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FERMAT'S LITTLE THEOREM 

Fermat's little theorem 
- proofs that Fermat might have used 

BOB BURN 

Fermat (1601-1665) is well-known for offering mathematical results 
without stating their proofs. In Mahoney's fine mathematical biography [1], 
suggestions are made giving possible lines of reasoning which Fermat may 
have used, suggestions which are easily recognised by those familiar with 
number theory. This article offers some conjectured reconstructions of 
Fermat's reasoning which may be more accessible to a beginner since they 
are linked to pattern recognition, and capitalise on the special cases with 
which Fermat illustrated his ideas. Generic examples played an essential 
part in Fermat's exposition and may well have played a larger part in his 
proofs than would be respectable in a textbook nowadays. 

Mahoney used congruence notation (a _ b, (mod n) when n is a factor 
of a - b) to describe possible proofs that Fermat may have used. This 
notation was devised by Gauss 150 years later, and is avoided here. 
However it seems reasonable to use some algebra since we know that 
Fermat knew Viete's work well. Our discussion here focuses on three of 
Fermat's letters - two of which he wrote to Mersenne in April and June 
1640, and one which he wrote to Fr6nicle de Bessy in October 1640. One of 
the conclusions which the reader may draw from these quotations is that 
Fermat does not seem to have reported his results in the chronological order 
of their discovery. His reporting depended on the current subjects of 
correspondence with Mersenne. 

The originalform of Fermat's little theorem 
In the surviving literature, Fermat stated his 'little' theorem just once. 

He gave illustrations but no proof. He wrote on 18 October 1640 to Fr6nicle 
de Bessy: 

Without exception, every prime number measures [i.e. divides] one of 
the powers - 1 of any progression whatever, and the exponent of the 
said power is a sub-multiple of the given prime number - 1. Also, 
after one has found the first power that satisfies the problem, all those 
of which the exponents are multiples of the exponent of the first will 
similarly satisfy the problem. This proposition is generally true for all 
series and for all prime numbers; I would send you a demonstration of 
it, if I did not fear going on too long. [1, p. 295] 

Fermat illustrated this by listing the powers of 3, the second row here. 
The other rows have been added to show how Fermat hunted for patterns. 

n 1 2 3 4 5 6 
3" 3 9 27 81 243 729 

3 - 1 2 8 26 80 242 728 
odd prime factors 13 5 11 7,13 
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If we put his proposition to Frenicle into algebraic form, Fermat claimed 
that 

for any prime number p, and positive integer a, 
there is a t such thatp divides at - 1; 
and that [the smallest] such t is a factor of p - 1. 

Furthermore, for this smallest t, and any positive integer n, p divides 
at - 1. 

The exceptional case, when p is a factor of a, is not mentioned. 
Fermat illustrated this in the table (taking a = 3, p = 13, giving the 

smallest t = 3) by claiming that 
because 33 - 1 has the least power of 3 giving a factor 13, 
33" - 1 will have a factor 13 for all positive integers n. 

36 - 1 is in the table and shows a factor 13, but 39 - 1 and 312 - 1 will 
also have a factor 13. Fermat's claim that the least exponent, t = 3, is a 
factor of 13 - 1 then follows from the unstated claim that there are no other 
powers of 3, less one, which have a factor 13, together with the conventional 
little theorem. We will consider a possible proof later on, after constructing 
some of the equipment that it needs. 

The conventional form of Fermat's little theorem that appears in 
textbooks today is that a prime number p is a factor of ap- ~ - 1 when p is 
not a factor of a. Fermat claimed more than this, and we will refer to the 
actual claim he made to Frenicle as the strong form of his little theorem. 

Fermat and perfect numbers 
How then did the idea of Fermat's little theorem arise? 
Fermat wrote to Mersenne about mid-June 1640 presenting 'Three 

propositions I have found on which I hope to erect a great building.' 
[2, 11.C.4] Fermat was writing about perfect numbers. He knew the classical 
results on perfect numbers, and, in order to build on them, had investigated 
the prime factors of numbers which were one less than a power of 2. 
Fermat's little theorem is a generalisation, to powers of other numbers, of 
results he obtained for powers of 2. 

