MATHEMATICAL ASSOCIATION

86.65 The Prime Factors of <tex-math>\$2^{n}+1\$</tex-math>

Author(s): K. Robin McLean

Source: The Mathematical Gazette, Vol. 86, No. 507 (Nov., 2002), pp. 466-467

Published by: The Mathematical Association Stable URL: http://www.jstor.org/stable/3621144

Accessed: 24/03/2010 21:16

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mathas.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Mathematical Association is collaborating with JSTOR to digitize, preserve and extend access to The Mathematical Gazette.

Using similar techniques, we can show that

$$\cos A = \frac{m^2 + n^2}{4mn}$$
 and $\cos B = \frac{(m^2 + n^2)(m^4 + n^4 - 10m^2n^2)}{16m^3n^3}$.

Hence

$$\cos 3A = \cos A \left(4\cos^2 A - 3 \right) = \frac{(m^2 + n^2)(m^4 + n^4 - 10m^2n^2)}{16m^3n^3} = \cos B.$$

The given restrictions on m and n show that $0 < A < \frac{1}{4}\pi$, whence 3A lies between 0 and π . Since B also lies in this range we conclude that B = 3A.

Acknowledgement

The author is grateful to the referee for suggesting improvements in original draft.

M. N. DESHPANDE

Institute of Science, Nagpur - 440 001, India

86.65 The prime factors of $2^n + 1$

The puzzle set by John Parkes in his letter in the November 2001 *Gazette* has several points of interest. The table below shows the prime factorisation of $2^n + 1$ for n = 1, 2, ..., 16.

n	$2^{n} + 1$
1	3
2	5 3 ²
3	3^2
4	17
5	3 × 11
6	5 × 13
7	3 × 43
8	257

n	$2^{n} + 1$
9	$3^3 \times 19$
10	$5^2 \times 41$
11	3 × 683
12	17 × 241
13	3 × 2731
14	5 × 29 × 113
15	$3^2 \times 11 \times 331$
16	65537

Each bold entry denotes the first appearance of a given prime in the table. The puzzle was to show that if a prime p makes its first appearance at index n, then $p \equiv 1 \pmod{n}$. Thus, for example, p = 11 appears first when n = 5, and we note that $11 \equiv 1 \pmod{5}$.

Certainly *n* is the least positive integer such that

$$2^n \equiv -1 \pmod{p}. \tag{1}$$

By the pigeonhole principle, the values of 2^1 , 2^2 , 2^3 , ..., 2^{p+1} cannot all be distinct modulo p. Thus we may let s, t be positive integers such that s < t and $2^s \equiv 2^t \pmod{p}$. Since $2^{t-s} \equiv 1 \pmod{p}$, there is a least positive integer d such that

$$2^d \equiv 1 \pmod{p}. \tag{2}$$

NOTES 467

I claim that if r is any positive integer such that $2^r \equiv 1 \pmod{p}$, then d divides r. To see this, let h be the highest common factor of r and d. We can use Euclid's algorithm to find integers a and b such that h = ra + db. Then

$$2^{h} \equiv (2^{r})^{a} \cdot (2^{d})^{b} \equiv 1^{a} \cdot 1^{b} \equiv 1 \pmod{p}$$
.

From the definition of d, $d \le h$. But h divides d, so that h = d. It follows that d divides r, as claimed.

From (1), $2^{2n} \equiv 1 \pmod{p}$. Thus d divides 2n. Each prime factor of $2^n + 1$ is odd, so that (1) and (2) show that $d \neq n$. If d < n, then $2^{n-d} \equiv -1 \pmod{p}$, contradicting the definition of n. Thus d is a divisor of 2n that exceeds n. Hence d = 2n.

By Fermat's little theorem, $2^{p-1} \equiv 1 \pmod{p}$. Our earlier result shows that d divides p-1. But d=2n, so that n divides (p-1) and $p \equiv 1 \pmod{n}$ as desired.

Group theory illuminates the argument. The non-zero integers modulo p form a group, F_p^* , of order (p-1) under multiplication modulo p. We could have deduced that d divides (p-1) from the fact that the order of an element divides the order of the group. Indeed, Fermat's little theorem is itself a consequence of this fact.

The argument also enables us to characterise those primes that appear as factors of some value of 2^n+1 . They are precisely the odd primes p for which the order, d, of 2 in F_p^* is even. We have seen that this condition is necessary for p to be a factor of some value of 2^n+1 , because d=2n. Thus p=7 can never be a factor, as successive powers of 2 (mod 7) are 2, 4, 1, so that d=3. Similarly the order of 2 (mod 23) is 11, so that 23 cannot be a factor of 2^n+1 . Conversely, when d is even, there is a positive integer, n such that d=2n. Hence $2^{2n}\equiv 1\pmod{p}$. Since p is prime, either $2^n\equiv 1\pmod{p}$ or $2^n\equiv -1\pmod{p}$. The first possibility is ruled out by the definition of d and the fact that n< d. Thus $2^n\equiv -1\pmod{p}$ and p is a factor of 2^n+1 .

Readers can explore what happens when $2^n + 1$ is replaced by $a^n + 1$ for some integer a > 2 or by $a^n - 1$ for some integer $a \ge 2$.

K. ROBIN McLEAN

Department of Education, University of Liverpool, Liverpool L69 3BX

Editor's note: Similar proofs of Parkes' conjecture were received from Nick Lord, Martin Griffiths and Wim de Jong.