Math 313 (Fall '09)

Homework 11

due Dec 10

This is a make-up homework. You should do it only as replacement of a low scoring or missing HW.

1) This exercise tests your understanding of finite fields:
i) Construct a field with 27 elements and explain why is not possible to have a field with 26 elements.
ii) The field that you constructed has the form $F(\alpha)$. List the 27 elements and then give the addition and multiplication rules.
iii) Concretely, compute:

$$
\begin{aligned}
& *-\alpha=? \\
& *(2 \alpha+1)+\left(\alpha^{2}+2 \alpha+2\right)=? \\
& *(2 \alpha+1) \cdot\left(\alpha^{2}+2 \alpha+2\right)=? \\
& * \frac{\alpha^{2}+\alpha+1}{\alpha+1}=?
\end{aligned}
$$

iv) What should be the meaning of $\sqrt{\alpha+1}$?
v) We know that $F(\alpha)^{*}$ is cyclic. Find a generator.
2) This is a continuation of the previous exercise. Let $F(\alpha)=$ $F[x] /\left\langle x^{3}+x^{2}+2 x+1\right\rangle$ and $F(\beta)=F[x] /\left\langle 2 x^{3}+x+1\right\rangle$. By general theory, we know that $F(\alpha) \cong F(\beta)$ (explain!). Give an explicit isomorphism $F(\alpha) \cong F(\beta)$.
3) i) Find the minimal polynomial for $\sqrt{-3}+\sqrt{2}$ over \mathbb{Q}.
ii) Make sense of the expression $\sqrt{-3}+\sqrt{2}$ over \mathbb{Z}_{7} and find its minimal polynomial.
4) i) Let β be a zero of $f(x)=x^{5}+2 x+4$ (it is irreducible). Show that none of $\sqrt{2}, \sqrt[3]{2}$, or $\sqrt[4]{2}$ belong to $\mathbb{Q}(\beta)$.
ii) Prove that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})=\mathbb{Q}(\sqrt[6]{2})$

Hint: In this exercise, use the degree of the extension.
5) What is the order of the splitting field of $x^{5}+x^{4}+1=\left(x^{2}+\right.$ $x+1)\left(x^{3}+x+1\right)$ over \mathbb{Z}_{2}.
6) Prove that $\pi^{2}-1$ is algebraic over $\mathbb{Q}\left(\pi^{3}\right)$.
7) In which fields does $x^{n}-x$ have a multiple zero?
8) Prove that the degree of any irreducible factor of $x^{8}-x$ over \mathbb{Z}_{2} is 1 or 3 .

