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operation of removing the last object of each sequence and putting it at the 
head. Then f1n becomes again the identity map on X and the sequences 
satisfying x = ff '(x) are those which repeat p times arbitrary subsequences 
of length p - 1 so that there are k 

- 
such sequences. Thus we get a general 

version of Fermat's little theorem ([2, p. 66]); I X I = kP" = kP' (modpn) 
or, if k is relatively prime to p, kP' - 1) = 1 (mod pn). 
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