{10}, metric $s_{\mu \nu}$ on M
Odd fields:

$$
\text { coordinates } \psi_{ \pm}(z)(d z)^{1 / 2} ; \text { gravitino } \begin{aligned}
& \chi_{\bar{z}}^{-}(z) \\
& \chi_{\bar{z}}^{+}(z)
\end{aligned}(d \bar{z}) \otimes(d z)^{1 / 2}
$$

Superstrings, Ramond-Neveu-Schwarz formalism

$X \quad$ a Riemann surface of genus g with n circles as ends
M 10-dimensional supermanifold with a Riemannian metric $\phi: X \rightarrow M \quad$ a worldsheet (trajectory of a string)

$$
A_{g}^{s s}:=\int_{X, \phi: X \rightarrow M} e^{-l^{s s}(X, \phi)} D(X, \phi)
$$

Even fields:
coordinates x^{μ} on M^{10}, metric $s_{\mu \nu}$ on M
Odd fields:

$$
\begin{aligned}
& \text { coordinates } \psi_{ \pm}(z)(d z)^{1 / 2} \text {; gravitino } \begin{array}{l}
\chi_{\bar{z}}^{-}(z)(d \bar{z}) \otimes(d z)^{1 / 2} . \\
\chi_{\bar{z}}^{+}(z)
\end{array} \\
& I^{s s}(X, \phi):=\frac{1}{4 \pi} \int_{X} d z d \bar{z} s_{\mu \nu}\left(\partial_{z} x^{\mu} \partial_{\bar{z}} x^{\nu}-\psi_{+}^{\mu} \partial_{\bar{z}} \psi_{+}^{\nu}\right. \\
& \left.-\psi_{-}^{\mu} \partial_{z} \psi_{-}^{\nu}-\frac{1}{2} \chi_{\bar{z}}^{+} \chi_{\bar{z}}^{-} \psi_{+}^{\mu} \psi_{-}^{\nu}+\chi_{\bar{z}}^{+} \psi_{+}^{\mu} \partial_{z} x^{\nu}+\chi_{z}^{-} \psi_{-}^{\mu} \partial_{\bar{z}} x^{\nu}\right)
\end{aligned}
$$

Superstring measure

Superstring measure

Physics prediction: superconformal invariance,...;
\Rightarrow everything should depend only on the superRiemann surface, so

$$
\begin{gathered}
A_{g}^{s s}=\int_{s \mathcal{M}_{g}}\left\|d \mu_{s s}\right\|^{2} \\
\operatorname{dim} s \mathcal{M}_{g}=(3 g-3 ; 2 g-2)
\end{gathered}
$$

Superstring measure

Physics prediction: superconformal invariance,...;
\Rightarrow everything should depend only on the superRiemann surface, so

$$
\begin{gathered}
A_{g}^{s s}=\int_{s \mathcal{M}_{g}}\left\|d \mu_{s s}\right\|^{2} \\
\operatorname{dim} s \mathcal{M}_{g}=(3 g-3 ; 2 g-2)
\end{gathered}
$$

Gauge-fixing: choose a section $s \mathcal{M}_{g} \rightarrow$ space of maps (X, ϕ)

Superstring measure

Physics prediction: superconformal invariance,...;
\Rightarrow everything should depend only on the superRiemann surface, so

$$
\begin{gathered}
A_{g}^{s s}=\int_{s \mathcal{M}_{g}}\left\|d \mu_{s s}\right\|^{2} \\
\operatorname{dim} s \mathcal{M}_{g}=(3 g-3 ; 2 g-2)
\end{gathered}
$$

Gauge-fixing: choose a section $s \mathcal{M}_{g} \rightarrow$ space of maps (X, ϕ) Difficulties: (for $g>1$)

Superstring measure

Physics prediction: superconformal invariance,...;
\Rightarrow everything should depend only on the superRiemann surface, so

$$
\begin{gathered}
A_{g}^{s s}=\int_{s \mathcal{M}_{g}}\left\|d \mu_{s s}\right\|^{2} \\
\operatorname{dim} s \mathcal{M}_{g}=(3 g-3 ; 2 g-2)
\end{gathered}
$$

Gauge-fixing: choose a section $s \mathcal{M}_{g} \rightarrow$ space of maps (X, ϕ) Difficulties: (for $g>1$)

- The standard (Faddeev-Popov) gauge-fixing does not work for supermoduli. Have to do chiral splitting first.

Superstring measure

Physics prediction: superconformal invariance,...;
\Rightarrow everything should depend only on the superRiemann surface, so

$$
\begin{gathered}
A_{g}^{s s}=\int_{s \mathcal{M}_{g}}\left\|d \mu_{s s}\right\|^{2} \\
\operatorname{dim} s \mathcal{M}_{g}=(3 g-3 ; 2 g-2)
\end{gathered}
$$

Gauge-fixing: choose a section $s \mathcal{M g}_{g} \rightarrow$ space of maps (X, ϕ) Difficulties: (for $g>1$)

- The standard (Faddeev-Popov) gauge-fixing does not work for supermoduli. Have to do chiral splitting first.
- Impossible to choose a holomoprhic section and preserve supersymmetry. Thus need to deform the complex structure simultaneously with other coordinates.

Superstring measure

Physics prediction: superconformal invariance,...;
\Rightarrow everything should depend only on the superRiemann surface, so

$$
\begin{gathered}
A_{g}^{s s}=\int_{s \mathcal{M}_{g}}\left\|d \mu_{s s}\right\|^{2} \\
\operatorname{dim} s \mathcal{M}_{g}=(3 g-3 ; 2 g-2)
\end{gathered}
$$

Gauge-fixing: choose a section $s \mathcal{M g}_{g} \rightarrow$ space of maps (X, ϕ) Difficulties: (for $g>1$)

- The standard (Faddeev-Popov) gauge-fixing does not work for supermoduli. Have to do chiral splitting first.
- Impossible to choose a holomoprhic section and preserve supersymmetry. Thus need to deform the complex structure simultaneously with other coordinates.
D'Hoker-Phong: successfully dealt with this for $g=2$.

Known results

Known results

- The bosonic measure is known explicitly for $g \leq 4$; for $g>4$: known in terms of extra points on the Riemann surface, or of Weil-Petersson volume, ... (Beilinson, Belavin, D’Hoker, Knizhnik, Manin, Morozov, Phong, Verlinde, Verlinde)

Known results

- The bosonic measure is known explicitly for $g \leq 4$; for $g>4$: known in terms of extra points on the Riemann surface, or of Weil-Petersson volume, ... (Beilinson, Belavin, D’Hoker, Knizhnik, Manin, Morozov, Phong, Verlinde, Verlinde)
- Superstring measure known for $g=1$ (Green, Schwarz; Gross, Harvey, Martinec, Rohm 1980's).

Known results

- The bosonic measure is known explicitly for $g \leq 4$; for $g>4$: known in terms of extra points on the Riemann surface, or of Weil-Petersson volume, ... (Beilinson, Belavin, D’Hoker, Knizhnik, Manin, Morozov, Phong, Verlinde, Verlinde)
- Superstring measure known for $g=1$ (Green, Schwarz; Gross, Harvey, Martinec, Rohm 1980's).
- Supermoduli difficulties overcome for $g=2$ (D'Hoker, Phong breakthrough, 2000's).

