Math 313 (Fall '09)

## Homework 4

due October 8

The following exercises refer to the textbook (the seventh edition).

- Ch9: 11, 14, 25
- Ch11: 10, 12

Sample Midterm

1. Which of the following sets are subgroups of $\mathrm{GL}(2, \mathbb{R})$ :
i) $H_{1}=\{X \in \mathrm{GL}(2, \mathbb{R}) \mid \operatorname{det} X=1\}$;
ii) $H_{2}=\{X \in \mathrm{GL}(2, \mathbb{R}) \mid \operatorname{det} X=-1\}$;
iii) $H_{3}=\{X \in \mathrm{GL}(2, \mathbb{R}) \mid$ the entries in $X$ belong to $\mathbb{Z}\}$;
iv) $H_{4}=\left\{\left.X=\left(\begin{array}{ll}0 & a \\ b & 0\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$

Explain!
2. What are the possible order of permutations in $S_{7}$. How many permutations of order 8 and 10 respectively are in $S_{7}$ ? What is the number of even permutations of order 6 in $S_{7}$ ?
3. Classify all groups with 8 elements.

Hint: As a first step you should list all groups with 8 elements that you know. Pay attention to the maximal order that occurs in each case. Then consider the abelian case. Finally, discuss the non-abelian case.
4. Let $G$ be a cyclic group. Prove that
i) any subgroup $H$ of $G$ is cyclic;
ii) any factor group $G / H$ is cyclic.

Additionally, give an example to show that it does not suffice to know that $H$ and $G / H$ are cyclic, to conclude that $G$ is cyclic.
5. Show that a group of order 33 must have an element of order 3 .

6 . The set $\{1,9,16,22,29,53,74,79,81\}$ is a group under multiplication modulo 91. Determine the isomorphism class of this group.

