MAT 319 Practice Final Exam. December 6, 2012

This is a closed notes/ closed book/ electronics off exam.
Each problem is worth 20 points (but the problems are of variable difficulty!).
Problem 1. Prove, using only properties of real numbers, that there exists a real number x such that $x^{2}+x=3$.

Problem 2. Suppose $\left\{s_{n}\right\}$ is a sequence such that for all $n, \mid s_{n}-$ $s_{n+1} \mid<1 / n$. Can the sequence $\left\{s_{n}\right\}$ be convergent? can it be divergent?

Problem 3. Suppose every number of the form 2^{n} for $n \in \mathbb{Z}$ is a subsequential limit of $\left\{s_{n}\right\}$. Prove that there exists a subsequence of $\left\{s_{n}\right\}$ converging to zero.
Problem 4. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined to be zero for any irrational number, and to be $f(p / q):=1 / q$ for any rational number p / q with p and q coprime. Is f continuous at 0 ? at 1 ?
Problem 5. Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by $f(x):=\left\{\begin{array}{ll}0 & \text { if } x<0 \\ x+1 & \text { if } x \geq 0\end{array}\right.$. Is f continuous on $[-1,1]$? differentiable on $(-1,1)$? integrable on $[-1,1]$? Does it satisfy the conclusions of the Mean Value Theorem and the Intermediate Value Theorem on $[-1,1]$?

Problem 6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function, and let g : $\mathbb{R} \rightarrow \mathbb{R}$ be some function such that $\lim _{x \rightarrow a}(f \circ g)(x)=(f \circ g)(a)$. Does it necessarily follow that $\lim _{x \rightarrow a} g(x)=g(a)$?
Problem 7. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function differentiable everywhere. For any $x \in \mathbb{R}$, compute the limit $\lim _{h \rightarrow 0} \frac{f\left(x+h^{2}\right)-f(x)}{h}$.

Problem 8. Find all integrable functions $f:[0,1] \rightarrow \mathbb{R}$ such that for any $x \in[0,1]$ we have

$$
\left(\int_{0}^{x} f(t) d t\right)^{2}=\int_{0}^{x}\left(f(t)^{3}\right) d t
$$