Known results

- The bosonic measure is known explicitly for $g \leq 4$; for $g>4$: known in terms of extra points on the Riemann surface, or of Weil-Petersson volume, ... (Beilinson, Belavin, D’Hoker, Knizhnik, Manin, Morozov, Phong, Verlinde, Verlinde)
- Superstring measure known for $g=1$ (Green, Schwarz; Gross, Harvey, Martinec, Rohm 1980's).
- Supermoduli difficulties overcome for $g=2$ (D'Hoker, Phong breakthrough, 2000's).
- Goal for today: a viable ansatz for the superstring measure in terms of the bosonic measure, for $g \leq 5$

Known results

- The bosonic measure is known explicitly for $g \leq 4$; for $g>4$: known in terms of extra points on the Riemann surface, or of Weil-Petersson volume, ... (Beilinson, Belavin, D’Hoker, Knizhnik, Manin, Morozov, Phong, Verlinde, Verlinde)
- Superstring measure known for $g=1$ (Green, Schwarz; Gross, Harvey, Martinec, Rohm 1980's).
- Supermoduli difficulties overcome for $g=2$ (D'Hoker, Phong breakthrough, 2000's).
- Goal for today: a viable ansatz for the superstring measure in terms of the bosonic measure, for $g \leq 5$

Ansatz (G.)

$$
d \mu_{s S}[m](\tau)=d \mu_{\text {bos }} \sum_{i=0}^{g}(-1)^{i} 2^{i(i-1) / 2} \sum_{V \subset(\mathbb{Z} / 2)^{2 g} ; \operatorname{dim}} V=i \prod_{n \in V} \theta_{n+m}^{2^{4-i}}
$$

Mathematics notation: modular forms

Mathematics notation: modular forms

$\mathcal{H}_{g}:=$ Siegel upper half-space of dimension g
$=$ set of period matrices $\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \mid \tau^{t}=\tau, \operatorname{Im} \tau>0\right\}$

Mathematics notation: modular forms

$\mathcal{H}_{g}:=$ Siegel upper half-space of dimension g
$=$ set of period matrices $\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \mid \tau^{t}=\tau, \operatorname{Im} \tau>0\right\}$

The action of $\operatorname{Sp}(2 g, \mathbb{Z})$ on \mathcal{H}_{g} is given by

$$
\gamma \circ \tau:=(C \tau+D)^{-1}(A \tau+B)
$$

for an element $\gamma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}(2 g, \mathbb{Z})$

Mathematics notation: modular forms

$$
\begin{aligned}
\mathcal{H}_{g} & : \\
& =\text { Siegel upper half-space of dimension } g \\
& =\text { set of period matrices }\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \mid \tau^{t}=\tau, \operatorname{Im} \tau>0\right\}
\end{aligned}
$$

The action of $\operatorname{Sp}(2 g, \mathbb{Z})$ on \mathcal{H}_{g} is given by

$$
\gamma \circ \tau:=(C \tau+D)^{-1}(A \tau+B)
$$

for an element $\gamma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}(2 g, \mathbb{Z})$

Definition

A modular form of weight k with respect to $\Gamma \subset \operatorname{Sp}(2 g, \mathbb{Z})$ is a function $F: \mathcal{H}_{g} \rightarrow \mathbb{C}$ such that

$$
F(\gamma \circ \tau)=\operatorname{det}(C \tau+D)^{k} F(\tau) \quad \forall \gamma \in \Gamma, \forall \tau \in \mathcal{H}_{g}
$$

Mathematics notation: theta functions and constants

Mathematics notation: theta functions and constants

For $\tau \in \mathcal{H}_{g}$ let $A_{\tau}:=\mathbb{C}^{g} / \mathbb{Z}^{g}+\tau \mathbb{Z}^{g}$ be the abelian variety.

Mathematics notation: theta functions and constants

For $\tau \in \mathcal{H}_{g}$ let $A_{\tau}:=\mathbb{C}^{g} / \mathbb{Z}^{g}+\tau \mathbb{Z}^{g}$ be the abelian variety. The theta function of $\tau \in \mathcal{H}_{g}, \quad z \in \mathbb{C}^{g}$ is

$$
\theta(\tau, z):=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i\left(n^{t}(\tau n+2 z)\right)}
$$

Mathematics notation: theta functions and constants

For $\tau \in \mathcal{H}_{g}$ let $A_{\tau}:=\mathbb{C}^{g} / \mathbb{Z}^{g}+\tau \mathbb{Z}^{g}$ be the abelian variety.
The theta function of $\tau \in \mathcal{H}_{g}, \quad z \in \mathbb{C}^{g}$ is

$$
\theta(\tau, z):=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i\left(n^{t}(\tau n+2 z)\right)}
$$

The values of the theta function at points of order two $m:=(\tau a+b) / 2$ for $\left.a, b \in(\mathbb{Z} / 2)^{g}\right)$

$$
\theta_{m}(\tau):=\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](\tau):=\theta\left(\tau, \frac{\tau a+b}{2}\right)
$$

are modular forms of weight one half

Mathematics notation: theta functions and constants

For $\tau \in \mathcal{H}_{g}$ let $A_{\tau}:=\mathbb{C}^{g} / \mathbb{Z}^{g}+\tau \mathbb{Z}^{g}$ be the abelian variety.
The theta function of $\tau \in \mathcal{H}_{g}, \quad z \in \mathbb{C}^{g}$ is

$$
\theta(\tau, z):=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i\left(n^{t}(\tau n+2 z)\right)}
$$

The values of the theta function at points of order two $m:=(\tau a+b) / 2$ for $\left.a, b \in(\mathbb{Z} / 2)^{g}\right)$

$$
\theta_{m}(\tau):=\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](\tau):=\theta\left(\tau, \frac{\tau a+b}{2}\right)
$$

are modular forms of weight one half (for a finite index subgroup $\Gamma(4,8) \subset S p(2 g, \mathbb{Z}))$, called theta constants.

Mathematics notation: theta functions and constants

For $\tau \in \mathcal{H}_{g}$ let $A_{\tau}:=\mathbb{C}^{g} / \mathbb{Z}^{g}+\tau \mathbb{Z}^{g}$ be the abelian variety.
The theta function of $\tau \in \mathcal{H}_{g}, \quad z \in \mathbb{C}^{g}$ is

$$
\theta(\tau, z):=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i\left(n^{t}(\tau n+2 z)\right)}
$$

The values of the theta function at points of order two $m:=(\tau a+b) / 2$ for $\left.a, b \in(\mathbb{Z} / 2)^{g}\right)$

$$
\theta_{m}(\tau):=\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](\tau):=\theta\left(\tau, \frac{\tau a+b}{2}\right) e^{\cdots}
$$

are modular forms of weight one half (for a finite index subgroup $\Gamma(4,8) \subset \operatorname{Sp}(2 g, \mathbb{Z}))$, called theta constants.
If m is odd, i.e. $a \cdot b=1 \in \mathbb{Z} / 2$, then $\theta_{m}(\tau) \equiv 0$.

Moduli of abelian varieties

- Abelian variety A : a projective variety with a group structure $\Longleftrightarrow A_{\tau}=\mathbb{C}^{g} / \mathbb{Z}^{g}+\mathbb{Z}^{g} \tau$.

Moduli of abelian varieties

- Abelian variety A : a projective variety with a group structure $\Longleftrightarrow A_{\tau}=\mathbb{C}^{g} / \mathbb{Z}^{g}+\mathbb{Z}^{g} \tau$.
- Principal polarization Θ on A : an ample divisor on A with $h^{0}(A, \Theta)=1 . \Longleftrightarrow \Theta_{\tau}=\left\{z \in A_{\tau} \mid \theta(\tau, z)=0\right\}$.

