
Chapter 5

A turtle in a fractal garden

1 Turtle Graphics

Imagine you have a small turtle who responds to certain commands like “move forward a step”,
“move back a step”, “turn right”, and “turn left”. Imagine also that this turtle carries a pen
(or just leaves a trail of green slime wherever he crawls— the pond he came out of was none
too clean). As long as our turtle follows our commands without tiring, we can get him to
make rather intricate patterns easily.1 The turtle graphics commands described here are not a
standard part of maple. Rather, they are in a file “turtle.txt” which we will examine in more
detail later in this chapter. Maple has a somewhat different implementation included in the
share library. In order to get our turtle commands known to maple, we must first load them
with a command such as

> read(‘turtle.txt‘);

Let us suppose our turtle is given a string such as “FLFRF” and interprets it as the sequence
of instructions “Move Forward. Turn Left. Move Forward. Turn Right. Move Forward.” Then
we should see the turtle move in a zigzag pattern:

> TurtleCmd(‘FLFRF‘);

We shall begin assuming the turtle knows the following commands:

F — move forward one step R — turn right (but don’t move)
B — move backward one step L — turn left

1This is the premise of the computer language LOGO, invented in the late 1960s and often used to teach
children the basic ideas of programming. The “turtle graphics” we do here has very little to do with real LOGO,
which is a much more powerful system.
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We will point out some more commands later, although this set is sufficient to do quite a lot.2

For example, we can ask our turtle to make a self portrait:

> TurtleCmd(‘FRFLFFF RFFLFFLFFR FFFFF RFFLFFLFFR FFFLFR FFLF RBFL
FLFF RFLFRFLFRFLF FRFLFFRFLFFF LFRFFLF RFFLF RFLFRFLF FFF‘);

Or, we can make a spiral:

> TurtleCmd(‘FRFR FFRFFR FFFFRFFFFR FFFFFFFFRFFFFFFFR‘);

This last can be represented more succinctly if we add a pair of new commands, namely

G — “Grow”, i.e. double the unit of length S — “Shrink” (halve the unit of length)

Then the last picture can be produced by the string “FRFRG FRFRG FRFRG FRFR”, or,
even better, we can make it spiral much more by repeating “FRFRG” twenty times:

> TurtleCmd(cat(seq(‘FRFRG‘,i=1..20)));

You may have noticed that the command TurtleCmd always resizes the resulting graphic
to be of constant width. While this may seem a minor point, it is not. In any single string
of turtle commands, “FF” will always be twice as long as “F”; however, TurtleCmd(‘F‘) and
TurtleCmd(‘FFFFFFFFFF‘) produce identical results. This is because the a single “F” in the
second case is 1/10 the width of the figure, while it is the full width in the first case.

We can also adjust some of the turtle’s attributes. For example, the turtle need not make
only 90 degree turns. We use the command ResetTurtle() to set the turtle back to its initial
state, then SetTurtleAngle to specify the angle (in degrees) that the turtle will turn left or
right when it encounters an L or R command.

2In fact, this set of commands is already redundant. We could replace L with RRR and B with RRFLL.
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> ResetTurtle(); SetTurtleAngle(60);
TurtleCmd(cat(seq(‘FRFRG‘,i=1..20)));

Here is a somewhat prettier example. Can you figure out what is happening?

> ResetTurtle(); SetTurtleAngle(30);
TurtleCmd(cat(seq(cat(‘L‘,

seq(‘FL‘,i=1..12)),
j=1..12)));

SetTurtleScale allows us to modify the behavior of the S and G commands. Its argument
is the factor the unit of length changes when an S is encountered.

> ResetTurtle(); SetTurtleAngle(60); SetTurtleScale(.8);
TurtleCmd(cat(seq(‘FRFRG‘,i=1..20)));

2 A fractal

Now let’s try to do something more interesting. Begin with a straight segment (command
“F”). Now remove the middle third of the segment, and replace it with the top two sides of an
equilateral triangle. Since the overall figure produced by the turtle is always rescaled to unit
size, we can represent the latter with the command “F LFRRFL F”, where the part LFRRFL
describes the bump we added. Of course, we have to set the angle the turtle turns to be 60◦,
and we need the RR in the middle to make a 120◦ turn.
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> SetTurtleAngle(60);
plots[display](array([TurtleCmd(‘F‘), TurtleCmd(‘FLFRRFLF‘)]));

Now let’s put a bump on each segment in the second figure. This is the same as replacing
each F in the second command with “FLFRRFLF”, giving us

> TurtleCmd(‘FLFRRFLF L FLFRRFLF RR FLFRRFLF L FLFRRFLF‘);

Putting bumps on each segment of that figure, and then adding smaller bumps to each
segment of that figure, and then doing it yet again, gives us a very wiggly curve:

Notice that the width of each bump added is 1/3 of the one added previously, so by the
time we have done this five times (as in the previous figure), the bumps are 1/35 the size of
the whole figure. If we continue much more, the changes become smaller than we can discern.
It should be clear that there is a well defined “curve” which corresponds to the limit of doing
this process infinitely often. We shall try to make this statement a little more precise now.

Let K0 be the figure at the 0-th stage, that is, the straight segment, and let K1 be the curve
after we have added one bump. In general, let Kn be the curve after the n-th step. We claim
that there is a well-defined limit curve K∞ = limn→∞ Kn.

