
Generalizations of Fermat's Little Theorem via Group Theory
Author(s): I. M. Isaacs and M. R. Pournaki
Source: The American Mathematical Monthly, Vol. 112, No. 8 (Oct., 2005), pp. 734-740
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/30037576
Accessed: 24/03/2010 21:35

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to
The American Mathematical Monthly.

http://www.jstor.org

http://www.jstor.org/stable/30037576?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=maa


P(z, s, v) (see [4, sec. 1.11], [18, Sec. 64]), is the polylogarithm Lis(t) when s is an 
integer [10, p. 189], [18, secs. 25, 64]. Relations (18) and (21) lead to an analytic 
continuation of F(t, s), and thus of the polylogarithm [7]. 
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Generalizations of Fermat's Little Theorem 
via Group Theory 

I. M. Isaacs and M. R. Pournaki 

1. INTRODUCTION. As is well known, Fermat's so-called little theorem asserts 
that if p is prime, then aP = a (mod p) for all integers a. This is usually proved by 
considering two cases: the result is trivial if a = 0 (mod p), and it follows from the fact 
that aP-' 1 1 (mod p) if a is not divisible by p. This latter fact is generally established 
by an appeal to the theorem of elementary group theory that asserts that aIGI = 1 for 
every element a of a finite group G. 
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In this note we describe another way that group theory can be used to establish Fer- 
mat's little theorem and related results. In particular, this approach yields the following 
striking generalization, in which the modulus is not restricted to being prime. We feel 
that this result and this technique of proof both deserve to be more widely known than 
they seem to be. 

Theorem A. Let a be an arbitrary integer Then for every positive integer n 

L L(n/d)ad - 0 (modn), (1) 
din 

where lx is the Mibius function. 

Recall that the Mibius function ,/ is defined so that ,((n) = 0 unless n is square- 
free, in which case /(n) = (-1)/, where t is the number of (distinct) prime divisors 
of n. In particular, /(1) = 1 and ,L(p) = -1 if p is prime. If n is prime, therefore, 
the left side of equation (1) is an - a, and hence Theorem A is exactly Fermat's little 
theorem in this case. 

A history of equation (1) is given in Dickson's History of the Theory of Numbers [1, 
pp. 82-86]. According to Dickson, the case of Theorem A where a is prime was es- 
tablished by Gauss, and his proof was published posthumously in 1863. But it was not 
until around 1880 that a proof of the full result appeared. In fact, in the years 1880- 
83 four independent proofs were published by Kantor, Weyr, Lucas, and Pellet. Other 
proofs continue to be found; for example, there is a fairly recent proof of a some- 
what more general theorem by C. J. Smyth in this MONTHLY [3]. (Smyth's "coloring 
proof," which generalizes ideas of Petersen and Thue, is related to the more general 
group-theoretic technique that we present here.) 

2. ORBIT COUNTING. Let G be a finite group that acts on a finite set 2. Recall 
that this means that each element g of G effects a mapping a -> a • g on 2 such that 
a • 1 = a and (a • g) • h = a . (gh) for all points a of £2 and all elements g and h of G. 
As is well known, the action of G induces a partition of £2 into subsets called orbits, 
where the orbit containing the point a is the set {a • g : g e G}. 

The number N of orbits is easily computed if we know the number of points of 2 
fixed by each element of G. The relevant formula is 

N = E (g), (2) 

where we have written nJ(g) = I {a E 2 : a . g = a} I. The fixed-point counting func- 
tion nr is called the permutation character associated with the action of G on £2, and 
we see that equation (2) tells us that the number N of orbits is exactly the average value 
of the permutation character over the group G. (We will prove a slight generalization 
of (2) later.) This orbit-counting formula is often credited to W. Burnside, but as was 
pointed out in [2], a more accurate attribution would be to Cauchy and Frobenius. 

There are a number of combinatorial problems that can be reduced to counting 
orbits in an appropriate action, and of course, formula (2) provides the key to the 
solution of such problems. Since this counting technique was popularized by G. P61lya, 
his name, too, is occasionally attached to versions of this formula. (An example of a 
problem that is easily solved by "P61lya counting" is this: find the number of essentially 
different ways to assign colors to the faces of a cube if a palette of exactly n colors is 
available.) 

October 2005] 735 NOTES 



For many of its applications, the Cauchy-Frobenius orbit-counting formula is not 
applied directly to the given action of G on 2, but instead is used to count orbits of 
the induced action of G on the set S of all functions from 2 into some arbitrary finite 
set A. (Note that S can be viewed as the set of all possible colorings of the points of 
2 with colors chosen from the set A.) To define the action of G on S, suppose that f 
belongs to S and let g be an element of G. The function f • g : 2 - A is constructed 
by setting (f . g)(a) = f(a . g -). Then f - g is a member of S, and it is routine to 
check that this defines an action of G on S. 