Moduli of abelian varieties

- Abelian variety A : a projective variety with a group structure $\Longleftrightarrow A_{\tau}=\mathbb{C}^{g} / \mathbb{Z}^{g}+\mathbb{Z}^{g} \tau$.
- Principal polarization Θ on A : an ample divisor on A with $h^{0}(A, \Theta)=1 . \Longleftrightarrow \Theta_{\tau}=\left\{z \in A_{\tau} \mid \theta(\tau, z)=0\right\}$.
(Theta function is a section of a line bundle on A_{τ}, i.e. $\forall a, b \in \mathbb{Z}^{g}$ we have $\theta(\tau, z+\tau a+b)=\exp (\cdot) \theta(\tau, z))$

Moduli of abelian varieties

- Abelian variety A : a projective variety with a group structure $\Longleftrightarrow A_{\tau}=\mathbb{C}^{g} / \mathbb{Z}^{g}+\mathbb{Z}^{g} \tau$.
- Principal polarization Θ on A : an ample divisor on A with $h^{0}(A, \Theta)=1 . \Longleftrightarrow \Theta_{\tau}=\left\{z \in A_{\tau} \mid \theta(\tau, z)=0\right\}$.
(Theta function is a section of a line bundle on A_{τ}, i.e. $\forall a, b \in \mathbb{Z}^{g}$ we have $\theta(\tau, z+\tau a+b)=\exp (\cdot) \theta(\tau, z))$
- \mathcal{A}_{g} : moduli space of principally polarized abelian varieties.

Moduli of abelian varieties

- Abelian variety A : a projective variety with a group structure $\Longleftrightarrow A_{\tau}=\mathbb{C}^{g} / \mathbb{Z}^{g}+\mathbb{Z}^{g} \tau$.
- Principal polarization Θ on A : an ample divisor on A with $h^{0}(A, \Theta)=1 . \Longleftrightarrow \Theta_{\tau}=\left\{z \in A_{\tau} \mid \theta(\tau, z)=0\right\}$.
(Theta function is a section of a line bundle on A_{τ}, i.e. $\forall a, b \in \mathbb{Z}^{g}$ we have $\theta(\tau, z+\tau a+b)=\exp (\cdot) \theta(\tau, z))$
- \mathcal{A}_{g} : moduli space of principally polarized abelian varieties.
- Then $\mathcal{H}_{g} \rightarrow \mathcal{A}_{g}$ (sending τ to $\left.\left(A_{\tau}, \Theta_{\tau}\right)\right)$ is the universal cover, and $\mathcal{A}_{g}=\mathcal{H}_{g} / \operatorname{Sp}(2 g, \mathbb{Z})$.

Jacobians of Riemann surfaces

Jacobians of Riemann surfaces $=$ curves

Jacobians of Riemann surfaces $=$ curves

$\mathcal{M}_{g}:=$ moduli of curves/Riemann surfaces of genus g

Jacobians of Riemann surfaces $=$ curves

$\mathcal{M}_{g}:=$ moduli of curves/Riemann surfaces of genus g For $X \in \mathcal{M}_{g}$ the Jacobian $\operatorname{Jac}(X):=\operatorname{Pic}^{g-1}(X) \in \mathcal{A}_{g}$.

Jacobians of Riemann surfaces $=$ curves

$\mathcal{M}_{g}:=$ moduli of curves/Riemann surfaces of genus g For $X \in \mathcal{M}_{g}$ the Jacobian $\operatorname{Jac}(X):=\operatorname{Pic}^{g-1}(X) \in \mathcal{A}_{g}$.
Equivalently for a basis $A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g}$ of $H_{1}(X, \mathbb{Z})$, and a basis $\omega_{1}, \ldots, \omega_{g} \in H^{1,0}(X, \mathbb{C})$ with $\int_{A_{i}} \omega_{j}=\delta_{i, j}$ let $\tau_{i j}:=\int_{B_{i}} \omega_{j}$.

Jacobians of Riemann surfaces $=$ curves

$\mathcal{M}_{g}:=$ moduli of curves/Riemann surfaces of genus g For $X \in \mathcal{M}_{g}$ the $\operatorname{Jacobian~} \operatorname{Jac}(X):=\operatorname{Pic}^{g-1}(X) \in \mathcal{A}_{g}$.
Equivalently for a basis $A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g}$ of $H_{1}(X, \mathbb{Z})$, and a basis $\omega_{1}, \ldots, \omega_{g} \in H^{1,0}(X, \mathbb{C})$ with $\int_{A_{i}} \omega_{j}=\delta_{i, j}$ let $\tau_{i j}:=\int_{B_{i}} \omega_{j}$.

Torelli theorem

The map $X \rightarrow \operatorname{Jac}(X)$ is an embedding $\mathcal{M g}_{g} \hookrightarrow \mathcal{A}_{g}$.
The image is called the Jacobian locus $\mathcal{J}_{g} \subset \mathcal{A}_{g}$.

Jacobians of Riemann surfaces $=$ curves

$\mathcal{M}_{g}:=$ moduli of curves/Riemann surfaces of genus g For $X \in \mathcal{M}_{g}$ the Jacobian $\operatorname{Jac}(X):=\mathrm{Pic}^{g-1}(X) \in \mathcal{A}_{g}$.
Equivalently for a basis $A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g}$ of $H_{1}(X, \mathbb{Z})$, and a basis $\omega_{1}, \ldots, \omega_{g} \in H^{1,0}(X, \mathbb{C})$ with $\int_{A_{i}} \omega_{j}=\delta_{i, j}$ let $\tau_{i j}:=\int_{B_{i}} \omega_{j}$.

Torelli theorem

The map $X \rightarrow \operatorname{Jac}(X)$ is an embedding $\mathcal{M g}_{g} \hookrightarrow \mathcal{A}_{g}$.
The image is called the Jacobian locus $\mathcal{J}_{g} \subset \mathcal{A}_{g}$.
Hodge bundle $L:=$ the line bundle of modular forms of weight 1 on \mathcal{A}_{g}, and its restriction to \mathcal{M}_{g}

Jacobians of Riemann surfaces $=$ curves

$\mathcal{M}_{g}:=$ moduli of curves/Riemann surfaces of genus g For $X \in \mathcal{M}_{g}$ the Jacobian $\operatorname{Jac}(X):=\mathrm{Pic}^{g-1}(X) \in \mathcal{A}_{g}$.
Equivalently for a basis $A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g}$ of $H_{1}(X, \mathbb{Z})$, and a basis $\omega_{1}, \ldots, \omega_{g} \in H^{1,0}(X, \mathbb{C})$ with $\int_{A_{i}} \omega_{j}=\delta_{i, j}$ let $\tau_{i j}:=\int_{B_{i}} \omega_{j}$.

Torelli theorem

The map $X \rightarrow \operatorname{Jac}(X)$ is an embedding $\mathcal{M}_{g} \hookrightarrow \mathcal{A}_{g}$.
The image is called the Jacobian locus $\mathcal{J}_{g} \subset \mathcal{A}_{g}$.
Hodge bundle $L:=$ the line bundle of modular forms of weight 1 on \mathcal{A}_{g}, and its restriction to \mathcal{M}_{g}

Theorem (Mumford)
$K_{\mathcal{M}_{g}}=L^{\otimes 13}$

Jacobians of Riemann surfaces $=$ curves

$\mathcal{M}_{g}:=$ moduli of curves/Riemann surfaces of genus g For $X \in \mathcal{M}_{g}$ the Jacobian $\operatorname{Jac}(X):=\mathrm{Pic}^{g-1}(X) \in \mathcal{A}_{g}$.
Equivalently for a basis $A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g}$ of $H_{1}(X, \mathbb{Z})$, and a basis $\omega_{1}, \ldots, \omega_{g} \in H^{1,0}(X, \mathbb{C})$ with $\int_{A_{i}} \omega_{j}=\delta_{i, j}$ let $\tau_{i j}:=\int_{B_{i}} \omega_{j}$.

