

Fermat's Little Theorem from the Multinomial Theorem
Author(s): Thomas J. Osler
Source: The College Mathematics Journal, Vol. 33, No. 3 (May, 2002), p. 239
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/1559040
Accessed: 24/03/2010 21:23

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The College Mathematics Journal.

Fermat's Little Theorem From the Multinomial Theorem

Thomas J. Osler (osler@rowan.edu), Rowan University, Glassboro, NJ 08028
Fermat's Little Theorem [1] states that $n^{p-1}-1$ is divisible by p whenever p is prime and n is an integer not divisible by p. This theorem is used in many of the simpler tests for primality. The so-called multinomial theorem (described in [2]) gives the expansion of a multinomial to an integer power $p>0$,

$$
\begin{equation*}
\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{p}=\sum_{k_{1}+k_{2}+\cdots+k_{n}=p}\binom{p}{k_{1}, k_{2}, \ldots, k_{n}} a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{n}^{k_{n}} . \tag{1}
\end{equation*}
$$

Here the multinomial coefficient is calculated by

$$
\begin{equation*}
\binom{p}{k_{1}, k_{2}, \ldots, k_{n}}=\frac{p!}{k_{1}!k_{2}!\cdots k_{n}!} . \tag{2}
\end{equation*}
$$

This is a generalization of the familiar binomial theorem to the case where the sum of n terms ($a_{1}+a_{2}+\cdots+a_{n}$) is raised to the power p. In (1), the sum is taken over all nonnegative integers $k_{1}, k_{2}, \ldots, k_{n}$ such that $k_{1}+k_{2}+\cdots+k_{n}=p$.

In this capsule, we show that Fermat's Little Theorem can be derived easily from the multinomial theorem. The following steps provide the derivation.

1. All the multinomial coefficients (2) are positive integers. This is clear from the way in which they arise by repeated multiplication by ($a_{1}+a_{2}+\cdots+a_{n}$) in (1).
2. There are n values of the multinomial coefficient that equal 1 . These occur when all but one of the indices $k_{r}=0$, so that the remaining index equals p. For example, $\binom{p}{0, \ldots, 0, p, 0, \ldots, 0}=\frac{p!}{0!\ldots!p!0!\ldots 0!}=1$.
3. With the exception of the n coefficients just listed above, all of the remaining coefficients are divisible by p if p is a prime number. This follows from the fact that (2) is an integer, so the denominator $k_{1}!k_{2}!\cdots k_{n}!$ divides the numerator $p!$. Since $k_{r}<p$ for $r=1,2, \ldots, n$, the factor p never occurs in the prime factorization of the denominator $k_{1}!k_{2}!\cdots k_{n}$!. Therefore, $k_{1}!k_{2}!\cdots k_{n}$! must divide ($p-1$)! and so p divides the multinomial coefficient.
4. Let each $a_{r}=1$ for $r=1,2, \ldots, n$ in (1). Then from step 2 above,

$$
\begin{equation*}
(1+1+\cdots+1)^{p}=1^{p}+1^{p}+\cdots+1^{p}+\sum\binom{p}{k_{1}, \cdots k_{n}} \tag{3}
\end{equation*}
$$

Note, from step 3, that all the multinomial coefficients in the sum are divisible by p. And since $1+1+\cdots+1=n$ in (3), we get

$$
n^{p}=n+\{\text { number divisible by } p\} .
$$

It follows that $n^{p}-n=n\left(n^{p-1}-1\right)$ is divisible by p. Finally, $n^{p-1}-1$ is divisible by p if n is not divisible by p.

The author wishes to thank James Smoak for correspondence that motivated this capsule.

References

1. David M. Burton, Elementary Theory of Numbers, (4th ed.), McGraw-Hill, 1997, pp. 91-92.
2. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, pp. 166-172.
