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Using similar techniques, we can show that 

m2 + n2 (m2 + n2)(m4 + n4- 10m2n2) cosA = and cosB = 
4mn 16m3n3 

Hence 

C,S2 (m 2+ n.2.(m4 + n4 _ I+M2n 2) cos3A = cosA(4 cosA - 3) = ( + - = cosB. 
16m3n3 

The given restrictions on m and n show that 0 < A < 1r, whence 3A lies 
between 0 and zr. Since B also lies in this range we conclude that B = 3A. 
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86.65 The prime factors of 2" + 1 
The puzzle set by John Parkes in his letter in the November 2001 

Gazette has several points of interest. The table below shows the prime 
factorisation of 2 + Iforn = 1, 2, ... , 16. 

n 2n + 1 n 2n + 1 

1 3 9 33 x 19 
2 5 10 52 x 41 
3 32 11 3 x 683 
4 17 12 17 x 241 
5 3 x 11 13 3 x 2731 
6 5 x 13 14 5 x 29 x 113 
7 3 x 43 15 32 x 11 x 331 
8 257 16 65537 

Each bold entry denotes the first appearance of a given prime in the 
table. The puzzle was to show that if a prime p makes its first appearance at 
index n, then p - 1 (modn). Thus, for example, p = 11 appears first 
when n = 5, and we note that 11 - 1 (mod 5). 

Certainly n is the least positive integer such that 

2 -1 (modp). (1) 

By the pigeonhole principle, the values of 21, 22, 23 ..., 2P1 cannot 
all be distinct modulo p. Thus we may let s, t be positive integers such that 
s < t and 2s = 2' (modp). Since 2't- 1 (modp), there is a least 
positive integer d such that 
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I claim that if r is any positive integer such that 2r = 1 (modp), then d 
divides r. To see this, let h be the highest common factor of r and d. We 
can use Euclid's algorithm to find integers a and b such that h = ra + db. 
Then 

2h (2r)a (2d) la b 1 (modp). 
From the definition of d, d < h. But h divides d, so that h = d. It follows 
that d divides r, as claimed. 

From (1), 22n = 1 (modp). Thus d divides 2n. Each prime factor of 
2n + 1 is odd, so that (1) and (2) show that d ? n. If d < n, then 2n-d - -1 
(mod p), contradicting the definition of n. Thus d is a divisor of 2n that 
exceeds n. Hence d = 2n. 

By Fermat's little theorem, 2P-1 _ 1 (mod p). Our earlier result shows 
that d divides p - 1. But d = 2n, so that n divides (p - 1) and p - 1 
(mod n) as desired. 

Group theory illuminates the argument. The non-zero integers modulo 
p form a group, F, of order (p - 1) under multiplication modulo p. We 
could have deduced that d divides (p - 1) from the fact that the order of an 
element divides the order of the group. Indeed, Fermat's little theorem is 
itself a consequence of this fact. 

The argument also enables us to characterise those primes that appear as 
factors of some value of 2" + 1. They are precisely the odd primes p for 
which the order, d, of 2 in FC is even. We have seen that this condition is 
necessary for p to be a factor of some value of 2n + 1, because d = 2n. 
Thus p = 7 can never be a factor, as successive powers of 2 (mod 7) are 2, 
4, 1, so that d = 3. Similarly the order of 2 (mod 23) is 11, so that 23 
cannot be a factor of 2" + 1. Conversely, when d is even, there is a positive 
integer, n such that d = 2n. Hence 22n = 1 (modp). Since p is prime, 
either 2n = 1 (modp) or 2" -1 (modp). The first possibility is ruled 
out by the definition of d and the fact that n < d. Thus 2" = -1 (modp) 
and p is a factor of 2n + 1. 

Readers can explore what happens when 2" + 1 is replaced by an + 1 
for some integer a > 2 or by a" - 1 for some integer a > 2. 

K. ROBIN McLEAN 

Department of Education, University of Liverpool, Liverpool L69 3BX 

Editor's note: Similar proofs of Parkes' conjecture were received from Nick 
Lord, Martin Griffiths and Wim de Jong. 
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