Torelli theorem

The map $X \rightarrow \operatorname{Jac}(X)$ is an embedding $\mathcal{M g}_{g} \hookrightarrow \mathcal{A}_{g}$.
The image is called the Jacobian locus $\mathcal{J}_{g} \subset \mathcal{A}_{g}$.
Hodge bundle $L:=$ the line bundle of modular forms of weight 1 on \mathcal{A}_{g}, and its restriction to \mathcal{M}_{g}

Theorem (Mumford)
$K_{\mathcal{M}_{\mathrm{g}}}=L^{\otimes 13}$
Thus to construct $d \mu_{\text {bos }}$ could try to write a modular form of weight 13 on \mathcal{A}_{g}, and restrict it to $\mathcal{M g}_{g}$.

Bosonic measure in low genus (Belavin, Knizhnik)

Bosonic measure in low genus (Belavin, Knizhnik)

$$
A_{1}^{\text {bos }}=\int_{\mathcal{M}_{1}}|d \tau|^{2}(\operatorname{lm} \tau)^{-14} \prod_{m \text { even }}\left|\theta_{m}^{-8}(\tau)\right|^{2}
$$

Bosonic measure in low genus (Belavin, Knizhnik)

$$
\begin{gathered}
A_{1}^{\text {bos }}=\int_{\mathcal{M}_{1}}|d \tau|^{2}(\operatorname{lm} \tau)^{-14} \prod_{m \text { even }}\left|\theta_{m}^{-8}(\tau)\right|^{2} \\
A_{2}^{b o s}=\int_{\mathcal{M}_{2}} \prod_{1 \leq i \leq j \leq 2}\left|d \tau_{i j}\right|^{2}(\operatorname{det} \operatorname{lm} \tau)^{-13} \prod_{m \text { even }}\left|\theta_{m}^{-2}(\tau)\right|^{2} \\
A_{3}^{b o s}=\int_{\mathcal{M}_{3}} \prod_{1 \leq i \leq j \leq 3}\left|d \tau_{i j}\right|^{2}(\operatorname{det} \operatorname{lm} \tau)^{-13} \prod_{m \text { even }}\left|\theta_{m}^{-\frac{1}{2}}(\tau)\right|^{2}
\end{gathered}
$$

Bosonic measure in low genus (Belavin, Knizhnik)

$$
\begin{gathered}
A_{1}^{b o s}=\int_{\mathcal{M}_{1}}|d \tau|^{2}(\operatorname{lm} \tau)^{-14} \prod_{m \text { even }}\left|\theta_{m}^{-8}(\tau)\right|^{2} \\
A_{2}^{b o s}=\int_{\mathcal{M}_{2}} \prod_{1 \leq i \leq j \leq 2}\left|d \tau_{i j}\right|^{2}(\operatorname{det} \operatorname{lm} \tau)^{-13} \prod_{m \text { even }}\left|\theta_{m}^{-2}(\tau)\right|^{2} \\
A_{3}^{b o s}=\int_{\mathcal{M}_{3}} \prod_{1 \leq i \leq j \leq 3}\left|d \tau_{i j}\right|^{2}(\operatorname{det} \operatorname{lm} \tau)^{-13} \prod_{m \text { even }}\left|\theta_{m}^{-\frac{1}{2}}(\tau)\right|^{2}
\end{gathered}
$$

No reason to expect such formulas for $g \geq 4$, when $\mathcal{M}_{g} \subsetneq \mathcal{A}_{g}$.

Bosonic measure in low genus (Belavin, Knizhnik)

$$
\begin{gathered}
A_{1}^{b o s}=\int_{\mathcal{M}_{1}}|d \tau|^{2}(\operatorname{lm} \tau)^{-14} \prod_{m \text { even }}\left|\theta_{m}^{-8}(\tau)\right|^{2} \\
A_{2}^{b o s}=\int_{\mathcal{M}_{2}} \prod_{1 \leq i \leq j \leq 2}\left|d \tau_{i j}\right|^{2}(\operatorname{det} \operatorname{lm} \tau)^{-13} \prod_{m \text { even }}\left|\theta_{m}^{-2}(\tau)\right|^{2} \\
A_{3}^{b o s}=\int_{\mathcal{M}_{3}} \prod_{1 \leq i \leq j \leq 3}\left|d \tau_{i j}\right|^{2}(\operatorname{det} \operatorname{lm} \tau)^{-13} \prod_{m \text { even }}\left|\theta_{m}^{-\frac{1}{2}}(\tau)\right|^{2}
\end{gathered}
$$

No reason to expect such formulas for $g \geq 4$, when $\mathcal{M}_{g} \subsetneq \mathcal{A}_{g}$.

g	dim
1	1
2	3
3	6
4	9

Bosonic measure in low genus (Belavin, Knizhnik)

$$
\begin{gathered}
A_{1}^{b o s}=\int_{\mathcal{M}_{1}}|d \tau|^{2}(\operatorname{lm} \tau)^{-14} \prod_{m \text { even }}\left|\theta_{m}^{-8}(\tau)\right|^{2} \\
A_{2}^{b o s}=\int_{\mathcal{M}_{2}} \prod_{1 \leq i \leq j \leq 2}\left|d \tau_{i j}\right|^{2}(\operatorname{det} \operatorname{lm} \tau)^{-13} \prod_{m \text { even }}\left|\theta_{m}^{-2}(\tau)\right|^{2} \\
A_{3}^{b o s}=\int_{\mathcal{M}_{3}} \prod_{1 \leq i \leq j \leq 3}\left|d \tau_{i j}\right|^{2}(\operatorname{det} \operatorname{lm} \tau)^{-13} \prod_{m \text { even }}\left|\theta_{m}^{-\frac{1}{2}}(\tau)\right|^{2}
\end{gathered}
$$

No reason to expect such formulas for $g \geq 4$, when $\mathcal{M}_{g} \subsetneq \mathcal{A}_{g}$.

g	$\operatorname{dim} \mathcal{M}_{g}$		$\operatorname{dim} \mathcal{A}_{g}$	
1	1	$=$	1	
2	3	$=$	3	$\mathcal{M}_{g}=\mathcal{A}_{g}^{\text {indecomposable }}$
3	6	$=$	6	
4	9		10	Schottky's equation for $\mathcal{J}_{4} \subset \mathcal{A}_{4}$
g	$3 g-3+\frac{(g-3)(g-2)}{2}$	$=$	$\frac{g(g+1)}{2}$	partial results

Superstring measure

$$
A_{g}^{s s}=\int_{s \mathcal{M}_{g}}\left\|d \mu_{s, \mathcal{M}_{g}}\right\|^{2}
$$

Superstring measure

$$
A_{g}^{s s}=\int_{s \mathcal{M}_{g}}\left\|d \mu_{s \mathcal{M}_{g}}\right\|^{2}
$$

Expect to have the pullback of $d \mu_{\text {bos }}$ from \mathcal{M}_{g} to $s \mathcal{M}_{g}$ as a factor in $d \mu_{s \mathcal{M}_{g}}$.

