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Exactly When Is (a+ b)" = a" + b"(mod n)?

Pratibha Ghatage (p.ghatage@csuohio.edu) and Brian Scott (b.scott@csuohio.edu),
Cleveland State University, Cleveland, OH 44115

When this question was asked on a test in abstract algebra, most of the class con-
jectured that it was true exactly when #n is prime. The correct answer (to our pleasant
surprise) involves Fermat’s little theorem. It is well known that if n is prime, the re-
sult is true. The standard proof is based on the following lemma, which is a simple
exercise.

Lemma 1. A natural number n divides

n\ n!
k) k!'(n— k)
whenever 0 < k < n, if and only if n is prime.

Corollary. Ifn is prime, then (a + b)" = a" + b"(mod n).

This is a simple application of the binomial theorem [1, p. 9] and we omit the proof.
Now one is tempted to try to prove the converse to the Corollary. But a look at
Fermat’s little theorem [1, Theorem 5.1, p. 92] suggests another connection.

Proposition. For a natural number n, the following are equivalent:

(1) (@+b)" =a" + b"(modn).
(2) x" = x(modn) for all x, i.e., Fermat’s little theorem holds for n.

Proof. Suppose that (1) holds. Then the map f : Z, — Z, defined by f(x) = x" is
additive. Clearly f(1) = 1; hence, writing x = 1 4 ... 4 1, x times over, we see that
f(x) =xinZ,,ie., (2) holds.

Conversely, if Fermat’s Little Theorem holds for n, then letting x = a + b, we see
that (a + b)" = a + b (mod n). Also by applying Fermat’s little theorem to a and b,
we see that " = a(mod n) and b" = b(modn). Hence (1) holds. [ |

It is well-known that Fermat’s little theorem holds for certain composite numbers
called Carmichael numbers, and that the smallest Carmichael number is 561. See [1,
p. 95].

Thus we know that (a + b)" = a" + b" (mod n) holds exactly when » is either
prime or a Carmichael number.
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