Fermat's investigations of perfect numbers started from a theorem of 
Euclid (Euclid IX.36) that if 1 + 2 + 4 + 8 + ... + 2n is a prime 
number p, then 2"p is a perfect number (that is, equal to the sum of its proper 
divisors; 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14 are both perfect 
numbers). More than one hundred years later, Euler showed (in work only 
published after his death) that every even perfect number is of this form. 

Fermat could sum 1 + 2 + 4 + 8 + ... + 2" in an old style: 

2(1+2+4+8+ ... +22 )-(1+2+4+8+... +2n-~) = 2 1. 

So 1 + 2 + 4 + 8 + ... + 2"- = 2 - 1. 
If 2" - 1 is a prime number, then 2"- (2" - 1) is perfect. This is 

Euclid's theorem, rewritten in modem notation. [Proof. If p is an odd prime 
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number, then the proper factors of 2n-1p are 1, 2, 22, ...,2"-1, 
p, 2p, ... ,2n-2p. The sum of these proper factors is 2n- 1 +p(2n-1 - ). 
This sum equals 2n- lp if, and only if, p = 2n - 1.] 

Using Euclid's theorem to search for perfect numbers depends on finding 
prime numbers of the form 2n - 1. 

In his letter to Mersenne, Fermat gave the first two rows of this table. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 

2 -1 1 3 7 15 31 63 127 255 511 1023 2047 4095 8191 

prime prime fac 3 prime fac 3 prime fac 3 fac 7 fac 3 fac 23 fac 3 prime 

The numbers in the second row he called radicals, and the numbers in the 
first row, their exponents. When a radical is prime it may be used to 
construct a perfect number by Euclid's theorem. 

Fermat's first claim: when n is composite 2n - 1 is composite. 
After displaying the numbers in this table, Fermat made his first claim. 
This done I say that: 

When the exponent of a radical number is compound, its 
radical is also compound. Thus, because 6 the exponent of 63 
is compound I say that 63 is also compound. [2, 11.C.4] 

In other words, there are no prime numbers of the form 2" - 1 when the 
exponent n is composite. 

Fermat gave no proof, but the old way of summing the terms of a 
geometric progression shows what is going on. 

Suppose that the exponent has a factor 2. 
Then the 'radical' 22n - 1 = 4n - 1. 

Now4(1 +4+42+ ... +4n"-)-(1 +4+42+ ... +4n-1)=4n-1. 

So3(1 + 4 + 42+ ... +4n"-1)=4n 1, 
and 4" - 1 has a factor 3 (= 4 - 1) and is composite for n > 1. 

Suppose that the exponent has a factor 3. 
Then the 'radical' 23" - 1 = 8" - 1. 

Now 8(1 + 8+ ... +8n)-(1+8+82 + ... + 8n)-1)=8n- 1. 

So7(1 + 8 + 82 + ... + 8n- ) = 8" - 1, 
and 8" - 1 has a factor 7 (= 8 - 1) and is composite for n > 1. 

Clearly the argument may be extended to show that when the exponent has a 
factor t, 2t - 1 is a factor of 2 - 1. (*) 

We mark this result with an asterisk as it is needed repeatedly later on, 
together with its generalisation from changing the number 2 to any other 
positive integer. 

Fermat's second claim: numbers of the form 2P - 2 have a factor 2p. 
To find prime numbers of the form 2" - 1 one need only consider 

prime numbers n, because of Fermat's first claim. But 211 - 1 = 23 x 89, so 
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2P - 1 does not have to be prime, even when p is prime. So Fermat 
investigated further, looking just at the prime exponents. This table was not 
displayed in Fermat's letter to Mersenne, but Fermat's discussion showed he 
was familiar with its contents. 

exponent 2 3 5 7 11 13 17 19 p 

radical 3 7 31 127 2047 8191 131071 524287 2P - 1 

radical-1 2 6 30 126 2046 8190 131070 524286 2P - 2 

afactor 2 3 5 7 11 13 17 19 p why? 

