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Fermat's Little Theorem From the Multinomial Theorem 
Thomas J. Osler (osler@rowan.edu), Rowan University, Glassboro, NJ 08028 

Fermat's Little Theorem [1] states that nP-1 - 1 is divisible by p whenever p is 

prime and n is an integer not divisible by p. This theorem is used in many of the 
simpler tests for primality. The so-called multinomial theorem (described in [2]) gives 
the expansion of a multinomial to an integer power p > 0, 

+(ai?2+* + ) - L- ( -,--.. k-+ an ap klk2 -. (1) 
k1 +k2+..+kn=p (kl , k.. k 

Here the multinomial coefficient is calculated by 

kl, k2,...,kn kl!k2! .kn! 

This is a generalization of the familiar binomial theorem to the case where the sum of 
n terms (al + a2 + .. + an) is raised to the power p. In (1), the sum is taken over all 
nonnegative integers kl, k2, ... , kn such that k1 + k2 + - . + kn = p. 

In this capsule, we show that Fermat's Little Theorem can be derived easily from 
the multinomial theorem. The following steps provide the derivation. 

1. All the multinomial coefficients (2) are positive integers. This is clear from the 
way in which they arise by repeated multiplication by (al + a2 + * .- + an) in (1). 

2. There are n values of the multinomial coefficient that equal 1. These occur when 
all but one of the indices kr = 0, so that the remaining index equals p. For 
example, ( 0 o, ,o, ..o = O!.0!...o! 1. 

3. With the exception of the n coefficients just listed above, all of the remaining 
coefficients are divisible by p if p is a prime number. This follows from the fact 
that (2) is an integer, so the denominator k ! k2! ... kn! divides the numerator p!. 
Since kr < p for r = 1, 2,... , n, the factor p never occurs in the prime factor- 
ization of the denominator kl! k2! ... kn!. Therefore, kl! k2! ... kn! must divide 
(p - 1)! and so p divides the multinomial coefficient. 

4. Let each ar = 1 for r = 1, 2...., n in (1). Then from step 2 above, 

(1 + 1 +.. + 1)P = + P + .. + IP + y ( , 
p 

(3) 

Note, from step 3, that all the multinomial coefficients in the sum are divisible 
by p. And since 1 + 1 + + = n in (3), we get 

nP = n + {number divisible by p . 

It follows that nP - n = n(nP-1 - 1) is divisible by p. Finally, np-1 - 1 is di- 
visible by p if n is not divisible by p. 

The author wishes to thank James Smoak for correspondence that motivated this 
capsule. 
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