Superstring measure

$$
A_{g}^{s s}=\int_{s \mathcal{M}_{g}}\left\|d \mu_{s \mathcal{M}_{g}}\right\|^{2}
$$

Expect to have the pullback of $d \mu_{\text {bos }}$ from \mathcal{M}_{g} to $s \mathcal{M}_{g}$ as a factor in $d \mu_{s, \mathcal{M}_{g}}$.
Need to integrate out the odd supermoduli.
Physics prediction: invariance under the superconformal group, so integrate over a section of $s \mathcal{M}_{g} \rightarrow$ space of maps (X, ϕ).

Superstring measure

$$
A_{g}^{s s}=\int_{s, \mathcal{M}_{g}}\left\|d \mu_{s \mathcal{M}_{g}}\right\|^{2}
$$

Expect to have the pullback of $d \mu_{\text {bos }}$ from \mathcal{M}_{g} to $s \mathcal{M}_{g}$ as a factor in $d \mu_{s, \mathcal{M}_{g}}$.
Need to integrate out the odd supermoduli.
Physics prediction: invariance under the superconformal group, so integrate over a section of $s \mathcal{M}_{g} \rightarrow$ space of maps (X, ϕ).
Difficulties: the standard gauge-fixing methods do not work; cannot choose a holomorphic section preserving supersymmetry.

Superstring measure

$$
A_{g}^{s s}=\int_{s, \mathcal{M}_{g}}\left\|d \mu_{s \mathcal{M}_{g}}\right\|^{2}
$$

Expect to have the pullback of $d \mu_{\text {bos }}$ from \mathcal{M}_{g} to $s \mathcal{M}_{g}$ as a factor in $d \mu_{s, \mathcal{M}_{g}}$.
Need to integrate out the odd supermoduli.
Physics prediction: invariance under the superconformal group, so integrate over a section of $s \mathcal{M}_{g} \rightarrow$ space of maps (X, ϕ).
Difficulties: the standard gauge-fixing methods do not work; cannot choose a holomorphic section preserving supersymmetry. Mathematics approach: construct a finite cover $\mathcal{S}_{g} \rightarrow \mathcal{M}_{g}$ such that $s \mathcal{M g}_{g} \rightarrow \mathcal{S}_{g}$

Spin curves

What is $\psi_{ \pm}(z)(d z)^{1 / 2}$? It is a section of $K_{X}^{\otimes(1 / 2)}$.

Spin curves

What is $\psi_{ \pm}(z)(d z)^{1 / 2}$? It is a section of $K_{X}^{\otimes(1 / 2)}$.
Difficulty: there are many square roots. Can add any point of order two on $\operatorname{Jac}(X)$, so there are $2^{2 g}$ different square roots $\eta^{\otimes 2}=K_{X}$.

Spin curves

What is $\psi_{ \pm}(z)(d z)^{1 / 2}$? It is a section of $K_{X}^{\otimes(1 / 2)}$.
Difficulty: there are many square roots. Can add any point of order two on $\operatorname{Jac}(X)$, so there are $2^{2 g}$ different square roots $\eta^{\otimes 2}=K_{X}$. Let $\mathcal{S}_{g}:=\{$ moduli of pairs $(X, \eta)\} ; \mathcal{S}_{g} \rightarrow \mathcal{M}_{g}$ is a $2^{2 g}: 1$ cover. Integrating out the odd moduli gives the superstring measure as a function on \mathcal{S}_{g}.

Spin curves

What is $\psi_{ \pm}(z)(d z)^{1 / 2}$? It is a section of $K_{X}^{\otimes(1 / 2)}$.
Difficulty: there are many square roots. Can add any point of order two on $\operatorname{Jac}(X)$, so there are $2^{2 g}$ different square roots $\eta^{\otimes 2}=K_{X}$. Let $\mathcal{S}_{g}:=\{$ moduli of pairs $(X, \eta)\} ; \mathcal{S}_{g} \rightarrow \mathcal{M}_{g}$ is a $2^{2 g}: 1$ cover. Integrating out the odd moduli gives the superstring measure as a function on \mathcal{S}_{g}.
Depending on whether $h^{0}(X, \eta)$ is even or odd (generically 0 or 1), have two irreducible components $\mathcal{S}_{g}=\mathcal{S}_{g}^{+} \sqcup \mathcal{S}_{g}^{-}$.
For supersymmetry reasons, the measure on \mathcal{S}_{g}^{-}(where η has a non-trivial section) is identically zero.

Mathematics statement: the superstring measure

$$
A_{g}^{s s}=\int_{\mathcal{S}_{g}^{+}}\left\|d \mu_{s s}\right\|^{2}
$$

Mathematics statement: the superstring measure

$$
A_{g}^{s s}=\int_{\mathcal{S}_{g}^{+}}\left\|d \mu_{s s}\right\|^{2}
$$

Expect to have a product

$$
d \mu_{s s}(\tau, \eta)=(\operatorname{det} \operatorname{lm} \tau)^{-8} \equiv[m](\tau) d \mu_{\text {bos }}(\tau)
$$

for \equiv holomorphic

Mathematics statement: the superstring measure

$$
A_{g}^{s s}=\int_{\mathcal{S}_{g}^{+}}\left\|d \mu_{s s}\right\|^{2}
$$

Expect to have a product

$$
d \mu_{s s}(\tau, \eta)=(\operatorname{det} \operatorname{lm} \tau)^{-8} \equiv[m](\tau) d \mu_{\text {bos }}(\tau)
$$

for \equiv holomorphic modular form of weight 8.

Mathematics statement: the superstring measure

$$
A_{g}^{s s}=\int_{\mathcal{S}_{g}^{+}}\left\|d \mu_{s s}\right\|^{2}
$$

Expect to have a product

$$
d \mu_{s s}(\tau, \eta)=(\operatorname{det} \operatorname{lm} \tau)^{-8} \equiv[m](\tau) d \mu_{\text {bos }}(\tau)
$$

for \equiv holomorphic modular form of weight 8.

$$
\Xi^{(1)}[m](\tau)=\theta_{m}^{4}(\tau) \prod_{\text {all three even } n} \theta_{n}^{4}(\tau)
$$

(Green-Schwarz)

Mathematics statement: the superstring measure

$$
A_{g}^{s s}=\int_{\mathcal{S}_{g}^{+}}\left\|d \mu_{s s}\right\|^{2}
$$

Expect to have a product

$$
d \mu_{s s}(\tau, \eta)=(\operatorname{det} \operatorname{lm} \tau)^{-8} \equiv[m](\tau) d \mu_{\text {bos }}(\tau)
$$

for \equiv holomorphic modular form of weight 8.

$$
\Xi^{(1)}[m](\tau)=\theta_{m}^{4}(\tau) \prod_{\text {all three even } n} \theta_{n}^{4}(\tau)
$$

(Green-Schwarz)

Theorem (D'Hoker-Phong)
$\Xi^{(2)}[m](\tau)=\theta_{m}^{4}(\tau) \cdot \sum_{1 \leq i \leq j \leq 3}(-1)^{\nu_{i} \cdot \nu_{j}} \prod_{k=4,5,6} \theta\left[\nu_{i}+\nu_{j}+\nu_{k}\right]^{4}(\tau)$
where ν_{1}, \ldots, ν_{6} are the 6 odd spin structures such that $m=\nu_{1}+\nu_{2}+\nu_{3}$.
(It is natural to expect the $\theta_{m}^{4}(\tau)$ factor to have 0-3 point functions vanishing.)