23-2=6=2x3 

25- 2 = 20 = 2 x 3 x 5 

27- 2 = 126 = 2 x 3 x 3 x 7 

211 -2 = 2046= 2 x 3 x 11 x 31 

213 - 2 = 8190 =2 x 3 x 3 x 5 x 7 x 13 

217- 2 = 131070 = 2 x 3 x 5 x 17 x 257 

219- 2 = 524286 = 2 x 3 x 3 x 3 x 7 x 19 x 73 
The matching of the first and fourth rows in the table suggests the next step. 

In Fermat's letter to Mersenne, Fermat's second claim was: 
When the exponent is a prime number [ > 2], I say that its radical 
reduced by unity is measured by [i.e. has as a factor] the double of the 
exponent. Thus because 7 the exponent of 127 is a prime number, I 
say that 126 is a multiple of 14. [2, 11.C.4] 

Algebraically, Fermat here claimed that for a prime number p, 2P - 2 
has a factor 2p. The factor 2 is obvious; the factor p is not. The claim that 
2P - 2 has a factor p is a special case of Fermat's little theorem. 

What follows is a collection of ideas, which were available to Fermat 
and would have been sufficient to prove that 2P - 2 has a factor p for any 
prime number p. The method assumes familiarity with Pascal's triangle. 
This was only given by Pascal in 1654, but known to some extent for several 
hundred years before that. 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 10 10 5 1 

1 6 15 20 15 6 1 
1 7 21 35 35 21 7 1 
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23 = (1 + 1)3= 1 +3+3+ 1, so23 - 2 = 3 + 3. 
25= (1 + 1)5= 1+5+10+10+5+1, so25-2 =5+10+10+5. 

27= (1 + 1)7 = 1 +7+21 +35 + 35+21 +7+ 1, so 
27-2 =7+21 +35+35+21+7 

Generally, 

2P = (1 + 1) = 1 + p(......) + 1. 

So 2 - 2 has a factorp. 

(The coefficient of a - r in the expansion of (a + 1)" (the r + 1 th term 
in the n + 1 th row of Pascal's triangle) is the number of individual terms of 
the form an -r in the expansion. Counting them is tantamount to counting 
the number of ways of choosing n - r as from the n brackets, namely 
n(n - 1)(n - 2)... (n - r + 1)/r!. According to Weil [3, pp. 46-48], 
Fermat had a good knowledge of binomial coefficients by 1636. When n is 
a prime number p, and 0 < r < n, n(n - 1)(n - 2)... (n - r + l)/r! has a 
factor p.) 

Since p is a factor of 2P - 2, p is also a factor of 2P - 1. 

Fermat's little theorem (standardform): p is a factor of aP - a. 
Before looking at the third claim in Fermat's letter of June 1640 we 

return to Fermat's letter to Fr6nicle of 18 October, and possible proofs of the 
claims that Fermat described. 

The binomial coefficients which appear in the expansion of (1 + ly) 
also appear in the expansion of (2 + 1), so 

3P = (2 + 1) = 2P +p(......) + 1P = 2 - 2 + p( ......) 2+ 1. 

Thus 3 - 3 = (2P- 2) + p(......). 
Now p divides 2P - 2, sop divides 3P - 3. 

Again, 4P = (3 + 1) = 3P +p(.. ....) + 1P = 3 - 3 +p( ......) +3+ 1. 
Thus4P - 4 = (3P - 3) + p( ......). 
Now p divides 3P - 3, sop divides 4P - 4. 

Continuing in this way we can establish that the prime p divides a" - a, 
for any positive integer a, with the proof built up from the bottom. This is 
one of the standard forms of Fermat's little theorem. 

It was not characteristic of the period to provide the inductive step in a 
general form though it is this step which is implied by 'continuing in this 
way'. In fact the inductive step comes directly from spotting the pattern in 
the cases above. 

