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Schottky problem is the following question:

which principally polarized abelian varieties are
Jacobians of curves?

It relates two important moduli/classification spaces, and would

allow one to relate results in algebraic geometry to number theory

and modular forms.

A good understanding of the answer could perhaps lead to a

better geometric understanding of abelian varieties starting from

curves, or allow one to relate the cohomology and other geomet-

ric properties of the two moduli spaces.
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Notations:

Mg — moduli space of Riemann surfaces of genus g

Ag — moduli space of principally polarized abelian varieties

Hg — Siegel upper half-space for dimension g

J : Mg → Ag Jg := J(Mg) Ag = Hg/Sp(2g,Z)

g dimMg dimAg

1 1 = 1
2 3 = 3
3 6 = 6
4 9 +1 = 10 Schottky′s original equation
5 12 < 15 Partial geometric results

g 3g − 3 << g(g+1)
2 ???
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and theta functions of the second order

Θ[ε](τ, z) := θ

[
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]
(2τ,2z)

are related via Riemann’s bilinear addition theorem
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The level subgroups of the modular group are

Γg(n) :=

{
γ =

(
a b
c d

)
∈ Sp(2g,Z)

∣∣∣∣ γ ≡
(
1 0
0 1

)
mod n

}

Γg(n,2n) :=
{
γ ∈ Γg(n)

∣∣∣ diag(atb) ≡ diag(ctd) ≡ 0 mod 2n
}

.



The level subgroups of the modular group are

Γg(n) :=

{
γ =

(
a b
c d

)
∈ Sp(2g,Z)

∣∣∣∣ γ ≡
(
1 0
0 1

)
mod n

}

Γg(n,2n) :=
{
γ ∈ Γg(n)

∣∣∣ diag(atb) ≡ diag(ctd) ≡ 0 mod 2n
}

.

These are normal in Sp(2g,Z) and their index was computed by

Igusa. In particular

Ng := #(Sp(2g,Z)/Γg(2,4)) = 2g2+2g
g∏

k=1

(22k − 1) ∼ 22g2

We denote A2,4
g := Hg/Γg(2,4) and similarly define M2,4

g .



As functions of z for a fixed τ , the functions Θ[ε](τ, z) define the
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Kummer map of Aτ := Cg/Zg + τZg, i.e.

K : Aτ/± 1 → P2g−1

z →
{
Θ[ε](τ, z)

}
all ε

,

Theta constants Θ[ε](τ,0) are modular with respect to Γ(2,4)

of weight one half and thus define the map

Th : A2,4
g → P2g−1

τ →
{
Θ[ε](τ,0)

}
all ε

,

which is known (R. Salvati Manni) to be generically injective,

and is always at most finite-to-one.

Algebraic Schottky problem:

describe Th(J(M2,4
g )) ⊂ Th(A2,4

g )



History of the problem

1880s: Schottky (+1900s Jung + perhaps Riemann earlier)

Take C̃ → C an unramified double cover. Let τ be the period

matrix of C and let π be the period matrix of the Prym. Then
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1880s: Schottky (+1900s Jung + perhaps Riemann earlier)

Take C̃ → C an unramified double cover. Let τ be the period

matrix of C and let π be the period matrix of the Prym. Then
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ε
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(π,0) = θ
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0 δ

]
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0 ε
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Using this (together with Riemann’s addition theorem) allows us to get

some equations for Th(J 2,4
g ) from equations for Th(A2,4

g−1).

1960s: H. Farkas and Rauch

prove the validity of this approach, and show that some non-

trivial equations result.
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1980s: Theorem (van Geemen / Donagi).

If we do this for all / for just one double cover and write down all

the resulting Schottky-Jung relations (using the full ideal of Th(A2,4
g−1)),

Jacobians will be an irreducible component of the solution set.

+: We get explicit algebraic equations for theta constants.

In fact (Schottky, Farkas, Rauch, Igusa, Mumford) we do get

the one defining equation in genus 4.

-: We do not really know Th(A2,4
g−1) entirely (though we do

know many elements of the ideal).

This is only a weak solution, i.e. up to extra components.

Boundary degeneration of Pryms is hard (Alexeev, Birkenhake,

Hulek).
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1970s: Gunning, Fay, Welters

For a Jacobian the Kummer image K(Jac) ⊂ P2g−1 has many (a

4d family of) trisecant lines.

Theorem

If for some τ the image K(Aτ) has a family of trisecants, then τ

is the period matrix of a Jacobian.

Conjecture. If we know there is one trisecant, τ is already a

Jacobian.

+: Get a strong solution (no extra components).

-: Need to have a curve in the abelian variety to start with.

The parameters of the trisecant(s) enter in the equations, i.e.

we do not directly get algebraic equations for theta constants.
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1980s: Dubrovin, Krichever, Novikov, Arbarello, De Concini,

Shiota, Mulase, Marini, Muñoz Porras, Plaza Martin, ...

