Math 313 (Fall '09) Homework 11

due Dec 10

This is a make-up homework. You should do it only as replacement of a low scoring or missing HW.

- 1) This exercise tests your understanding of finite fields:
 - i) Construct a field with 27 elements and explain why is not possible to have a field with 26 elements.
 - ii) The field that you constructed has the form $F(\alpha)$. List the 27 elements and then give the addition and multiplication rules.
 - iii) Concretely, compute:

$$-\alpha = ?$$

- * $(2\alpha + 1) + (\alpha^2 + 2\alpha + 2) =?$ * $(2\alpha + 1) \cdot (\alpha^2 + 2\alpha + 2) =?$
- $* \frac{\alpha^2 + \alpha + 1}{\alpha + 1} = ?$
- iv) What should be the meaning of $\sqrt{\alpha+1}$?
- v) We know that $F(\alpha)^*$ is cyclic. Find a generator.
- 2) This is a continuation of the previous exercise. Let $F(\alpha) =$ $F[x]/\langle x^3 + x^2 + 2x + 1 \rangle$ and $F(\beta) = F[x]/\langle 2x^3 + x + 1 \rangle$. By general theory, we know that $F(\alpha) \cong F(\beta)$ (explain!). Give an explicit isomorphism $F(\alpha) \cong F(\beta)$.
- i) Find the minimal polynomial for $\sqrt{-3} + \sqrt{2}$ over \mathbb{Q} . 3)
 - ii) Make sense of the expression $\sqrt{-3} + \sqrt{2}$ over \mathbb{Z}_7 and find its minimal polynomial.
- i) Let β be a zero of $f(x) = x^5 + 2x + 4$ (it is irreducible). (4)Show that none of $\sqrt{2}$, $\sqrt[3]{2}$, or $\sqrt[4]{2}$ belong to $\mathbb{Q}(\beta)$. ii) Prove that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) = \mathbb{Q}(\sqrt[6]{2})$

Hint: In this exercise, use the degree of the extension.

- 5) What is the order of the splitting field of $x^5 + x^4 + 1 = (x^2 + x^4)^2$ $(x+1)(x^3+x+1)$ over \mathbb{Z}_2 .
- 6) Prove that $\pi^2 1$ is algebraic over $\mathbb{Q}(\pi^3)$.
- 7) In which fields does $x^n x$ have a multiple zero?
- 8) Prove that the degree of any irreducible factor of $x^8 x$ over \mathbb{Z}_2 is 1 or 3.