Since (a + 1f = af + p( ......) + P, 
we get(a + 1)f - (a + 1) = aP - a + p(......). 

So ifp is a factor of aP - a, p must be a factor of (a + 1)f - (a + 1). 

The binomial expansion of (a + l) may be used to construct another 
proof. 
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Since(a + )P = aP + p(...... ) + 1P, 
(a + yP - aP - 1 has a factorp. 

Puttinga = n, n - 1, ..., 2, 1, weget 
(n + If - nP - 1 has a factorp, 
nP - (n - )P - has a factorp, 
(n - f - (n - 2) - 1 has a factorp, 

3 - 2P - 1 has a factorp, 
2P - 1P - 1 has a factorp. 

If these n numbers, each with a factor p, are added, we get 
(n + If - 1 - n has a factorp. 

So (n + iP - (n + 1)has a factorp. 
Euler (in 1735, according to Weil [3, p. 176]), used reasoning of this 

kind to construct an inductive argument to show p divides ap - a. The 
induction is implicit in what has been written here. It follows that p is a 
factor of aP- 1 - 1, provided p is not a factor of a, although Fermat did not 
mention this exception. 

The strong form of Fermat's little theorem 
Fermat claimed more. His generic example was that since 13 was a 

factor of 33 - 1, every number of the form 33n - 1 had a factor 13. This 
followed directly from his first claim (*), putting 3 instead of 2 in the 
argument, since 33 - 1 is a factor of 33n - 1. To use the little theorem to 
show that 13 - 1 is of the form 3n, Fermat would have needed to show that 
for all numbers of the form 3s - 1 which have a factor 13, s is a multiple of 
3. To see how Fermat may have convinced himself of this, we pretend that 
3s - 1 might have a factor 13 when s is not a multiple of 3. Suppose, for 
example, that 317 - 1 has a factor 13. Since we know 315 - 1 has a factor 
13, we can deduce that [(317 - 1) - (315 _- )] also has a factor 13. But 
[(317 - 1) - (315 - I)] = 315(32 _ 1) and 13 does not divide either of 
these factors. So we have made a mistake; our supposition must be false 
and 13 is not a factor of 317 - 1. 

Fermat claimed that if t were the least exponent such that the prime p 
divided at - 1, then p divided a"t - 1. This follows from the first claim 
(*) putting a instead of 2 in the argument. Fermat also claimed that t was a 
factor of p - 1. This follows from the little theorem when it is shown that 
every s such that p divides aS - 1 is a multiple of t. 

The generic proof given above provides the structure of a general proof 
by contradiction. If p divides as - 1 for some positive integer s which is 
not a multiple of t, then s lies between two consecutive multiples of t, so 
tn < s < t(n + 1) for some integer n. Now p divides atn - 1 and therefore p 
also divides (a- - 1) - (an - ) = atn (as-tn - 1). 

Ifp is not a factor of a, p divides as- " - 1. But 0 < s - tn < t, and 
this contradicts the definition of t. So there is no such s. Now since p 
divides a- 1 - 1 (Fermat's little theorem), t is a factor ofp - 1. 
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It also follows that if p divides aq - 1 for some prime q, then q = t. 
This is exactly what is needed to establish Fermat's third claim. 

Fermat's third claim: when q is prime, a prime factor of 2q - 1 has the 
form 2kq + 1. 

We return to Fermat's letter to Mersenne of June 1640. The example 
211 - 1 = 2047 = 23 x 89 is particularly tantalising. Might there be 
some structure linking the factors 23 and 89 to the exponent 11? 

The classical way to find the factors of a number is to use the idea 
behind Eratosthenes sieve. 

Because 452 < 2047 < 462, if 2047 were composite it would have a 
prime factor less than 45. So to find out whether 2047 is composite the 
primes between 3 and 43 can be tested as possible factors. This could be a 
long job. We propose an argument by which Fermat may have shortened 
the list of primes that needed to be tested. 