To make sense of this statement, we need a way to measure how far apart two sets in the
plane are. That is, if S1 and S2 are two sets of points, we shall define the “Hausdorff distance”
between S1 and S2 as follows. First, define the distance from a point x to a set S as the distance
between x and the closest point in S, that is

d(x, S) = inf
y∈S

d(x, y).

Then let the Hausdorff distance between S1 and S2 be the greatest of all such distances, as x
moves through each set.

d(S1, S2) = max

{
sup
x∈S1

d(x, S2), sup
x∈S2

d(x, S1)

}

Once you have absorbed that, it should be simple to see that that we now need only show
that for any ε > 0, we can always find N sufficiently large so that d(KN ,Kn) < ε for all n > N .
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This follows from the fact that the size of the bumps goes down by a factor of 1/3 at each stage.
Thus, d(Kn,Kn+1) < 1/3n+1, and

d(KN ,Kn) <
n∑

j=N

1/3j <
1

2 · 3N−1
.

This means that the sets Kn form a Cauchy sequence, and so there is a well-defined limit set
K∞.3

Now, this “curve” K∞ has some interesting properties. First, notice that the distance in
the plane from one end to the other is 1, but the “curve” itself is infinitely long. In fact, the
length of any small part of the curve is infinite, as well. We can see that by examining how the
lengths of each Kn varies with n:

curve # segments segment length total length

K0 1 1 1
K1 4 1/3 4/3
K2 16 1/9 16/9
K3 64 1/27 64/27
...

...
...

...
Kn 4n 1/3n 4n/3n

At each stage, every segment is replaced by four segments 1/3 as long. Thus, the overall
length grows by a factor of 4/3 at each step. For any finite length " we choose, we can find an
n so that the length of Kn is greater than ".

Note also that K∞ is nowhere differentiable: it has corners densely throughout it. Finally,
note that K∞ is “self-similar”. By this we mean that if you take any small piece of it, no matter
how small, there is a small copy of the whole K∞ within it.

The curve K∞ is an example of a fractal.4 This particular example is called the von Koch
curve, and was discovered by H. von Koch in the late nineteenth century. This curve, and others
like it, caused quite a stir in the mathematics community at the time because of its peculiar
properties. We will explore additional fractals and some of their properties in the remainder of
this chapter.

3In order to completely finish this argument, we need to know that the collection of all compact sets forms
a complete metric space if we use the Hausdorff distance as our metric. Without this fact, we don’t know that
the limiting object K∞ is also a compact set in the plane. Although this isn’t difficult to prove (and is nearly
self-evident), we will skip over this detail.

4The term “fractal” was coined by Benoit Mandelbrot in the late 1970s. Unfortunately, there is no universally
accepted definition for this term. Some definitions require that a fractal be a self-similar object, but this excludes
one of the most well-known examples of a fractal, the Mandelbrot set, which is only approximately self-similar.
We shall take it to mean any set whose Hausdorff dimension exceeds its topological dimension (we will see what
this means in section 5).
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The particular way we generated the Koch curve is called an “L-system” or a “Lindenmeyer
system”. In an L-system, one begins with an initial figure (called the initiator), and a set of
rules for modifying any figure to obtain the next in the sequence. In our example above, the
initiatior was a straight segment (F) and the recursion rule was F !→ FLFRRFLF.

3 Recursion and making a Koch Snowflake with Maple

In the previous section, we didn’t give the specifics of exactly how we generated the Koch curve
of level 5 which we showed. The general procedure was pointed out (“Begin with F. Replace
each F with FLFRRFLF. Repeat 5 times.”), but if you actually tried to do it yourself, you
might have found it a bit tricky. Since the turtle command for the curve has 2388 letters,
certainly it isn’t something you would expect someone to type in directly.

Instead, a small maple procedure was written to generate it. Before giving the details, let’s
analyze the process a bit. We shall rely heavily on the self-similar nature of the Koch curve
K∞.

Notice that the curve K∞ is made up of four small copies of itself, arranged as

K∞L K∞RR K∞L K∞.

If we use Kn to denote the set of turtle commands used to produce Kn, then a similar statement
is true for each Kn, namely

Kn =

{
Kn−1LKn−1RRKn−1LKn−1 if n > 0
F if n = 0

.

3.1 Recursive functions.

This is an example of a recursive definition. You’ve probably encountered such definitions
previously in math classes. For example, the factorial function can be defined either as

n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1

or

n! =

{
n · (n − 1)! if n > 1
1 if n = 1

.

The second definition is much simpler to implement in a programming language which allows
recursive functions, such as maple.5 To see this, let’s implement the factorial function in both
ways:

5Most programming languages these days do allow recursive function calls, although this was not the case
until 1985 or so.
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> fact1 := proc(n::posint)
local i,ans;
ans := 1;
for i from 1 to n do

ans := ans*i;
od;
ans;

end:

> fact2 := proc(n::posint)
if (n=1) then

1;
else

n*fact2(n-1);
fi;

end:

Notice how much shorter and clearer the second version is.6 However, there is a price to
pay: a recursively defined function has a bit more overhead than a non-recursive one. However,
the savings in simplicity often overwhelms the minor loss in speed.7

To test your understanding, you might try to write a procedure to generate the Fibonacci
numbers, which are defined by

F (n) =

{
F (n − 1) + F (n − 2) if n > 2
1 if n = 1 or n = 2

.

