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Also solved by B. M. Abrego , S. Amghibech (Canada), E Boca, R. Chapman (U. K.), O. P. Lossers (Nether- 
lands), B. Mixon, V. Pambuccian, A. Stadler (Switzerland), R. Tauraso (Italy), L. Zhou, BSI Problems Group 
(Germany), Szeged Problem Solving Group "Fej6ntaliltuka" (Hungary), and NSA Problems Group. 

Modular Sequences Defined by Polynomials 

11047 [2003, 956]. Proposed by Syrous Marivani, Louisiana State University at 
Alexandria, Alexandria, LA. For integers a, b, c, and d, define a sequence (fn) by 
f, = afn-1 + bfn-2 for n > 2, with fo = c and fi = d. Let p be a prime. Find poly- 
nomial expressions R, N, and D in a, b, c, and d such that modulo p : 
(1) if a2 + 4b is a quadratic residue, then fp, = R(a, b, c, d); 
(2) if a2 + 4b is a quadratic nonresidue, then fp, = N(a, b, c, d); and 
(3) if pl(a2 + 4b), then f, = D(a, b, c, d). 

Solution by 0. P Lossers, Eindhoven University of Technology, Eindhoven, The 
Netherlands. For the special case p = 2, we find f2 = ad + bc. For p > 2, we 
work over Fp. 

In cases (1) and (2), fn = cl yf + C22n, where yl and y2 are the roots of the equation 
x2 = ax + b. In case (1), y1 and y2 are in Fp, so y = yi, and hence fp = fi = d = 
R(a, b, c, d). In case (2), yl and Y2 are in Fp2 \ F, and are conjugate, so yf = y2 and 

y2 = Y1. Hence f, = c1Y2 + C271. Using ciy1 + c2y2 = d and (c1 + c2)(1 + y2) = 
ca, we obtain f, = ca - d = N(a, b, c, d). 

In case (3), fn = (cl + nc2)y", where y is the double root of x2 = ax + b, with 
y = a/2. Substitution yields f, = cly = ca/2 = D(a, b, c, d). 

Also solved by B. S. Burdick, R. Chapman (U. K.), P. P. Dilyay (Hungary), A. Nakhash, N. C. Singer, 
A. Stadler (Switzerland), R. Stong, C. Wengchang & D. C. L. Veliana (Italy), BSI Problems Group (Germany), 
GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the proposer. 

An Application of Fermat's Little Theorem 

11054 [2004, 64]. Proposed by Shahin Amrabov, ARI College, Ankara, Turkey. Deter- 
mine the set of all solutions in integers to 

19982x2 + 1997x + 1995 - 1998x1998 = 1998y4 + 1993y3 - 1991y1998 - 2001y. 

Composite solution by Bernard M. Abrego, California State University, Northridge, 
CA and Pdl Peter Ddlyay, Szeged, Hungary. There are no solutions in integers. Sup- 
pose that (x, y) is such a solution. Since 1997 is prime, Fermat's Little Theorem gives 
X1997 m X (mod 1997) and y1997 m y (mod 1997). Hence x1998 m x2 (mod 1997) 
and y1998 = y2 (mod 1997). Considering the given equation modulo 1997, we obtain 

x2 + 0 - 2 - x2 = y4 - 4y3 + 6y2 - 4y (mod 1997), 

which simplifies to -1 = (y - 1)4 (mod 1997). In particular, y - 1 is relatively prime 
to 1997. By Fermat's Little Theorem, (y - 1)1996 = 1 (mod 1997). On the other hand, 
raising both sides of (1) to the power 499 yields -1 = (y - 1)1996 (mod 1997). Since 
these last two congruences are contradictory, the result follows. 

Also solved by S. Amghibech (Canada), M. A. Carlton, W. C. Chu (Italy), K. T. Dale (Norway), R. S. Garibaldi, 
M. Goldenberg & M. Kaplan, S. Y. Jeon (Korea), C. H. Kwack (Korea), O. P. Lossers (Netherlands), S. Namli, 
M. Reid, A. E. Stadler (Switzerland), L. Zhou, the GCHQ Problem Solving Group (U. K.), the NSA Problems 
Group, and the proposer. 
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