Suppose p divides 211 - 1. By the strong form of the little theorem, 11 
is a multiple of t where t is the smallest number such that p divides 2t - 1. 
But the only factors of 11 are 1 and 11 itself, so t = 1 or 11. t = 1 is 
absurd, so t = 11. But t is a factor of p - 1, so 11 divides p - 1 and 
p = 1lk + 1(??). 

This shows that if there is a p < 45 which divides 211 - 1, it must be 
in the list 12, 23, 34, 45; and of these numbers, only 23 is prime. So only 
one possible prime factor needs to be tested. 

There are two points to note. 

(i) If k is odd then p is even and so not prime, so k must be even and, 
putting 2k for k, p = 22k + 1. 

(ii) The four lines of argument leading up to (??) apply to any prime 
number p that divides 2047. 
2047 / 23 = 89, another prime number of the form 22k + 1. 

The third claim in Fermat's letter to Mersenne was: 
When the exponent is a prime number, I say that its radical is not 
measured by any prime number except those which exceed by unity 
either a multiple of the double of the exponent or the double of the 
exponent. Thus because 11, the exponent of 2047, is a prime number, 
I say that it cannot be measured except by a number which is greater 
by unity than a multiple of 22; in fact 2047 is only measured by 23 or 
89, from which, if you remove unity, 88 remains, a multiple of 22. [2, 
1 1.C.4] 

Algebraically, Fermat claimed here that if a prime p divides 2q - 1, 
where q is also prime, then p = 2kq + 1, for some positive integer k. 

7 divides 23 - 1 and 7 = 6 + 1; 
31divides25- land31 = 3 x 10 + 1; 
127 divides 27 - 1 and 127 = 9 x 14 + 1; 
2047 = 23 x 89, so 23 divides 211 - 1 and 23 = 22 + 1; and 89 
divides 211 - 1 and 89 = 4 x 22 + 1; 
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8191 divides 213 - 1 and 8191 = 315 x 26 + 1; 
131071 divides 217 - 1 and 131071 = 3855 x 34 + 1; 
524287 divides 219 - 1 and 524287 = 13797 x 38 + 1. 

Now we generalise the generic example of factorising 21 - 1 by 
expressing the argument algebraically to determine when a prime number p 
may be a factor of 2q - 1 when q is a given prime. 

If p is a factor of 2t - 1 and t is minimal, then q is a multiple of t, from 
the strong form of the little theorem. But q is prime, so t = 1 or q. Now p 
does not divide 21 - 1, so t ? 1. Thus t = q, and therefore q divides 
p - 1 applying the strong form of the little theorem again. 

Sop - 1 = kqandp = kq + 1. 

Now p is odd and q is odd, so k must be even and p = 2kq + 1, for 
some positive integer k. 

In fact 2q - 1 is prime for q = 17, 19, 31 and 61. But, for example, 
223 - 1 has a factor 47 and 229 - 1 a factor 233. 

An application of Fermat's third claim about factors of numbers of the form 
2n- I 

Fermat had claimed earlier in a letter to Mersenne (20 April 1640) that 
there was no perfect number with 21 or 22 digits. This related to a much 
earlier (false) conjecture, going back to Nicomachus (c.100 AD) that each 
consecutive interval in the series 1,10, 100, 1000, ... contained a perfect 
number. Fermat's claim meant that there were no numbers n such that 
1020 < 2n- (2n - 1) < 1022, with 2n _ 1 being prime. Now 
1020 < 22n-1 - 2n-1 < 1022 requires 66 < 2n - 1 < 73, or 
67 < 2n < 74, or 33 < n < 37. 34, 35 and 36 are not prime numbers, so these 
values for n cannot make 2n - 1 prime from Fermat's first claim (*). Thus 
n = 37 is the only possibility that must be tested. Fermat's third claim, 
above, implied that any prime factor of 237 - 1 must be of the form 74k + 1. 
75 is not prime. But 149 and 223 are primes. Fermat found that 223 was a 
factor of 237 - 1. So his third claim had reduced this huge problem to a still 
large, but manageable problem. So it seems that Fermat had his three results 
of June 1640, and the little theorem as well, by April of 1640. 
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