Try to implement this with both a recursive and non-recursive procedure. The non-recursive
one is much more complicated!

3.2 A recursive procedure to generate Kn

With the idea of recursion in our bag of tools, we can now easily write our procedure to generate
the Koch curve, using the observation we made in §3, namely that

Kn =

{
Kn−1LKn−1RRKn−1LKn−1 if n > 0
F if n = 0

.

6We’ve stretched things a bit here. We could have implemented the factorial even more simply as
fact3:=n->product(i,i=1..n);. However, this relies on the fact that the factiorial is a special product.

7Also, symbolic systems such as maple often have additional means to speed up recursive procedures. If you
expect your function to be called several times with the same argument, you can add options remember to the
definition. This instructs maple to save the result of previous function calls. When the function is called again,
maple just gives the same result as before, rather than computing it again. But be careful: you get the same
answer, even if you change the function later.
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> Koch:= proc (n::nonnegint)
if (n=0) then

‘F‘;
else

cat( Koch(n-1), ‘L‘, Koch(n-1), ‘RR‘, Koch(n-1), ‘L‘, Koch(n-1));
fi;

end:

> Koch(2);

FLFRRFLFLFLFRRFLFRRFLFRRFLFLFLFRRFLF

If you think about it for a second, you might notice that what we have just done is to write
a little program (Koch) whose output is a program in another language (the string of turtle
commands which describe Kn). While this may seem odd at first, doing this sort of thing is
not at all uncommon.

3.3 The Koch Snowflake

Often, one sees the curve K∞ as one side of a closed plane figure, the Koch Snowflake (sometimes
also called the “Koch Island”). This is an infinite length “curve” which bounds a finite area,
and resembles a snowflake. It is made by sticking together three copies of K∞ meeting each
other at 60◦ angles so that they close up. We do this now:

> KochFlake := proc(n::nonnegint)
ResetTurtle();
SetTurtleAngle(60);
cat(‘L‘,Koch(n),‘RR‘,Koch(n),‘RR‘,Koch(n));
end:

> plots[display](array([[seq(TurtleCmd(KochFlake(i)),i=0..2)],
[seq(TurtleCmd(KochFlake(i)),i=3..5)]]));
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3.4 Some variations on the Koch curve

What happens to the curve K∞ if we change the height of the bumps we add at each stage?
We can do this easily by changing the angle the turtle turns when it encounters an R or an L.
For example, an angle of 10◦ gives a curve which is nearly smooth.

> ResetTurtle(); SetTurtleAngle(10);
TurtleCmd(Koch(6));

But an angle of 80◦ gives a curve which wiggles wildly and almost seems to take up area.
> ResetTurtle(); SetTurtleAngle(80);

TurtleCmd(Koch(6));

We shall make this observation more precise in section 5. You might try some additional experi-
ments on your own, to gain intuition about how the limit curve depends on the parameters. For
example, what would happen if you make the angle be 90◦? Do you find the result surprising?

Some other variations you might want to try on your own might be to modify the Koch
procedure so that the bumps are added alternately above and below the curve, as shown in the
following figure:
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Here the angle used was less than 60◦. What happens for an angle of exactly 60◦? How about
a larger angle? Can you adjust things so that using 75◦ angle does not cause self-intersections?

Or, you might try using a different shape of a bump. For example, below we used squares,
shrinking the scale first so the bumps don’t run into each other. What happens if you vary the
scale factor with SetTurtleScale?

4 Making a tree

We now try to get our turtle to trace out a tree. In our tree, we start with a trunk, and then
add two branches at the top. Then, at the end of each branch, we will add more branches.

First, we prefer our trees to grow up, so we change the turtle’s initial heading. We also set
our angle to be 45◦.

> read(‘turtle.txt‘);
SetInitialTurtleHeading(90);
SetTurtleAngle(45);

The trunk of our tree will have no branching, and will just be the single command F. We
will call this T0. For T1, we add a pair of branches to the top, to make a Y shape.8 At each
subsequent stage, we add another level of branches, as below:

How do we go about implementing this? As in the case of the Koch curve, we can use
recursion, by noticing that Tn contains two small copies of Tn−1 forming the left and right limbs
of the tree. Thus, we can define Tn recursively. Before proceeding, you might want to take a
minute to think about how to do this on your own.

Notice that the letter Y cannot be drawn without either retracing part of the curve or lifting
your pen. Rather than using a PenUp and PenDown command to tell the turtle to stop drawing,9

we will have our turtle back up over a branch after we draw it. We also have to make sure our
turtle is pointing in the proper direction when we finish the branch, or things won’t work out
at all.

8As in §3, we will use a calligraphic font (Tn) for the curve and ordinary roman (Tn) to denote the commands
to produce the curve.

9The file turtle.txt does, in fact, implement these commands as D and U— see §8 for more details.



4. MAKING A TREE 5:11

Thus, T0 = FB, and we can take T1 as “F S LFBR RFBL G B”. The “LFBR” part goes
out the left branch and returns, and “RFBL” goes out the right branch and returns. To get
T2, we replace each copy of “FB” in T1 with a scaled version of all of T1, after turning a bit to
the left or right. In general, we have

Tn =

{
FSLTn−1RRKn−1LGB if n > 0
FB if n = 0

.