Mathematics statement: the superstring measure

$$
A_{g}^{s s}=\int_{\mathcal{S}_{g}^{+}}\left\|d \mu_{s s}\right\|^{2}
$$

Expect to have a product

$$
d \mu_{s s}(\tau, \eta)=(\operatorname{det} \operatorname{lm} \tau)^{-8} \equiv[m](\tau) d \mu_{\text {bos }}(\tau)
$$

for \equiv holomorphic modular form of weight 8.

$$
\Xi^{(1)}[m](\tau)=\theta_{m}^{4}(\tau) \prod_{\text {all three even } n} \theta_{n}^{4}(\tau)
$$

(Green-Schwarz)

Theorem (D'Hoker-Phong)
$\Xi^{(2)}[m](\tau)=\theta_{m}^{4}(\tau) \cdot \sum_{1 \leq i \leq j \leq 3}(-1)^{\nu_{i} \cdot \nu_{j}} \prod_{k=4,5,6} \theta\left[\nu_{i}+\nu_{j}+\nu_{k}\right]^{4}(\tau)$
where ν_{1}, \ldots, ν_{6} are the 6 odd spin structures such that $m=\nu_{1}+\nu_{2}+\nu_{3}$.
(It is natural to expect the $\theta_{m}^{4}(\tau)$ factor to have 0-3 point functions vanishing.)
This is very hard, uses heavily the hyperelliptic representation of genus 2 surfaces. So how one can generalize to higher genus?

D'Hoker-Phong program: factorization constraint

D'Hoker-Phong program: factorization constraint

Study the degeneration of $d \mu_{s s}$ and $d \mu_{\text {bos }}$ under degeneration

Expect no transfer of momentum over the long cylinder.

D'Hoker-Phong program: factorization constraint

Study the degeneration of $d \mu_{s s}$ and $d \mu_{\text {bos }}$ under degeneration

Expect no transfer of momentum over the long cylinder.
Both $d \mu_{s s}$ and $d \mu_{\text {bos }}$ become infinite in the limit, extract the lowest order term.

D'Hoker-Phong program: factorization constraint

Study the degeneration of $d \mu_{s s}$ and $d \mu_{\text {bos }}$ under degeneration

Expect no transfer of momentum over the long cylinder.
Both $d \mu_{\text {ss }}$ and $d \mu_{\text {bos }}$ become infinite in the limit, extract the lowest order term.

Factorization constraint (D'Hoker-Phong)

$$
\Xi^{(g)}[m]\left(\begin{array}{cc}
\tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)=\Xi^{\left(g_{1}\right)}\left[m_{1}\right]\left(\tau_{1}\right) \cdot \Xi^{\left(g_{2}\right)}\left[m_{2}\right]\left(\tau_{2}\right)
$$

D'Hoker-Phong program: factorization constraint

Study the degeneration of $d \mu_{s s}$ and $d \mu_{\text {bos }}$ under degeneration

Expect no transfer of momentum over the long cylinder.
Both $d \mu_{s s}$ and $d \mu_{\text {bos }}$ become infinite in the limit, extract the lowest order term.
Factorization constraint (D'Hoker-Phong)

$$
\Xi^{(g)}[m]\left(\begin{array}{cc}
\tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)=\Xi^{\left(g_{1}\right)}\left[m_{1}\right]\left(\tau_{1}\right) \cdot \Xi^{\left(g_{2}\right)}\left[m_{2}\right]\left(\tau_{2}\right)
$$

(Mathematically, $\overline{\mathcal{M}_{g}} \supset \mathcal{M}_{g_{1}, 1} \times \mathcal{M}_{g_{2}, 1}$; note that we in fact get a formula on $\mathcal{M}_{g_{1}} \times \mathcal{M}_{g_{2}}$, i.e. on the Satake compactification)

D'Hoker-Phong program: factorization constraint

Study the degeneration of $d \mu_{s s}$ and $d \mu_{\text {bos }}$ under degeneration

Expect no transfer of momentum over the long cylinder.
Both $d \mu_{s s}$ and $d \mu_{\text {bos }}$ become infinite in the limit, extract the lowest order term.

Factorization constraint (D'Hoker-Phong)

$$
\Xi^{(g)}[m]\left(\begin{array}{cc}
\tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)=\Xi^{\left(g_{1}\right)}\left[m_{1}\right]\left(\tau_{1}\right) \cdot \Xi^{\left(g_{2}\right)}\left[m_{2}\right]\left(\tau_{2}\right)
$$

(Mathematically, $\overline{\mathcal{M}_{g}} \supset \mathcal{M}_{g_{1}, 1} \times \mathcal{M}_{g_{2}, 1}$; note that we in fact get a formula on $\mathcal{M}_{g_{1}} \times \mathcal{M}_{g_{2}}$, i.e. on the Satake compactification)
(Degeneration to $\mathcal{M}_{g-1,2} \subset \overline{\mathcal{M}_{g}}$ is not clear —off-shell amplitudes)

Superstring measure ansatz

$$
\Xi^{(1)}[m]=\theta_{m}^{4}(\tau) \prod \theta_{n}^{4}(\tau)
$$

Superstring measure ansatz

$\Xi^{(1)}[m]=\theta_{m}^{4}(\tau) \prod \theta_{n}^{4}(\tau)$
D'Hoker-Phong:

- An explicit expression for $\Xi^{(2)}[m]$ in terms of theta
- Conjectures for $\Xi^{(3)}[m]=\theta_{m}^{4}(\tau) \cdot \ldots$

Superstring measure ansatz

$\Xi^{(1)}[m]=\theta_{m}^{4}(\tau) \prod \theta_{n}^{4}(\tau)$
D'Hoker-Phong:

- An explicit expression for $\Xi^{(2)}[m]$ in terms of theta
- Conjectures for $\Xi^{(3)}[m]=\theta_{m}^{4}(\tau) \cdot \ldots$
(Natural to expect the θ_{m}^{4} for 0-3 point vanishing)

Superstring measure ansatz

$\Xi^{(1)}[m]=\theta_{m}^{4}(\tau) \prod \theta_{n}^{4}(\tau)$
D'Hoker-Phong:

- An explicit expression for $\Xi^{(2)}[m]$ in terms of theta
- Conjectures for $\Xi^{(3)}[m]=\theta_{m}^{4}(\tau) \cdot \ldots$
(Natural to expect the θ_{m}^{4} for 0-3 point vanishing)
Theorem (Cacciatori-Dalla Piazza-van Geemen)
There exists a unique modular form $\Xi^{(3)}[m]$ satisfying factorization; it is given explicitly, and is not divisible by $\theta_{m}^{4}(\tau)$.

Superstring measure ansatz

$$
\Xi^{(1)}[m]=\theta_{m}^{4}(\tau) \prod \theta_{n}^{4}(\tau)
$$

D'Hoker-Phong:

- An explicit expression for $\Xi^{(2)}[m]$ in terms of theta
- Conjectures for $\Xi^{(3)}[m]=\theta_{m}^{4}(\tau) \cdot \ldots$
(Natural to expect the θ_{m}^{4} for 0-3 point vanishing)

Theorem (Cacciatori-Dalla Piazza-van Geemen)

There exists a unique modular form $\Xi^{(3)}[m]$ satisfying factorization; it is given explicitly, and is not divisible by $\theta_{m}^{4}(\tau)$.

Theorem (G.)

