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Exactly When Is n)? 
Pratibha Ghatage (p.ghatage@csuohio.edu) and Brian Scott (b.scott@csuohio.edu), 
Cleveland State University, Cleveland, OH 44115 

When this question was asked on a test in abstract algebra, most of the class con- 
jectured that it was true exactly when n is prime. The correct answer (to our pleasant 
surprise) involves Fermat's little theorem. It is well known that if n is prime, the re- 
sult is true. The standard proof is based on the following lemma, which is a simple 
exercise. 

Lemma 1. A natural number n divides 

(n) 
whenever 0 < k < n, if and only if n is prime. 

Corollary. If n is prime, then (a + b)" - an + b"(mod n). 

This is a simple application of the binomial theorem [1, p. 9] and we omit the proof. 
Now one is tempted to try to prove the converse to the Corollary. But a look at 

Fermat's little theorem [1, Theorem 5.1, p. 92] suggests another connection. 

Proposition. For a natural number n, the following are equivalent: 

(1) (a + b)n =_ a" + b(modn). 
(2) xn (mod n) for all x, i.e., Fermat's little theorem holds for n. 

Proof Suppose that (1) holds. Then the map Z, defined by f(x) = x" is 
additive. Clearly f (1) = 1; hence, writing 1, times over, we see that 
Z,, i.e., (2) holds. 

Conversely, if Fermat's Little Theorem holds for n, then letting x = a + b, we see 
that (a + b)" = a + b (mod n): Also by applying Fermat's little theorem to a and b, 
we see that an Hence (1) holds. 0 

It is well-known that Fermat's little theorem holds for certain composite numbers 
called Carmichael numbers, and that the smallest Carmichael number is 561. See [1, 
p. 95]. 

Thus we know that (a + b)n - an + bn (mod n) holds exactly when n is either 
prime or a Carmichael number. 
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