Using this, it is now easy to write the generating procedure.

> Tree:= proc(n::nonneg)
options remember;
if (n=0) then

‘FB‘;
else

cat(‘FSL‘, Tree(n-1), ‘RR‘, Tree(n-1), ‘LGB‘);
fi;

end:

> TurtleCmd(Tree(10));

You might want to experiment with varying the angle and the scale factor, and see how the
tree changes. For example, if we use SetTurtleScale(.6), the branches of T8 just touch, and
they overlap in Tn if n > 8. However, if we change the angle to 60◦, the branches stay away
from each other.

> ResetTurtle(); SetInitialTurtleHeading(90);
SetTurtleAngle(45); SetTurtleScale(.6);
t10a:=TurtleCmd(Tree(10)):

> SetTurtleAngle(60);
t10b:=TurtleCmd(Tree(10)):

> plots[display](array([t10a, t10b]));
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As an extra challenge, try your hand at producing a fern like the one below.

5 Fractal Dimension

From an early age, we that learn lines and curves are one-dimensional, planes and surfaces are
two-dimensional, solids such as a cube are three dimensional, and so on. More formally, we say
a set is n-dimensional if we need n independent variables to describe a neighborhood of any
point. This notion of dimension is called the topological dimension of a set.10 The dimension
of the union of finitely many sets is the largest dimension of any one of them, so if we “grow
hair” on a plane, the result is still a two-dimensional set. We should note here that if we take
the union of an infinite collection of sets, the dimension can grow. For example, a line, which is
one-dimensional, is the union of an infinite number of points, each of which is a zero-dimensional
object.

There can occaisionally be a little confusion about the dimension of an object: sometimes
people call a sphere a three-dimensional object, because it can only exist in space, not in the
plane. However, a sphere is two-dimensional: any little piece of it looks like a piece of the

10In fact, there is a much more precise definition of topological dimension, but to give it requires more
background material than we are prepared to give here.
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Figure 1: Some one- and two-dimensional sets (the sphere is hollow, not solid).

plane R2, and in such a small piece, you only need two coordinates to describe the location of
a point.11

But, what about the fractals we have been considering? For example, what is the dimension
of the Koch snowflake? It has topological dimension one, but it is by no means a curve— the
length of the “curve” between any two points on it is infinite. No small piece of it is line-like,
but neither is it like a piece of the plane or any other Rn. In some sense, we could say that it
is too big to be thought of as a one-dimensional object, but too thin to be a two-dimensional
object. Maybe its dimension should be a number between one and two. In order to make this
kind of thinking more precise, let’s look at the dimension of familiar objects another way.

5.1 Box counting dimension

What is the relationship between an object’s length (or area or volume) and its diameter? The
answer to this question leads to another way to think about dimension. Let us consider a few
examples.

If we try to cover the unit square with little squares of side length ε, how many will we
need? Obviously, the answer is 1/ε2. How about to cover a segment of length 1? Here we need
only 1/ε little squares. If we think of the square and segment as sitting in space and try to
cover them with little cubes ε on a side, we get the same answer. And if we use the little cubes
to cover a 1 × 1 × 1 cube, how many will we need? Exactly 1/ε3. Note that the exponent here
is the same as the dimension of the thing we are trying to cover. This is no coincidence.

11In fact, this is just a different measure of dimension, called the embedding dimension: a set has embedding
dimension n if n is the smallest integer for which it can be embedded into Rn without intersecting itself. Thus,
the embedding dimension of a plane is 2, the embedding dimension of a sphere is 3, and the embedding dimension
of a klein bottle is 4, even though they all have (topological) dimension two. A famous theorem (the Whitney
embedding theorem) says that if a manifold has topological dimension n, its embedding dimension is at most
2n.
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Figure 2: Covering a curve, a surface, and a solid cube with cubes of diameter ε.

We define the box-counting dimension (or just “box dimension”) of a set S contained in
Rn as follows: For any ε > 0, let Nε(S) be the minimum number of n-dimensional cubes of
side-length ε needed to cover S. If there is a number d so that

Nε(S) ∼ 1/εd as ε → 0,

we say that the box-counting dimension of S is d. We will denote this by dim!"(S) = d.
Note that the box-counting dimension is d if and only if there is some positive constant k

so that

lim
ε→0

Nε(S)

1/εd
= k.

Since both sides of the equation above are positive, it will still hold if we take the logarithm of
both sides to obtain

lim
ε→0

(ln Nε(S) + d ln ε) = ln k.

Solving for d gives

d = lim
ε→0

ln k − ln Nε(S)

ln ε
= − lim

ε→0

ln Nε(S)

ln ε
.

Note that the ln k term drops out, because it is constant while the denominator becomes infinite
as ε → 0. Also, since 0 < ε < 1, ln ε is negative, so d is positive as we would expect.

