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Applying (2) with {x, y} = { f, , Xr/I? } gives 

f l/k - r/k -mir llk 

51/(2k) v k1 m flr' i-j 

When r > 5, applying (1) yields 

fl/k ,rl/k 1.01 <r/k-2r fr -511 (2k) k5l/(2k) ot(4) 

Since a 2 = a + 1, we have e,n/k - ((n-k)/k + (,(n-2k)/k Thus 
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Since n > 12 and n > 4k -3, we have n - 2k > 5. We may therefore apply (4) with r = n, 
r = n - k, and r = n - 2k to conclude that 

lk - l(nk + ftf2)k < 
10 n/k-n 4k-n-2 (1 + 11-2k + 02-4k) 
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k5l/(2k) 
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where the last inequality uses n > 4k - 3 and k > 2. 
Comparing (3) and (5), we see that VJ~iT + V/Jn112kis closer to ,/fg than g,/j_ is to 

an integer. 

Editorial comment. It is fairly easy to prove that for each fixed k, the assertion is true for 
sufficiently large n. 

A Divisibility Result for a Combination of mth Powers 

10770 [1999, 963]. Proposed by Cdlin Popescu, Louvain-la-Neuve, Belgium. Suppose that 
m and n are integers with 1 < m < 0(m) + n, where 0b (m) is the number of elements in 
11, 2, . m} that are relatively prime to m. Show that >In I(_ )i (n)im is divisible by m. 

Solution I by Jim Vandergriff; Austin Peay State University, Clarksville, TN. We have n > k, 
where k = m - (m). A generalization of Euler's generalization of Fermat's Little Theorem 
states that am am-0(m) (mod m) for every integer a (I. Niven and H. Zuckerman, An 
Introduction to the Theory of Numbers, John Wiley & Sons, 4th ed., p. 51, problem 22). 
Thus 

L(-1)1 (n)im 
E 
(_ )i (' )ik (mod m). 

We now show that the sum on the right is 0 when k < n. Consider the generating function 
fo(x) = Z (n7)xi. Letting fr(x) = xf,_1(x) for r > 0 yields fr(x) = Lir(n)xi. Also 

fo(x) = (x + l)n, and inductively each fr has (x + l)n-r as a factor as long as r < n. 
Setting x = -1 in fk yields the result. 

Solution II by Jim Delany, California Polytechnic Institute, San Luis Obispo, CA. Letting 
i = n - j in the given sum turns it into (-1l)n times the familiar inclusion-exclusion sum 
for the number T(m, n) of surjections from an m-element set to an n-element set. We view 
such a function as placing elements of { 1, ..., n} in m positions around a circle. We partition 
these into equivalence classes with m functions in each class, thereby showing that T (m, n) 
is a multiple of m. 

The condition 1 < m < 0 (m) + n implies that n is greater than every proper divisor 
of m. To see this, note that the largest proper divisor of m is m/q, where q is the smallest 
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prime divisor of m. Since 0(m) = m Hp,m(, - l/p) < m(l - l/q), we obtain m/q < 

m-q0(m) <n. 
This implies that the m rotations of each circular arrangement are distinct. If some 

rotation of an arrangement leaves it unchanged, then its positions fall into sets on which the 
label is constant. The number of these sets divides m, but the requirement of surjectivity 
implies that there must be at least n such sets. Since n exceeds every proper divisor of m, 
the arrangements fall into rotational classes of size m. 

Solved also by S. Amghibech (France), J. C. Binz (Switzerland), S. Cautis (Canada), R. J. Chapman (U. K.), W. Chu (France), 
J. Delany, J. Flowers, A. E. Gurel (Turkey), N. Komanda, J. H. Lindsey II, 0. P. Lossers (The Netherlands), A. Marini (France), 
H.-J. Seiffert (Germany), S. Siciliano (Italy), and the proposer. 

Three-dimensional Lattice Walks in the Upper Half-Space 

10795 [2000, 367]. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY 
A 3-dimensional lattice walk of length n takes n successive unit steps, each in one of the 
six coordinate directions. How many 3-dimensional lattice walks of length n are there that 
begin at the origin and never go below the horizontal plane? 

Solution by Jim Brawner, Armstrong Atlantic State University, Savannah, GA. There are 

L=O () (kk/21)4 such walks. 
Among these walks, consider those with exactly k vertical steps. Each non-vertical step 

can be in any of the four non-vertical directions, givinig 4n-k possibilities for the directions 
of these steps. 

Since the walk never goes below the horizontal plane, the list of k vertical steps must be 
"up-dominated", meaning that every initial segment of steps has at least as many upward 
steps as downward steps. Up-dominated binary lists with r upward steps and k -r downward 
steps were first counted by A. D. Andre in solving Bertrand's Ballot Problem; there are 

(k) k 1) of them. Note that r > [k/21. Summing over the possible values of r yields a 

telescoping sum for the number of up-dominated lists of length k; there are (rkk/2) of them. 

Finally, there are Ck) ways in which the vertical (and non-vertical) steps can be distributed 
among the n steps of the walk. Summing over all possible values for the number of vertical 
steps yields the answer. 

Editorial comment. Solvers used various methods to solve this problem. These yielded 
many alternative expressions for the answer. These included 

n k + 1 ~~~~~n-i Lk/2J k 

k=O ()( k )k=O j= (j 

Z (_ 1) k ()Ck6n-k and 2-n-i (3n (5n + 2)Cn E 3k(k + 1)CkCn-k) 

where Cn - n - (2n) is the nth Catalan number. 

Solved also by D. Beckwith, 0. Byer and C. Cooley, R. J. Chapman (U. K.), R. DiSario, GCHQ Problems Group (U. K.), 

J.-P. Grivaux (France), 0. P. Lossers (The Netherlands), R. F. McCoart, A. Nkwanta, E. Purdy, R. Stong, B. Willis, L. Zhou, and 

the proposer. 

Incognito Hypergeometrics 

10836 [2000, 864]. Proposed by Jon A. Wellner University of Washington, Seattle, WA. 
Show that 

F(k+1)k k-j c 
2 

4V(1-x2)3I/ Ex2k r(k+1/2) =4+Zx2k(2k)! (2-1)j2 
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