

Exactly When Is $\$(a+b)^{\wedge}\{n\} \backslash$ equiv $a^{\wedge}\{n\}+b^{\wedge}\{n\}(\bmod n) \$$?
Author(s): Pratibha Ghatage and Brian Scott
Source: The College Mathematics Journal, Vol. 36, No. 4 (Sep., 2005), p. 322
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/30044877
Accessed: 24/03/2010 21:22

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The College Mathematics Journal.

Exactly When Is $(a+b)^{n} \equiv a^{n}+b^{n}(\bmod n)$?

Pratibha Ghatage (p.ghatage@csuohio.edu) and Brian Scott (b.scott@csuohio.edu), Cleveland State University, Cleveland, OH 44115

When this question was asked on a test in abstract algebra, most of the class conjectured that it was true exactly when n is prime. The correct answer (to our pleasant surprise) involves Fermat's little theorem. It is well known that if n is prime, the result is true. The standard proof is based on the following lemma, which is a simple exercise.

Lemma 1. A natural number n divides

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

whenever $0<k<n$, if and only if n is prime.
Corollary. If n is prime, then $(a+b)^{n} \equiv a^{n}+b^{n}(\bmod n)$.
This is a simple application of the binomial theorem [1, p. 9] and we omit the proof.
Now one is tempted to try to prove the converse to the Corollary. But a look at Fermat's little theorem [1, Theorem 5.1, p. 92] suggests another connection.

Proposition. For a natural number n, the following are equivalent:
(1) $(a+b)^{n} \equiv a^{n}+b^{n}(\bmod n)$.
(2) $x^{n} \equiv x(\bmod n)$ for all x, i.e., Fermat's little theorem holds for n.

Proof. Suppose that (1) holds. Then the map $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ defined by $f(x)=x^{n}$ is additive. Clearly $f(1)=1$; hence, writing $x=1+\cdots+1, x$ times over, we see that $f(x)=x$ in \mathbb{Z}_{n}, i.e., (2) holds.

Conversely, if Fermat's Little Theorem holds for n, then letting $x=a+b$, we see that $(a+b)^{n} \equiv a+b(\bmod n)$: Also by applying Fermat's little theorem to a and b, we see that $a^{n} \equiv a(\bmod n)$ and $b^{n} \equiv b(\bmod n)$. Hence (1) holds.

It is well-known that Fermat's little theorem holds for certain composite numbers called Carmichael numbers, and that the smallest Carmichael number is 561. See [1, p. 95].

Thus we know that $(a+b)^{n} \equiv a^{n}+b^{n}(\bmod n)$ holds exactly when n is either prime or a Carmichael number.

Acknowledgment. We are grateful to Underwood Dudley for helpful discussions.

Reference