Consider the permutation character X associated with the action of G on S. (Thus 
x (g) is the number of functions f in S such that f . g = f.) It is easy to see that f 
is fixed by the group element g precisely when f (a) = f(a • g) for all points a of 2, 
and thus f is g-fixed if and only if f is constant on each of the orbits of the cyclic 
group (g) acting on 2. 

Now for each element g of G, write c(g) to denote the number of orbits of (g) on 
2, and note that c(g) is the total number of cycles, including trivial "1-cycles," when 

the permutation of 2 induced by g is written in cycle notation. Thus, for example, if 
G is the symmetric group on six points and 2 = {1, 2, 3, 4, 5, 6} is the set on which 
G acts naturally, then for g = (1, 3)(2, 4, 6) we have c(g) = 3. 

If IAI = a, it follows that x (g) = ac(g), and thus if we apply equation (2) to the 
permutation character X, we see that 

1 1 
>x(g) = L ac(g) 

IIgEG IGiEG 

is the number of orbits of G on S. In particular, this quantity is an integer, and it follows 
that 

ac(g) = 0 (mod I|G) (3) 
geG 

for every nonnegative integer a. (Note that we are given the action of G on 2, and this 
determines the function c(g), but the nonnegative integer a = IAI is arbitrary because 
we get to choose the finite set A.) 

For example, suppose that G is an arbitrary group of finite order n, and let G act on 
itself by right multiplication. If g in G has order o(g) = m, it is easy to see that the 
permutation induced by g on the set G consists of exactly n/m cycles of length m, and 
thus c(g) = n/m = n/o(g). In this situation, congruence (3) yields 

a/o(g) - 0 (mod n) (4) 
geG 

for all nonnegative integers a. 
Let us apply this general result in the case where G is cyclic of prime order p. Since 

G contains one element of order 1 and p - 1 elements of order p, congruence (4) 
yields 0 - aP + (p - 1)a - ap - a (mod p) for all integers a > 0. This is almost 
Fermat's little theorem, but it is missing the cases where a < 0. This is not a serious 
gap, however, since if p > 2, then replacing a with -a in the expression ap - a yields 
the negative of the original expression. 

Similarly, with every choice of the permutation group G we get a polynomial ex- 
pression in a that is guaranteed to be divisible by I G| for every nonnegative integer a. 
But actually, the restriction that a > 0 is never really necessary because of the follow- 
ing general lemma, which we will prove later. 
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Lemma B. Let f(X) be a polynomial with rational coefficients and assume that f(a) 
is in Z for all integers a such that 0 < a < d, where d = deg f. Then f(a) is in Z for 
all integers a. 

We can use our technique to prove the following generalization of Fermat's little 
theorem. (Compare this with Theorem A.) 

Theorem C. Let a be an arbitrary integer. Then for every positive integer n 

L (n/d)ad 0 (modn), (5) 
din 

where 4 is the Euler totient function. 

Proof Let G be a cyclic group of order n. Then for each divisor d of n there are exactly 
( (n/d) elements of order n/d in G, and so the result follows by congruence (4), where 
we appeal to Lemma B to handle negative values of a. 1 

3. HOMOMORPHISMS. To prove Theorem A, we generalize the Cauchy-Frobenius 
orbit-counting formula. Let G act on 2, as before, and fix a homomorphism . from 
G into Cx, the multiplicative group of the complex numbers. If 0 is a G-orbit on 2, 
we say that 0 is a X-good if the stabilizer in G of every point in ( is contained in 
ker(X). Note that the stabilizers in G of the various points in 0 are conjugate in G, 
and so if any one of them is contained in the normal subgroup ker(A), they all are, and 
o is X-good. Note also that if X is the trivial homomorphism, which maps every group 
element to the complex number 1, then every G-orbit is h.-good. The next theorem, 
therefore, includes the orbit-counting formula (2). 

Theorem D. Let X be a homomorphism from a finite group G into Cx. Suppose that 
G acts on some finite set f2 and let M be the number of) -good orbits for this action. 
Then 

1 
M = jXC(g)r(g), 

where n is the permutation character associated with the action. 

We need the following easy fact, which is a special case of character orthogonality. 

Lemma E. Let : G - Cx be a nontrivial homomorphism, where G is a finite group. 
Then 

n(g)= o. 
geG 

Proof Let S be the sum in the statement of the lemma and choose h in G such that 
X(h) # 1. Then 

X(h)S = X(h)_ X(g) = 3 X(hg) = S, 
geG geG 

whence S = 0. 1 
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To prove Theorem D, we recall that if G acts on a set Q and a is a point in the 
G-orbit 0, then 101 = G I/|G I, where G, is the stabilizer of a in G. This formula 
holds because there is a natural bijection r from the set of right cosets in G of the 
subgroup Ga onto the G-orbit 0. The relevant map here is r : (G,)g H a - g. 