We should remark that there are some sets S for which dim!"(S) cannot be defined because
there is no d for which the limit converges.12 We will not encounter such examples here, how-
ever. Since the box-counting dimension is so often used to calculate the dimensions of fractal

12Mathematicians often use a more general measure called Hausdorff dimension, which is defined for every
such set. One difficulty with the Hausdorff dimension is that it is often very hard to compute. The Hausdorff and
box dimensions coincide for compact, self-similar fractals, so we will not concern ourselves with the distinction.
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sets, it is sometimes referred to as “fractal dimension”. We prefer the term box dimension, how-
ever, because sometimes the term “fractal dimension” might refer to box dimension, Hausdorff
dimension, or even other measures of dimension such as the information dimension or capacity
dimension.

When computing box dimension, several simplifications can be made.

• We need not use boxes if some other shape is more convenient: if we cover our set with
disks of diameter ε, or even stars or mickey-mouses of diameter ε, we will get the same
answer.

• Not every possible ε need be considered. It is enough to consider the limit of ln Nεi/ln εi

where εi is a sequence converging to zero. Choosing a convenient sequence often makes
the calculations much easier.

Sometimes box counting dimension is referred to as “similarity dimension” in the context
of self-similar sets. If a set is self-similar, there is an expansion factor r by which one can blow
up a small copy to get the whole set. If there are exactly N such small copies that make up
the entire set, the box dimension is easily seen to be ln N/ ln r.

5.2 Computing the box dimension of some examples

Not surprisingly, the box dimensions of ordinary Euclidean objects such as points, curves,
surfaces, and solids coincide with their topological dimensions of 0, 1, 2, and 3— this is, of
course, what we would want to happen, and follows from the discussion at the beginning of
§5.1. But what about other, more complicated sets? Let’s try a few simple examples for some
subsets of the unit interval [0, 1]. In these cases, our ε-cubes can be closed intervals of length ε.

Consider the set of points A =
{
0, 1

2 ,
1
4 ,

1
8 ,

1
16 , . . .

}
. For any n ≥ 0, we can cover A with n

intervals of length 1/2n: we need one for the elements between 0 and 1
2n , and another interval

for each of the remaining n − 1 elements of A. This means that dim!"(A) = limn→∞ n/2n = 0.
The box dimension and the topological dimension of A are the same.

Let Q be the set of rational numbers in the interval [0, 1], that is,

Q =

{
p

q
p, q are relatively prime integers with p ≤ q

}
.

What is dim!"(Q)? Since the rationals are dense in [0, 1], any interval we choose contains some.
This means for every ε > 0, we will need 1/ε intervals to cover Q. Thus, Nε(Q) = 1/ε.
Consequently, dim!"(Q) = limε→0

1/ε
1/ε = 1.

Recall that any real number x can be represented as a (possibly infinitely long) decimal.
For example, 1/4 = .25, 1/11 = .010101 . . ., and π = 3.14159265 . . .. The decimal expansion
is not quite unique— for example, 1/2 can be written as either .49999999 . . . or .50000000 . . ..
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This is the only possible point of confusion, however: any real number x ending in all zeros has
another representation ending in all nines.

Let us determine the box-counting dimension of the set

D = {x ∈ [0, 1] x has a decimal expansion containing no 4s or 5s} .

First, let’s note a few things about D:

• It is totally disconnected: that is, between any two points of D, there is another point
which is not in D.

• It is closed: the limit of any convergent sequence of points in D is still in D. Note that
this is not the case for the set Q above— a sequence of rational numbers can converge to
an irrational.

• It has uncountably many points. Much like the irrational numbers, there are far too many
elements of D to enumerate them. Also like the irrational numbers, we can enumerate
what is not in D.

• We shall see that D is also self-similar: any small piece of it can be scaled up to look like
the whole thing just by multiplying by an appropriate power of 10.

So, what is dim!"(D)? Let’s construct a sequence of covers of D whose diameter tends to
zero, and count the number of pieces we need. Note that while D contains the points13 .4 and
.6, it does not contain the open interval (.4, .6), so we can cover it by two intervals of length .4,
namely [0, .4] and [.6, 1]. This means N.4 = 2.

At the next finer level, we can see that D can be covered with the intervals

[0, .04], [.06, .10], [.10, .14], [.16, .20], [.20, .24], [.26, .30], [.30, .34], [.36, .40],
[.60, .64], [.66, .70], [.70, .74], [.76, .80], [.80, .84], [.86, .90], [.90, .94], [.96, 1]

That is, we need 16 intervals of length .04. This means that N.04 = 16.
For ε = .004, we will need 8 times as many intervals to cover D. This pattern continues:

each time we shrink ε by another factor of 10, we need 8 times as many intervals.
This means that

dim!"(D) = − lim
n→∞

ln 8n−1

ln (4 · 10−n)
= − lim

n→∞

(n − 1) ln 8

ln 4 − n ln 10
=

ln 8

ln 10
=

3 ln 2

ln 10
≈ .903089987

The box-counting dimension of D is not an integer. Note that the topological dimension of
D is zero.

13D contains .4 because it can be written as 0.3999 . . ., which contains no 4s or 5s.
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6 Cantor sets

The set D of the previous section is an example of a Cantor set. Often, a Cantor set is described
as the result of an iterative process, much in the same way we described the Koch curve in §2.
We’ll describe the most common Cantor set, the “middle-thirds Cantor set”, this way now.

Begin with the interval [0, 1] as the set C0. Now remove the open interval ( 1
3 ,

2
3) from C0 to

obtain

C1 =

{[
0,

1

3

]
,

[
2

3
, 1

]}
.