KP integrable equation as a degenerate trisecant

Theorem

τ is the period matrix of a Jacobian if and only if ∃u, v, w ∈ Cg, c ∈
C such that

u4∂2Θ[ε](τ,0)+(v2−uw)∂Θ[ε](τ,0)+cΘ[ε](τ,0) = 0 ∀ε ∈ (Z/2Z)g.

+: Strong solution — no extra components.

-: There are extra parameters (can be eliminated by using ef-

fective Nullstellensatz).

This is a differential equation for theta constants, while we are

looking for algebraic relations.

Problems with modular invariance.
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1990s: Buser, Sarnak, Lazarsfeld, Nakamaye, Bauer

Theorem The Seshadri constant for a generic Jacobian is much

smaller than for a generic p.p. abelian variety.

Theorem The shortest period of a generic Jacobian is much

shorter than for a generic p.p. abelian variety.

+: Gives an actual doable way to tell that some abelian varieties

are not Jacobians.

-: Does not possibly give a way to show that some given abelian

variety is a Jacobian.



Other approaches:

Andreotti-Mayer: Singularities of the theta divisor

Mumford, Kempf, Muñoz Porras: Geometry of Gauss maps for

Jacobians.

Kempf, Ries: Double translation surfaces

G. Farkas: Slopes of modular forms

...



Effectively obtaining the algebraic solution

Theorem 1 (G.)

a) degTh(A2,4
g ) = Ng

〈
(λ/2)

g(g+1)
2

〉

Ag

b) degTh(J 2,4
g ) = Ng

〈
(λ/2)3g−3

〉
Mg

where 〈. . .〉 denote the intersection numbers of cohomology classes,

and λ is the first Chern class of the Hodge bundle, the bundle

of abelian differentials.



Non-proof.

The degree of a subvariety X ⊂ P2g−1 of dimension d is the in-

tegral of the top power of the Fubini-Study curvature form over

it, degX =
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X
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FS.

Pull back Fubini-Study to A2,4
g and M2,4

g by Th∗ and (Th ◦ J)∗.
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Non-proof.

The degree of a subvariety X ⊂ P2g−1 of dimension d is the in-

tegral of the top power of the Fubini-Study curvature form over

it, degX =
∫
X

ωd
FS.

Pull back Fubini-Study to A2,4
g and M2,4

g by Th∗ and (Th ◦ J)∗.
Use invariance of ωFS under the level change to push the com-

putation to Ag and Mg.

Use the fact that the Chern class of the theta bundle is one half

of the Chern class of the Hodge bundle (up to torsion).

Major difficulty:

Everything blows up at the boundary and we need to extend

things there carefully.

Analytic and algebraic intersection numbers for currents may not

agree.



The resulting degrees are

g degTh(J 2,4
g ) degTh(A2,4

g )

1 1 1
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The resulting degrees are

g degTh(J 2,4
g ) degTh(A2,4

g )

1 1 1
2 1 1
3 16 16
4 208896 13056
5 282654670848 1234714624
6 23303354757572198400 25653961176383488
7 87534047502300588892024209408 197972857997555419746140160

Corollary. Th(J 2,4
g ) is not a complete intersection in Th(A2,4

g )

for g = 5,6,7.
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Theorem 2.

a) degTh(A2,4
g ) = Ng(−2)−g(g+1)/2

(
g(g + 1)

2

)
!

g∏

k=1

ζ(1− 2k)

2 ((2k − 1)!!)

b) degTh(J 2,4
g ) < Cg 22g2

for some explicit constant C

Proof. a) follows from Hirzebruch-Mumford’s proportionality

principle for Ag and its compact dual

b) Use the bound on the Weil-Petersson volume of moduli spaces

volWP (Mg) < cg (G. 2001), and then Lefschetz index theorem

(Demailly; Yau):

〈
λω

3g−2
WP

〉3g−3 ≥
〈
ω

3g−3
WP

〉3g−2 〈
λ3g−3

〉
.

Here the L.H.S. is expressible in terms of WP volumes, as well

(Schumacher, Trapani).
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Theorem 3.

The ideals of algebraic equations for Th(A2,4
g ) and for Th(J 2,4

g )

can be obtained effectively, i.e. there is a finite algorithm that

can be applied to get the generators for these ideals.

Proof. For Ag, expand theta constants in power series near

some point to order deg2 +1 — this gives the germ of Th(A2,4
g ).

Then any polynomial of degree d in theta constants that van-

ishes on this germ must vanish along Th(A2,4
g ).

For Jg, first use effective Nullstellensatz to eliminate the para-

meters in the KP, and then expand the KP equation in Taylor

series at some point as well.

Difficulty: The degrees are HUGE!