Proof of Theorem D. The permutation character nr of G on 2 is the sum of the per- 
mutation characters of G acting on the various orbits. Now fix one orbit 0, and let a 
be the permutation character of G acting on 0. Let 

S= (g)r(g), 
gaG 

and observe that it suffices to show that 

S= G| ifO is -good, 
S 0 otherwise. 

Now in the sum S the complex number X(g) is counted a (g) times. It is counted 
once, therefore, for each ordered pair (x, g), where x is in 0, g is in G, and x • g = x. 
It follows that 

s=£ X(g). 
xeO geGx 

By Lemma E applied to the group Gx, the inner sum is zero if Gx ( ker(A) and it 
equals IGxl otherwise. Also, we note that the quantity I|Gx = GI|/I10 is constant as 
x runs over the orbit 0. If 0 is not -good, we get S = 0, as desired, and otherwise 
S = 0 IIGx, = |GI. 

Now let G act on a finite set f . As before, let S be the set of all mappings from 2 
into some finite set A of cardinality a and consider the induced action of G on S. We 
saw that the associated permutation character X is given by the formula X (g) = ac(g) 
If we apply Theorem D in this situation and appeal to Lemma B to handle negative a, 
we obtain the following: 

Corollary F. Let G be a finite group acting on a finite set 2, and let X be an arbitrary 
homomorphism from G into Cx. Then for each positive integer a 

y (g)ac() - 0 (mod IGI), (6) 
geG 

where c(g) is the number of orbits of (g) on 2. 

Next, we need a well-known fact. 

Lemma G. For each positive integer n the sum of the primitive nth roots of unity in C 
is ti(n), where gL is the Mobius function. 

Proof Write F(n) to denote the sum of the primitive nth roots of unity in C, and let 
G(n) be the sum of all complex nth roots of unity. Then 

G(n) = ZF(m), 
mln 
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and M6bius inversion yields 

F(n) = (m)G(n/m). 
mln 

But G(1) = 1 and G(m) = 0 if m > 1. (Note that this fairly obvious fact is really a 
special case of Lemma E.) It follows that F(n) = gz(n), as asserted. U 

We can now prove our main result. 

Proof of Theorem A. Let G be the (cyclic) group of order n consisting of the nth roots 
of unity in C, and let X : G -+ C be the identity map. Take S2 = G and let G act 
on Q2 by right multiplication. Recall that in this situation we have c(g) = d if g is an 
element of order n/d in G, and so the coefficient of ad in congruence (6) is exactly 
the sum of all primitive (n/d)th roots of unity in C. By Lemma G, this coefficient is 
El(n/d), and the result follows. U 

4. BINOMIAL COEFFICIENTS. What remains is to prove Lemma B, and for this 
we use a standard trick: we view binomial coefficients as polynomials. For nonnegative 
integers m, write 

(X) _ X(X-1)(X-2)-(X-m + 1) 

\m m! 

and observe that this is a polynomial of degree m with rational coefficients. It follows 
that the set 

is a basis for the Q-vector space consisting of all rational polynomials of degree at 
most d. 

Proof of Lemma B. Since the given rational polynomial f(X) has degree d, we can 
write 

f(X) = -amx) , 

where the coefficients am are rational. We know that (n) = 1 and (m) = 0 when m > n. 
Accordingly, if n is an integer with 0 < n < d, we can write 

/f(n) = ao +al) +... + a,n -1 ++ a,. 

By hypothesis, f(n) is an integer when n is in this range, and since the binomial 
coefficients are also integers, it follows by induction on n that all of the coefficients a, 
are integers. 

To show that f(a) is an integer for every integer a, we see now that it suffices to 
establish that the binomial-coefficient polynomials have this property. But the fact that 
the (usual) binomial coefficient (,) is an integer when a > m tells us that m! divides 
every product of m consecutive positive integers. We conclude that m! divides every 
product of m consecutive integers, and the result follows. U 
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Convexity and Minkowski's Inequality 

Geoffrey Brown 

Minkowski's inequality arises in the context of l, Banach spaces. For any real number 
p satisfying 1 < p < oo, , is the set of all infinite sequences x = (x, ..., xj,...) 
such that 

oO 

j=1 

We set 

1pj=1 

Under II II, lp, is a Banach space, so it satisfies the triangle inequality, called 
Minkowski's inequality in this context: 

I|x + y lp < Ilxllp + Ilyllp (x, y e lp). 

Standard proofs of this introduce the related parameter q, where p-1 + q- = 1, and 
use clever if somewhat ad hoc inequalities (see, for example, [1]). This proof really 
involves showing that a certain function is convex. 

Consider a function f on a real interval D. Then f is convex on D if 

f (ax + (1 - a)y) < af(x) + (1 - a)f(y) (x, y e D, a E [0, 1]). 

Geometrically, this says that for x and y distinct points of D the secant line from 
(x, f(x)) to (y, f(y)) lies above the graph of f. Also note that a twice-differentiable 
function f on a real interval D is convex on D if f" > 0 there. 
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