To get the second stage, we remove the middle third of each interval in C1. This gives

C2 =

{[
0,

1

9

]
,

[
2

9
,
1

3

]
,

[
2

3
,
7

9

]
,

[
8

9
, 1

]}
.

We continue in this way, removing the middle third of each interval in Cn to obtain Cn+1 (See
Fig. 3). Note that Cn ⊂ Cm for all n > m. What is left as we let n → ∞ is the Cantor set.
That is,

C =
∞⋂

n=0

Cn.

Figure 3: The first few stages C0, C1, . . . , C5 in the construction of the middle-thirds
Cantor set C.

It may not be clear at first that C even exists. It seems we are taking just about everything
out when we remove the intervals. Indeed, the total length of intervals we remove is

1

3
+

2

9
+

4

27
+

8

81
+ . . . = 1.

That is, the total length of the segments removed is equal to the segment we started with! For
this reason, a set like C is sometimes called a “Cantor dust”. But notice that the endpoints
of each interval of Cn must be in C, because they never get removed at any level. Thus, C is
nonempty, since it contains at least the points

{
0, 1, 1

3 ,
2
3 ,

1
9 ,

2
9 ,

7
9 ,

8
9 ,

1
27 ,

2
27 , . . .

}
. And it contains

quite a few more points, as well. To see that, we can view C in a manner similar to the
description of the set D given in §5.2. However, C is more naturally described in base 3, rather
than base 10. Let’s briefly review what we mean by this.
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When we express a number x in base 10, we are expressing it as sums of powers of ten.
Thus, when we write e5 ≈ 148.413, we are actually saying that

e5 ≈ 1 · 102 + 4 · 101 + 8 · 100 + 4 · 10−1 + 1 · 10−2 + 3 · 10−3.

There is nothing magic about powers of 10, of course (except that it is the base we learned
as children, and the base used by just about every living human14for everyday numbers). For
example, we could express this15 in ternary (that is, base 3), where we would have

e5 ≈ 12111.1020113 = 1·34+2·33+1·32+1·31+1·30+1·3−1+0·3−2+2·3−3+0·3−4+1·3−5+1·3−6.

In computer applications, the bases 16 (hexadecimal) and 2 (binary) are very common, because
the computer represents everything internally in binary.16

Returning to the Cantor set C, note that when we remove the interval (1/3, 2/3), we are
removing all the numbers whose ternary expansion has a 1 immediately after the decimal
place.17 At the next stage, we remove those points which have a 1 in the second place after the
decimal, and so on. Thus, in the limit, we obtain the following alternate description of C:

C = {x ∈ [0, 1] x has a ternary expansion containing no 1s} .

You may remember that rational numbers correspond to numbers with a decimal expansion
that eventually repeats; the same holds true of the expansion in any base (how might you prove
this if you assume it for decimals?). It is easy to see using this description that C is closed (that
is, it contains all its limit points), totally disconnected, and contains an uncountable number of
elements (there are a lot of sequences of 0s and 2s), just like the set D of the previous section.
It is also self-similar, because if we take any small section of it and expand it by an appropriate
power of 3, it looks like the entire set.

What is its box dimension? The description by the sets Cn give us an effective way to
calculate the limit: at the nth stage, we have 2n intervals of length 3−n. Using this, we can
immediately calculate that

dim!"(C) = lim
n→∞

ln 2n

ln 3n
=

ln 2

ln 3
≈ 0.63093.

14Some Native American peoples used base 20, and the Babylonians were very fond of base 12 and base 60
(consider how we measure time).

15Maple will convert integers to other bases, using a command such as convert(148, base, 3). One has to
work a little bit to convert fractions— can you think of a way to do this?

16Hexadecimal is convenient for use with a binary system, because we can group blocks of 4 binary digits to
obtain one hexadecimal digit (by convention, the letters A–F are used to represent the integers 10–15). This
is quite handy in computer applications, because a single byte is represented by 8 binary digits (bits), or two
hex digits. Before 8-bit bytes became standard, octal (base 8) was very common as well. Octal is much less
convenient for 8-bit quantities, however, because 8 bits don’t break up nicely into groups of 3 bits.

17As in decimal expansions, some points have two representations. Thus, the point 1/3 can be written either
as .13 or as .02222 . . .. As in the construction of D in §5.2, we keep such points in our set.



7. THE SIERPINSKI GASKET 5:19

You may have noticed the strong similarity in the construction of the Koch curve K of §2 and

the middle-thirds Cantor set C. In fact, notice that the intersection of K with its base (the
initial segment K0) is exactly the middle-thirds Cantor set.

7 The Sierpinski gasket

Another very commonly encountered fractal is the Sierpinski gasket, which can be described as
follows:

We start with an equilateral triangle S0, and replace it by three equilateral triangles with
a base half the size of the original, stacked so the original perimiter is kept, but leaving a hole
in the center. We then replace each of those triangles by three more triangles, to obtain S2 as
nine triangles, each with a base of length 1/4. Continuing in this fashion infinitely many times
yields the Sierpinski gasket S. The sets S0 through S6 are shown below.

It is easy to see that dim!"(S) is ln 3/ ln 2, or about 1.58. You should try to confirm this fact
for yourself. The self-similarity of the Sierpinski gasket should help this calculation considerably.