The following modular form of weight 8 satisfies factorization:

$$
\Xi^{(g)}[m](\tau):=\sum_{i=0}^{g}(-1)^{i} 2^{i(i-1) / 2} \sum_{V \subset(\mathbb{Z} / 2)^{2 g} ; \operatorname{dim} V=i} \prod_{n \in V} \theta_{n+m}^{2^{4-i}}
$$

Superstring measure ansatz

$$
\Xi^{(1)}[m]=\theta_{m}^{4}(\tau) \prod \theta_{n}^{4}(\tau)
$$

D'Hoker-Phong:

- An explicit expression for $\Xi^{(2)}[m]$ in terms of theta
- Conjectures for $\Xi^{(3)}[m]=\theta_{m}^{4}(\tau) \cdot \ldots$
(Natural to expect the θ_{m}^{4} for 0-3 point vanishing)

Theorem (Cacciatori-Dalla Piazza-van Geemen)

There exists a unique modular form $\Xi^{(3)}[m]$ satisfying factorization; it is given explicitly, and is not divisible by $\theta_{m}^{4}(\tau)$.

Theorem (G.)

The following modular form of weight 8 satisfies factorization:

$$
\text { 三(g) }[m](\tau):=\sum_{i=0}^{g}(-1)^{i} 2^{i(i-1) / 2} \sum_{V \subset(\mathbb{Z} / 2)^{2 g} ; \operatorname{dim} V=i} \prod_{n \in V} \theta_{n+m}^{2^{4-i}}
$$

(Provided the roots can be chosen consistently)

First properties of the ansatz

For $g \leq 4$ there are no roots involved, so $\Xi^{(g)}[m]$ is well-defined.

First properties of the ansatz

For $g \leq 4$ there are no roots involved, so $\Xi^{(g)}[m]$ is well-defined. The ansatz reproduces the formulas of D'Hoker-Phong for $g=2$ and Cacciatori-Dalla Piazza-van Geemen for $g=3$.

First properties of the ansatz

For $g \leq 4$ there are no roots involved, so $\Xi^{(g)}[m]$ is well-defined. The ansatz reproduces the formulas of D'Hoker-Phong for $g=2$ and Cacciatori-Dalla Piazza-van Geemen for $g=3$.

Theorem (Salvati Manni)
The square roots can be chosen consistently for the above ansatz for $g=5$, i.e. $\Xi^{(5)}[m]$ is well-defined on \mathcal{J}_{5}.

First properties of the ansatz

For $g \leq 4$ there are no roots involved, so $\Xi^{(g)}[m]$ is well-defined. The ansatz reproduces the formulas of D'Hoker-Phong for $g=2$ and Cacciatori-Dalla Piazza-van Geemen for $g=3$.

Theorem (Salvati Manni)
The square roots can be chosen consistently for the above ansatz for $g=5$, i.e. $\Xi^{(5)}[m]$ is well-defined on \mathcal{J}_{5}.

Theorem (Dalla Piazza-van Geemen)
$\Xi^{(4)}[m]$ is the unique modular form satisfying factorization.

First properties of the ansatz

For $g \leq 4$ there are no roots involved, so $\Xi^{(g)}[m]$ is well-defined. The ansatz reproduces the formulas of D'Hoker-Phong for $g=2$ and Cacciatori-Dalla Piazza-van Geemen for $g=3$.

Theorem (Salvati Manni)
The square roots can be chosen consistently for the above ansatz for $g=5$, i.e. $\Xi^{(5)}[m]$ is well-defined on \mathcal{J}_{5}.

Theorem (Dalla Piazza-van Geemen)
$\Xi^{(4)}[m]$ is the unique modular form satisfying factorization.
Theorem (Oura-Poor-Salvati Manni-Yuen)
$\Xi^{(5)}[m]$ extends holomorphically to all of \mathcal{A}_{5}.

Further physical properties of the superstring measure

Expect the vanishing of the 0-3 point functions under the Gliozzi-Scherk-Olive projection, i.e. summing over all even m.

Further physical properties of the superstring measure

Expect the vanishing of the 0-3 point functions under the Gliozzi-Scherk-Olive projection, i.e. summing over all even m. The vanishing of the 0 -point function (cosmological constant) is

$$
\bar{\Xi}^{(g)}(\tau):=\sum_{m} \bar{\Xi}^{(g)}[m](\tau) \equiv 0
$$

Further physical properties of the superstring measure

Expect the vanishing of the $0-3$ point functions under the Gliozzi-Scherk-Olive projection, i.e. summing over all even m. The vanishing of the 0 -point function (cosmological constant) is

$$
\bar{\Xi}^{(g)}(\tau):=\sum_{m} \equiv^{(g)}[m](\tau) \equiv 0
$$

$\Xi^{(g)}(\tau)$ is a modular form for the entire group $\operatorname{Sp}(2 g, \mathbb{Z})$, of weight 8 , vanishing on the boundary. It follows by general principles (slope of the effective divisors on \mathcal{M}_{g}) that it vanishes on \mathcal{J}_{g} for $g \leq 4$.

Further physical properties of the superstring measure

Expect the vanishing of the 0-3 point functions under the Gliozzi-Scherk-Olive projection, i.e. summing over all even m. The vanishing of the 0 -point function (cosmological constant) is

$$
\bar{\Xi}^{(g)}(\tau):=\sum_{m} \bar{\Xi}^{(g)}[m](\tau) \equiv 0
$$

$\Xi^{(g)}(\tau)$ is a modular form for the entire group $\operatorname{Sp}(2 g, \mathbb{Z})$, of weight 8 , vanishing on the boundary. It follows by general principles (slope of the effective divisors on \mathcal{M}_{g}) that it vanishes on \mathcal{J}_{g} for $g \leq 4$.

Theorem (G.-Salvati Manni)

For $g \leq 5$ the cosmological constant $\Xi^{(g)}(\tau)$ is proportional to the Schottky-lgusa form

$$
F_{g}(\tau):=2^{g} \sum_{m \in(\mathbb{Z} / 2)^{2 g}} \theta_{m}^{16}(\tau)-\left(\sum_{m \in(\mathbb{Z} / 2)^{2 g}} \theta_{m}^{8}(\tau)\right)^{2}
$$

Lattice theta functions and physics

In terms of lattice theta functions,

$$
\sum \theta_{m}^{16}(\tau)=\theta_{D_{16}^{+}}(\tau), \quad \sum \theta_{m}^{8}(\tau)=\theta_{E_{8}}(\tau)
$$

Lattice theta functions and physics

In terms of lattice theta functions,

$$
\sum \theta_{m}^{16}(\tau)=\theta_{D_{16}^{+}}(\tau), \quad \sum \theta_{m}^{8}(\tau)=\theta_{E_{8}}(\tau)
$$

SO

$$
F_{g}(\tau) \sim \theta_{S O(32)}(\tau)-\theta_{E_{8} \times E_{8}}(\tau)
$$

Lattice theta functions and physics

In terms of lattice theta functions,

$$
\sum \theta_{m}^{16}(\tau)=\theta_{D_{16}^{+}}(\tau), \quad \sum \theta_{m}^{8}(\tau)=\theta_{E_{8}}(\tau)
$$

SO

$$
F_{g}(\tau) \sim \theta_{S O(32)}(\tau)-\theta_{E_{8} \times E_{8}}(\tau)
$$

Physics conjecture (Belavin-Knizhnik, D'Hoker-Phong)

From the duality of the $S O(32)$ and $E_{8} \times E_{8}$ superstring theories one expects F_{g} to vanish identically on \mathcal{J}_{g} for any g.

Lattice theta functions and physics

In terms of lattice theta functions,

$$
\sum \theta_{m}^{16}(\tau)=\theta_{D_{16}^{+}}(\tau), \quad \sum \theta_{m}^{8}(\tau)=\theta_{E_{8}}(\tau)
$$

$$
F_{g}(\tau) \sim \theta_{S O(32)}(\tau)-\theta_{E_{8} \times E_{8}}(\tau)
$$

Physics conjecture (Belavin-Knizhnik, D'Hoker-Phong)

From the duality of the $S O(32)$ and $E_{8} \times E_{8}$ superstring theories one expects F_{g} to vanish identically on \mathcal{J}_{g} for any g.

