MATHEMATICAL ASSOCIATION

supporting mathematics in education

86.31 Proof without Words: <tex-
math $>\$ \backslash$ sum_\{r=1\}^\{n\}r${ }^{\wedge}\{3\}=\backslash \operatorname{left}(\backslash \text { sum_\{r=1\}^\{n\}r\right)})^{\wedge}\{2\} \$</$ tex-math $>$ Author(s): Peter Holmes
Source: The Mathematical Gazette, Vol. 86, No. 506 (Jul., 2002), pp. 267-268
Published by: The Mathematical Association
Stable URL: http://www.jstor.org/stable/3621854
Accessed: 24/03/2010 21:15

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mathas.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @ jstor.org.

The Mathematical Association is collaborating with JSTOR to digitize, preserve and extend access to The Mathematical Gazette.
operation of removing the last object of each sequence and putting it at the head. Then $f^{p^{n}}$ becomes again the identity map on X and the sequences satisfying $x=f^{p^{n-1}}(x)$ are those which repeat p times arbitrary subsequences of length p^{n-1} so that there are $k^{p^{n-1}}$ such sequences. Thus we get a general version of Fermat's little theorem $([2, ~ p .66]) ;|X|=k^{p^{n}} \equiv k^{p^{n-1}}\left(\bmod p^{n}\right)$ or, if k is relatively prime to $p, k^{p^{n-1}(p-1)} \equiv 1\left(\bmod p^{n}\right)$.

References

1. G. E. Andrews, Number theory, Saunders (1971) [Dover (1994)].
2. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford University Press (1979).

SHINJI TANIMOTO

Dept of Mathematics, Kochi Joshi University, Kochi 780-8515, Japan
e-mail: tanimoto@cc.kochi-wu.ac.jp
86.31 Proof without words: $\sum_{r=1}^{n} r^{3}=\left(\sum_{r=1}^{n} r\right)^{2}$

It is well known that the formula for the sum of cubes of the first n natural numbers $\sum_{r=1}^{n} r^{3}=\frac{n^{2}(n+1)^{2}}{4}=\left[\frac{n(n+1)}{2}\right]^{2}=\left(\sum_{r=1}^{n} r\right)^{2}$ so maybe it is possible to show this geometrically. Here is an outline illustration based on putting cubes together.

1. $\sum_{1}^{n} r+\sum_{1}^{n} r=n(n+1)$.

2. $\sum_{1}^{n} r+\sum_{1}^{n-1} r=n^{2}$.

3. $\left(\sum_{1}^{n} r\right)^{2}=\left(\sum_{1}^{n} r\right) \times\left(\sum_{1}^{n} r\right)=n \times \sum_{1}^{n} r+\left(\sum_{1}^{n-1} r\right) \times\left(\sum_{1}^{n} r\right)$

4. Similarly $\left(\sum_{1}^{n-1} r\right)^{2}=(n-1)^{3}+\left(\sum_{1}^{n-2} r^{2}\right)$ etc. to get

$$
\left(\sum_{1}^{n} r\right)^{2}=n^{3}+(n-1)^{3}+\ldots+2^{3}+1^{3}=\sum_{1}^{n} r^{3}
$$

PETER HOLMES
Royal Statistical Society Centre for Statistical Education,
Nottingham-Trent University, Burton Street, Nottingham NG1 4BU