How might we coerce our turtle into making a Sierpinski gasket? While the procedure is
simple enough to describe, explicitly writing it down in symbols requires a bit of thought. Give
it a try before continuing.

One way to accomplish this18 involves taking a slightly different viewpoint. Rather than
making the gasket by replacing triangles with smaller triangles, we construct a fractal “curve”
that traverses the base and the perimeters of the “holes”. This traces out the same sets Sn,
except for two segments which we can easily add later.

We view S0 as the straight horizontal segment F, along with two other segments which
are not horizontal. To emphasize the difference between the horizontal and the non-horizontal
segments, we will traverse the non-horizontal segments backwards, and use the command B.
Thus, our first triangle is S0 = FRBLLB.

Now, to obtain S1 from S0, we replace the horizontal segment F by two smaller ones with
an inverted triangle between them. As with S0, we use F to denote the horizontal parts and
B for the non-horizontal portions. Thus, we apply the transformation F !→ SF RBLFLBR FG.
This gives us S1 from S0 as the command “SF RBLFLBR FG RBLLB”. If we replace all three
Fs in S1 using this transformation, we will obtain S2.

Before we try to describe any of the Sn recursively, note that in this description, each one
really consists of two pieces: there is the complicated, recursive portion which describes most

18We will give another solution which is closer to our original description in §9.
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of the gasket, and then there is the final RBLLB which makes the outer “hat” (see figure 4).
Let’s call the commands to produce this first part sn and call commands for the hat h, that is,
Sn = sn h. Then we can describe Sn as follows

Sn = sn h sn =

{
Ssn−1RBLsn−1LBRsn−1G if n > 0
F if n = 0

h = RBLLB.

Figure 4: The sets produced by the commands for s2, h, and S2 in the construction
of the Sierpinski gasket. Here, the set for s1 is drawn thicker within that of s2.

As in the previous sections, once we have worked out the algorithm, writing the maple code
to implement it is quite straightforward. We we will use the name Sierp for the procedure that
produces sn, and Sierpinski for the procedure to produce Sn.

> Sierp:=proc(n::nonnegint)
if (n=0) then

‘F‘;
else

cat(‘S‘,Sierp(n-1), ‘RBL‘, Sierp(n-1), ‘LBR‘, Sierp(n-1), ‘G‘);
fi;

end:

> Sierpinski:= n -> cat( Sierp(n), ‘RBLLB‘):

Since we also need to set the angle and scale appropriately, we can combine them all into a
single command DrawSierp:

> DrawSierp:= proc(n::nonnegint)
SetTurtleAngle(60);
SetInitTurtleHeading(0);
SetTurtleScale(.5);
TurtleCmd(Sierpinski(n));

end:

> DrawSierp(9);
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Warning: Drawing even S8 takes a significant amount of time and is almost indistinguishable
from S7. If you try to draw S9, be prepared to wait quite a while, and make sure your computer
has plenty of memory.

8 Inside the turtle’s shell

We have how to use the turtle package in several ways; now it is time to look at how the package
itself is implemented. This was done in several layers. At the highest or outermost layer is the
TurtleCmd procedure,19 which does all the work of interpreting the turtle “language”. Much
of this procedure is implemented in other “lower level” procedures, such as Forward and Left,
which exist to make the programming of the higher-level routines easier. And these procedures
may be implemented using even other lower-level procedures.

Why was it programmed this way? In part, to make it easier to understand and to change.
This program is modular, and to write the top-level program we don’t need to know all the ins
and outs of the lower levels, just what is available and what it does. This sort of thing is very
common and useful in programming, and in everyday life as well. For example, to go to the
store you might drive a car. But you don’t need to know how to build a car to drive it, nor do
you need to know how to build a road. You just need to know what it does and how to use it.
And the man in the body shop who repairs your windshield (after a rock from the construction
site you passed on the way to the store cracks it) doesn’t need to know how to manufacture a
windshield, he only needs to know where to get the right one for your car and how to install it
properly.

19The command AnimateTurtleCmd, which we haven’t discussed, is very similar to this, but shows the turtle’s
path as the curve is traversed.
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command meaning

TurtleCmd(cmd) run the turtle program given in cmd and plot the result
AnimateTurtleCmd(cmd) like TurtleCmd, but animates the path
SetTurtleAngle(n) set the angle the turtle turns at each L or R to n degrees
GetTurtleAngle() retrieve the current setting of the TurtleAngle
SetTurtleScale(s) Set the factor the length scales by when an S or G is done
GetTurtleScale() return the current scale factor
SetInitialTurtleHeading(h) set the initial heading of the turtle to h

GetInitialTurtleHeading() report the value of the turtle’s initial heading
SetTurtleHeading(h) Set the current heading of the turtle to h

GetTurtleHeading() return the current heading of the turtle
SetTurtleStepsize(l) Set the current length of a F command to be l

GetTurtleStepsize() return the current length of a F command
DoCommand(c) perform the command indicated by c

DoUserCommand(c) “hook” to handle extra turtle commands
Forward() move the turtle forward one unit in its current heading
Back() move the turtle back by one unit
Left() change the heading of the turtle TurtleAngle degrees left
Right() change the heading of the turtle TurtleAngle degrees Right
Shrink() multiply the current length unit by the scale factor
Grow() divide the current length unit by the scale factor
PenUp Stop remembering the turtle’s path (“stop drawing”)
PenDown Start remembering the turtle’s path again
SetPenColor(r,g,b) Set the path to the RGB color given
PushState() remember the state of the turtle
PopState() restore the state of the turtle (except the position history)
ShowPath() Plot the turtle’s path
ClearPage() clear the turtle’s page, and set the position to (0, 0)
ResetTurtle() Clear the page, and set all variables to default.