So how do we get the actual algebraic equations?



Motivation:

Addition properties for functions.

Suppose f : Cn → C is such that f(x)f(y) = f(x+y) ∀x, y. Then

f is the exponent f(x) = exp(a · x) for some a ∈ Cn.
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Motivation:

Addition properties for functions.

Suppose f : Cn → C is such that f(x)f(y) = f(x+y) ∀x, y. Then

f is the exponent f(x) = exp(a · x) for some a ∈ Cn.

What if we ask for g(x+ y)f(x)f(y) = 1? Still the same answer.

What if we take more than one function, and ask for

m∑

i=1

gi(x + y)fi(x)fi(y) = 0 ∀x, y

???



Theorem (Buchstaber, Krichever).

For any τ ∈ Jg, any x, y ∈ Cg, and any

A0, . . . , Ag+1 ∈ C ⊂ Jac(C) = Aτ

the following addition property holds:

(∗) 0 =
g+1∑

i=0

ci(x + y)θ(Ai + x)θ(Ai + y),

where furthermore ci can be written explicitly in terms of theta

functions.
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For any τ ∈ Jg, any x, y ∈ Cg, and any

A0, . . . , Ag+1 ∈ C ⊂ Jac(C) = Aτ

the following addition property holds:

(∗) 0 =
g+1∑

i=0

ci(x + y)θ(Ai + x)θ(Ai + y),

where furthermore ci can be written explicitly in terms of theta

functions.

Conjecture (Buchstaber, Krichever).

If for some τ ∈ Hg and some Ai ∈ Cg the above equation (*) is

satisfied for all x, y ∈ Cg, then τ ∈ Jg and Ai ∈ C ⊂ Aτ .



Theorem (Gunning).

For any Jacobian the Kummer variety admits a (2g+2)-dimensional

family of (g +2)-secant g-planes. More precisely, ∀A0, . . . Ag+1 ∈
C ⊂ Jac(C) and ∀z ∈ Cg the g + 2 points K(Ai + z) inside P2g−1

are collinear.
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Theorem (Gunning).

For any Jacobian the Kummer variety admits a (2g+2)-dimensional

family of (g +2)-secant g-planes. More precisely, ∀A0, . . . Ag+1 ∈
C ⊂ Jac(C) and ∀z ∈ Cg the g + 2 points K(Ai + z) inside P2g−1

are collinear.

Theorem 4 (G.)

Gunning’s theorem is equivalent to Buchstaber-Krichever’s ad-

dition property.

Theorem 5.

The Buchstaber-Krichever conjecture holds under some addi-

tional assumption of general position, i.e. both their condi-

tion and Gunning’s theorem characterize Jacobians and solve

the Schottky problem.
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Thus we get another solution to the Schottky problem.

Theorem 6.
If for some irreducible τ ∈ Hg, Ai ∈ Cg with Riemann constant
R the following is satisfied for all σ ∈ (Z/2Z)g and for all z ∈ Cg,
then τ ∈ Jg and Ai are some points on the curve:

0 =
∑

ε∈(Z/2Z)g

Θ[ε](A0 + z + R)Θ[ε](z)Θ[σ](Ag+1 + z + R)

−Θ[ε](Ag+1 + z + R)Θ[ε](z)Θ[σ](A0 + z + R)

+
g∑

k=1

θ(2Ag+1 + R)

θ(2Ak + R)
Θ[ε](A0+z+R)Θ[ε](Ag+1+z−Ak)Θ[σ](Ak+z+R)

unless all the coefficients in front of Θ[σ](Ai + z + R) are identically zero



We can also characterize hyperelliptic Jacobians.

Theorem 7.

Let ei be the unit vector in the i’th dimension, and let si :=
i∑

j=1
ei.

Then if for some τ ∈ Hg, Ai ∈ Cg and all σ ∈ (Z/2Z)g and all

z ∈ Cg the following is satisfied, then τ is a hyperelliptic Jacobian

and Ai are points on the curve:



We can also characterize hyperelliptic Jacobians.
Theorem 7.

Let ei be the unit vector in the i’th dimension, and let si :=
i∑

j=1
ei.

Then if for some τ ∈ Hg, Ai ∈ Cg and all σ ∈ (Z/2Z)g and all
z ∈ Cg the following is satisfied, then τ is a hyperelliptic Jacobian
and Ai are points on the curve:

∑
ε

Θ[ε](z)Θ[ε](z)Θ[σ](z)

=
∑
ε

g∑

k=1

(−1)(ε+σ,ek)Θ[ε](z)Θ[ε + sk−1]Θ[σ + sk−1](z)

+
∑
ε

Θ[ε](z)Θ[ε + sg](z)Θ[σ + sg](z),

unless all the coefficients in front of Θ[σ + si](z) are identically zero