Theorem (Igusa)
$F_{g}(\tau)$ vanishes identically on \mathcal{A}_{g} for $g \leq 3$, and gives the defining equation for $\mathcal{M}_{4} \subset \mathcal{A}_{4}$.

Lattice theta functions and physics

In terms of lattice theta functions,

$$
\sum \theta_{m}^{16}(\tau)=\theta_{D_{16}^{+}}(\tau), \quad \sum \theta_{m}^{8}(\tau)=\theta_{E_{8}}(\tau)
$$

$$
F_{g}(\tau) \sim \theta_{S O(32)}(\tau)-\theta_{E_{8} \times E_{8}}(\tau)
$$

Physics conjecture (Belavin-Knizhnik, D'Hoker-Phong)

From the duality of the $S O(32)$ and $E_{8} \times E_{8}$ superstring theories one expects F_{g} to vanish identically on \mathcal{J}_{g} for any g.

Theorem (Igusa)

$F_{g}(\tau)$ vanishes identically on \mathcal{A}_{g} for $g \leq 3$, and gives the defining equation for $\mathcal{M}_{4} \subset \mathcal{A}_{4}$.

Theorem (G.-Salvati Manni)
This conjecture is false for any $g \geq 5$.

Lattice theta functions and physics

In terms of lattice theta functions,

$$
\sum \theta_{m}^{16}(\tau)=\theta_{D_{16}^{+}}(\tau), \quad \sum \theta_{m}^{8}(\tau)=\theta_{E_{8}}(\tau)
$$

$$
F_{g}(\tau) \sim \theta_{S O(32)}(\tau)-\theta_{E_{8} \times E_{8}}(\tau)
$$

Physics conjecture (Belavin-Knizhnik, D'Hoker-Phong)

From the duality of the $S O(32)$ and $E_{8} \times E_{8}$ superstring theories one expects F_{g} to vanish identically on \mathcal{J}_{g} for any g.

Theorem (Igusa)

$F_{g}(\tau)$ vanishes identically on \mathcal{A}_{g} for $g \leq 3$, and gives the defining equation for $\mathcal{M}_{4} \subset \mathcal{A}_{4}$.

Theorem (G.-Salvati Manni)
This conjecture is false for any $g \geq 5$.
(in fact the zero locus of F_{5} on \mathcal{M}_{5} is the divisor of trigonal curves)

Higher genus cosmological constant

Thus $\Xi^{(5)}(\tau)=$ const $\cdot F_{5}(\tau) \not \equiv 0$ on \mathcal{J}_{5}, i.e. the cosmological constant for the proposed ansatz does not vanish for genus 5 .

Higher genus cosmological constant

Thus $\Xi^{(5)}(\tau)=$ const $\cdot F_{5}(\tau) \not \equiv 0$ on \mathcal{J}_{5}, i.e. the cosmological constant for the proposed ansatz does not vanish for genus 5 .

Observation: G.-Salvati Manni

The modified ansatz

$$
\Xi^{\prime(5)}[m](\tau):=\Xi^{(5)}[m](\tau)-\operatorname{const} F_{5}(\tau)
$$

still satisfies the factorization constraint (F_{5} factorizes to identically zero), and gives vanishing cosmological constant

Higher genus cosmological constant

Thus $\Xi^{(5)}(\tau)=$ const $\cdot F_{5}(\tau) \not \equiv 0$ on \mathcal{J}_{5}, i.e. the cosmological constant for the proposed ansatz does not vanish for genus 5 .

Observation: G.-Salvati Manni

The modified ansatz

$$
\Xi^{\prime(5)}[m](\tau):=\Xi^{(5)}[m](\tau)-\operatorname{const} F_{5}(\tau)
$$

still satisfies the factorization constraint (F_{5} factorizes to identically zero), and gives vanishing cosmological constant

What happens for higher genera?

Further directions and open questions

Further directions and open questions

- Find a holomorphic adjustment of $\Xi^{(6)}[m](\tau)$ satisfying the factorization constraint (to $\Xi^{\prime(5)}[m](\tau)$), and giving a vanishing cosmological constant.

Further directions and open questions

- Find a holomorphic adjustment of $\Xi^{(6)}[m](\tau)$ satisfying the factorization constraint (to $\Xi^{\prime(5)}[m](\tau)$), and giving a vanishing cosmological constant. Here subtracting a multiple of F_{6} would not work, as it does not factorize to zero.

Further directions and open questions

- Find a holomorphic adjustment of $\Xi^{(6)}[m](\tau)$ satisfying the factorization constraint (to $\Xi^{\prime(5)}[m](\tau)$), and giving a vanishing cosmological constant. Here subtracting a multiple of F_{6} would not work, as it does not factorize to zero.
- Verify the vanishing of two-point function for the proposed ansatz after the GSO projection: known for $g=2$ (D'Hoker-Phong) and for $g=3$ (G.-Salvati Manni), trouble for $g=4$ (Matone-Volpato)

Further directions and open questions

- Find a holomorphic adjustment of $\Xi^{(6)}[m](\tau)$ satisfying the factorization constraint (to $\Xi^{\prime(5)}[m](\tau)$), and giving a vanishing cosmological constant. Here subtracting a multiple of F_{6} would not work, as it does not factorize to zero.
- Verify the vanishing of two-point function for the proposed ansatz after the GSO projection: known for $g=2$ (D'Hoker-Phong) and for $g=3$ (G.-Salvati Manni), trouble for $g=4$ (Matone-Volpato)
- Verify the vanishing of the three-point function for the proposed ansatz after the GSO projection: known for $g=2$ (D'Hoker-Phong), trouble for $g=3$ (Matone-Volpato)

Further directions and open questions

- Find a holomorphic adjustment of $\Xi^{(6)}[m](\tau)$ satisfying the factorization constraint (to $\bar{\Xi}^{\prime(5)}[m](\tau)$), and giving a vanishing cosmological constant. Here subtracting a multiple of F_{6} would not work, as it does not factorize to zero.
- Verify the vanishing of two-point function for the proposed ansatz after the GSO projection: known for $g=2$ (D'Hoker-Phong) and for $g=3$ (G.-Salvati Manni), trouble for $g=4$ (Matone-Volpato)
- Verify the vanishing of the three-point function for the proposed ansatz after the GSO projection: known for $g=2$ (D'Hoker-Phong), trouble for $g=3$ (Matone-Volpato)
- Compute the (non-vanishing) 4-point function: only known for $g=2$ (D'Hoker-Phong)

Further directions and open questions

- Find a holomorphic adjustment of $\Xi^{(6)}[m](\tau)$ satisfying the factorization constraint (to $\Xi^{\prime \prime(5)}[m](\tau)$), and giving a vanishing cosmological constant. Here subtracting a multiple of F_{6} would not work, as it does not factorize to zero.
- Verify the vanishing of two-point function for the proposed ansatz after the GSO projection: known for $g=2$ (D'Hoker-Phong) and for $g=3$ (G.-Salvati Manni), trouble for $g=4$ (Matone-Volpato)
- Verify the vanishing of the three-point function for the proposed ansatz after the GSO projection: known for $g=2$ (D'Hoker-Phong), trouble for $g=3$ (Matone-Volpato)
- Compute the (non-vanishing) 4-point function: only known for $g=2$ (D'Hoker-Phong)
- Apply these modular forms to approach the Schottky problem in genus 5 and higher.