Table 5.1: Most of the commands implemented by the turtle package.



8. INSIDE THE TURTLE’S SHELL 5:23

Without going into the deepest details, let’s pop off the shell of TurtleCmd and see how it
works.

> TurtleCmd := proc(cmd::name)
local c, i;
ClearPage();
for i from 1 to length(cmd) do

c:=substring(cmd,i);
DoCommand(c);

od;
ShowPath();

end:

Not much to it, is there? The procedure uses the command ClearPage to wipe the slate
clean, setting the turtle’s position to (0, 0), aiming in the initial direction, and so on. Then,
for each character in its command string, it calls DoCommand to perform that command, and
finally uses ShowPath to actually render the plot. We won’t discuss exactly how ClearPage
and ShowPath now (feel free to look at them yourself, of course). But here is DoCommand:

> DoCommand:=proc(c)
if (c=‘F‘) then

Forward();
elif (c=‘B‘) then

Back();
elif (c=‘L‘) then

Left();
elif (c=‘R‘) then

Right();
elif (c=‘S‘) then

Shrink();
elif (c=‘G‘) then

Grow();
elif (c=‘U‘) then

PenUp();
elif (c=‘D‘) then

PenDown();
elif (c=‘ ‘) then

NULL;
else

if (not DoUserCommand(c)) then
WARNING(sprintf("Unknown turtle command %c encountered",c));

fi;
fi;
NULL;

end:

DoUserCommand:=c->false:

All this does is look at its argument (a single character), and call the corresponding lower-
level routine. For example, DoCommand(‘F‘) just calls Forward(), which advances the internal
position of the turtle ahead one step. Note that there are two commands we haven’t used yet,
namely U and D, which raise and lower the pen that the turtle holds. For example, the turtle
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command FUFDF produces two line segments separated by a gap. The line with DoUserCommand
will be discussed in the next section; it is a way to allow the user of the turtle package to add
his or her own commands.

In the previous paragraph, we refered to the “internal position of the turtle”— what did
we mean by this? We think of the turtle as having a current position, direction, step size,
and so on. Each of these are stored in variables internal to the turtle package and updated
by commands such as Back, Shrink, or SetTurtleAngle. A history of the positions of the
turtle since the last ClearPage is kept, and when ShowPage is called, they are formatted into
an appropriate maple Plot command.

9 Extending the turtle’s commands

Armed with this little bit of information about the inner workings of the turtle, how might
we exploit it? We can extend the turtle language. You may recall that the way we made the
Sierpinski gasket in §7 did not correspond exactly to our initial description, but relied on finding
a fractal curve that traced out most of the gasket. We’ll now describe another method, which
will be closer to our original description.

Recall that the gasket consists of three copies of itself, two along the base, and one at
the top. Consequently, we can construct an approximate gasket Sn out of three copies of the
approximate gasket Sn−1. The first approximation S0 is just an equilateral triangle.

First, lets write a procedure EqTriangle, which causes the turtle to trace out an equilateral
triangle with a horizontal base.

> EqTriangle := proc()
PushState();
PenDown();
SetTurtleHeading(0);
SetTurtleAngle(120);

Forward();
Left();
Forward();
Left();
Forward();

PopState();
end:

The middle of this procedure is obvious: we send the turtle along the path FLFLF. But before
that, we save its current state with PushState, then make sure that the heading and angle are
correct for the triangle (since perhaps they were different), and ensure that the pen is down.
After we are finished with the triangle, we put the turtle back the way it was with PopState.
Note that we have taken care to ensure that the triangle always has the same orientation, no
matter what direction the turtle is heading. The procedure also leaves the position and heading
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of the turtle unchanged.
Now, we will plug in an additional procedure to handle the new turtle command T, which

draws a triangle. This is done by replacing DoUserCommand with our own version. This pro-
cedure is expected to return true if it recognized and handled the character, and false if
not.

> DoUserCommand:=proc(c)
if (c=‘T‘) then

EqTriangle();
else

RETURN(false);
fi;
true;

end:

With this new command in hand, we can produce a new set of commands to produce a
Sierpinski gasket, closer to our original description. Assuming that the angle is 60◦and the
scaling factor is .5, then

Sn =

{
S Sn−1 FSn−1B LFRSn−1LBR G if n > 0
T if n = 0

.

In words, this means to make Sn, we include a half-size Sn−1, advance forward along its
base and put in another copy. The we back up to the starting point, go up the left side, put in
the third copy, and return. It is important to take care that the turtle is pointing in the proper
direction when we finish.

Here is the corresponding maple procedure:
> Sierp2 := proc(n::nonnegint)

if (n=0) then
‘T‘;

else
cat(‘S‘, Sierp2(n-1), ‘F‘, Sierp(n-1),

‘BLFR‘, Sierp2(n-1), ‘LBRG‘);
fi;

end:
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