MATHEMATICAL ASSOCIATION

supporting mathematics in education

86.65 The Prime Factors of 〈tex-math>\$2^\{n\}+1\$</tex-math> Author(s): K. Robin McLean
Source: The Mathematical Gazette, Vol. 86, No. 507 (Nov., 2002), pp. 466-467
Published by: The Mathematical Association
Stable URL: http://www.jstor.org/stable/3621144
Accessed: 24/03/2010 21:16

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mathas.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Mathematical Association is collaborating with JSTOR to digitize, preserve and extend access to The Mathematical Gazette.

Using similar techniques, we can show that

$$
\cos A=\frac{m^{2}+n^{2}}{4 m n} \quad \text { and } \quad \cos B=\frac{\left(m^{2}+n^{2}\right)\left(m^{4}+n^{4}-10 m^{2} n^{2}\right)}{16 m^{3} n^{3}}
$$

Hence

$$
\cos 3 A=\cos A\left(4 \cos ^{2} A-3\right)=\frac{\left(m^{2}+n^{2}\right)\left(m^{4}+n^{4}-10 m^{2} n^{2}\right)}{16 m^{3} n^{3}}=\cos B
$$

The given restrictions on m and n show that $0<A<\frac{1}{4} \pi$, whence $3 A$ lies between 0 and π. Since B also lies in this range we conclude that $B=3 A$.

Acknowledgement

The author is grateful to the referee for suggesting improvements in original draft.
M. N. DESHPANDE

Institute of Science, Nagpur - 440 001, India

86.65 The prime factors of $\mathbf{2}^{\boldsymbol{n}}+\mathbf{1}$

The puzzle set by John Parkes in his letter in the November 2001 Gazette has several points of interest. The table below shows the prime factorisation of $2^{n}+1$ for $n=1,2, \ldots, 16$.

n	$2^{n}+1$
1	$\mathbf{3}$
2	$\mathbf{5}$
3	3^{2}
4	$\mathbf{1 7}$
5	$3 \times \mathbf{1 1}$
6	$5 \times \mathbf{1 3}$
7	$3 \times \mathbf{4 3}$
8	$\mathbf{2 5 7}$

n	$2^{n}+1$
9	$3^{3} \times \mathbf{1 9}$
10	$5^{2} \times \mathbf{4 1}$
11	$3 \times \mathbf{6 8 3}$
12	$17 \times \mathbf{2 4 1}$
13	$3 \times \mathbf{2 7 3 1}$
14	$5 \times \mathbf{2 9} \times \mathbf{1 1 3}$
15	$3^{2} \times 11 \times \mathbf{3 3 1}$
16	$\mathbf{6 5 5 3 7}$

Each bold entry denotes the first appearance of a given prime in the table. The puzzle was to show that if a prime p makes its first appearance at index n, then $p \equiv 1(\bmod n)$. Thus, for example, $p=11$ appears first when $n=5$, and we note that $11 \equiv 1(\bmod 5)$.

Certainly n is the least positive integer such that

$$
\begin{equation*}
2^{n} \equiv-1(\bmod p) \tag{1}
\end{equation*}
$$

By the pigeonhole principle, the values of $2^{1}, 2^{2}, 2^{3}, \ldots, 2^{p+1}$ cannot all be distinct modulo p. Thus we may let s, t be positive integers such that $s<t$ and $2^{s} \equiv 2^{t}(\bmod p)$. Since $2^{t-s} \equiv 1(\bmod p)$, there is a least positive integer d such that

$$
\begin{equation*}
2^{d} \equiv 1(\bmod p) . \tag{2}
\end{equation*}
$$

I claim that if r is any positive integer such that $2^{r} \equiv 1(\bmod p)$, then d divides r. To see this, let h be the highest common factor of r and d. We can use Euclid's algorithm to find integers a and b such that $h=r a+d b$. Then

$$
2^{h} \equiv\left(2^{r}\right)^{a} \cdot\left(2^{d}\right)^{b} \equiv 1^{a} \cdot 1^{b} \equiv 1(\bmod p)
$$

From the definition of $d, d \leqslant h$. But h divides d, so that $h=d$. It follows that d divides r, as claimed.

From (1), $2^{2 n} \equiv 1(\bmod p)$. Thus d divides $2 n$. Each prime factor of $2^{n}+1$ is odd, so that (1) and (2) show that $d \neq n$. If $d<n$, then $2^{n-d} \equiv-1$ $(\bmod p)$, contradicting the definition of n. Thus d is a divisor of $2 n$ that exceeds n. Hence $d=2 n$.

By Fermat's little theorem, $2^{p-1} \equiv 1(\bmod p)$. Our earlier result shows that d divides $p-1$. But $d=2 n$, so that n divides $(p-1)$ and $p \equiv 1$ $(\bmod n)$ as desired.

Group theory illuminates the argument. The non-zero integers modulo p form a group, F_{p}^{*}, of order $(p-1)$ under multiplication modulo p. We could have deduced that d divides $(p-1)$ from the fact that the order of an element divides the order of the group. Indeed, Fermat's little theorem is itself a consequence of this fact.

The argument also enables us to characterise those primes that appear as factors of some value of $2^{n}+1$. They are precisely the odd primes p for which the order, d, of 2 in F_{p}^{*} is even. We have seen that this condition is necessary for p to be a factor of some value of $2^{n}+1$, because $d=2 n$. Thus $p=7$ can never be a factor, as successive powers of $2(\bmod 7)$ are 2 , 4,1 , so that $d=3$. Similarly the order of $2(\bmod 23)$ is 11 , so that 23 cannot be a factor of $2^{n}+1$. Conversely, when d is even, there is a positive integer, n such that $d=2 n$. Hence $2^{2 n} \equiv 1(\bmod p)$. Since p is prime, either $2^{n} \equiv 1(\bmod p)$ or $2^{n} \equiv-1(\bmod p)$. The first possibility is ruled out by the definition of d and the fact that $n<d$. Thus $2^{n} \equiv-1(\bmod p)$ and p is a factor of $2^{n}+1$.

Readers can explore what happens when $2^{n}+1$ is replaced by $a^{n}+1$ for some integer $a>2$ or by $a^{n}-1$ for some integer $a \geqslant 2$.
K. ROBIN McLEAN

Department of Education, University of Liverpool, Liverpool L69 3BX
Editor's note: Similar proofs of Parkes' conjecture were received from Nick Lord, Martin Griffiths and Wim de Jong.

