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Fixed Points and Fermat: A Dynamical 
Systems Approach to Number Theory 

Michael Frame, Brenda Johnson, and Jim Sauerberg 

Standard fare in undergraduate number theory courses usually includes Fermat's 
Little Theorem: 

For every prime p and all positive integers a, aP - a (mod p). 
There are many proofs of this result; see [2] for some of them. It and related 
number-theoretic results are often used to establish facts about periodic points in 
dynamical systems [1, p. 119]. Our goal is to show at an elementary level how this 
process can be reversed: we use fixed and periodic point arguments to prove 
number-theoretic facts, including Fermat's Little Theorem. The idea of obtaining 
number theoretic results via dynamical systems is not new. For instance, Fursten- 
berg has shown the arithmetic progression theorems of van der Waerden and of 
Szemeredi can be derived from generalizations of the recurrence theorems of 
Birkhoff and of Poincare [4]. The results we present here are of a much more 
elementary nature. 

Our new proof of Fermat's Little Theorem involves analyzing the fixed and 
periodic points of the following functions ga. For each integer a ? 2, let ga : [0, 1] 

[0, 1] be given by 
~~~~~~~~1 

la x for 0 < x <- 

ga(x) = a 
la -x-j for x j( 

\ ~ ~~a a 

for 1 < j < a - 1. One could also identify the endpoints of the interval [0, 1] to 
create a circle, S1, and define ga: Sl > S' by 

ga(x) =a- x(mod 1). 
However definition (1) is easier to use in our fixed point arguments. Figure 1 
shows the graphs of g2 and g3. To analyze the ga we use the following ideas from 
dynamical systems. 

ol ~~~~~~~~~~~0 
0 1 0 1 

Figure 1. The graphs of g, and g,. 
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Given a function f: [0, 1] -- [0, 1], x is a fixed point of f if f(x) = x. To 
describe periodic points of the function, we use the n-fold composition of f with 
itself, 

iterated n times 
f= f o f o ...o f 

A point of period n is a point x for which fn(X) = x. A point of minimalperiod n is 
a point x of period n such that fk(X) # X for all k, 0 < k < n. We let Xn(f) 
denote the number of points of minimal period n, for the function f; we drop the 
f when the function is clear from context. Associated with each point x E [0, 1] is 
its orbit, {x, f(x), f2(x),... }. If x has period n, then the orbit of x contains at 
most n distinct elements. Such orbits are called n-cycles. If x has minimal period 
n, then the orbit of x contains n distinct elements: x, f(X), f 2(x),... fn-1 (x). 

Such orbits are called minimal n-cycles. 
One can locate fixed points as points of intersection of the graph of f and the 

diagonal line y = x. One can also determine the orbit of a value geometrically by 
"graphical iteration"; see [3]. Starting at the point (x0, x0) on the diagonal, one 
draws a vertical line segment from (x0, x0) to the point (x0, f(xo)) = (x0, x1) on 
the graph of f. From this point on the graph of f one draws a horizontal line 
segment to the diagonal to obtain a new point (x1, x1). Repeating this procedure 
generates a sequence of points (x0, x0), (x1, x1), . .. , (Xk, Xk), . . ., where Xk+1 = 

f(Xk): this is the orbit of x0. If x0 is a point of period n, then this sequence 
repeats itself after n steps, and the points x0, x1,.. ., xn1 constitute an n-cycle; 
see Figure 2. 

Xn+1 

(X2, X2) 

(XI, xi) 

(xo, x0) 

01 

Figure 2. Graphical iteration of 92 and a 3-cycle. 

Our first lemma contains the essential ingredients for our proofs of Fermat's 
Little Theorem and some of its relatives using periodic points. 

Lemma 1. 

(i) If xo is a point of period n that has minimal period m, then m I n. 
Gii Two minimal in-cycles are either disjoint or identical. 

(iOi For all m > 1 ,m IKJ% whenever /Ij is finite. 
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Proof: Let x0 be a point of minimal period m, and consider the minimal m-cycle 
x0, xl,..., xm-1}. The sequence of points xi, f(xi),f 2(xi),... fm-1(Xi) is com- 

pletely determined for any of the xi in the m-cycle, and is simply a reordering of 
the elements in the original m-cycle. This proves (ii). 

To prove (i), consider the sequence xo,f(x0),...,fm-l(xo),...,fn(xo). It is 
clear that the first m points in this n-cycle are the points of the minimal m-cycle, 
and because fm(x0) = x0, the sequence repeats itself every m steps. Thus in order 
for fn(X0) to equal x0, we must have m I n because the points x0, .. . , xm are 
distinct. 

To prove (iii), note that the points of minimal order m are partitioned into 
m-cycles, disjoint by (ii). Because each minimal m-cycle contains exactly m points, 
and the number of cycles is an integer, we have m lAm. 

Figure 3 illustrates some of these ideas. 

IP 

/--17 /---- 
~~~~~~~ I 

oL/~~~~~~~~~~~~~E I 

0 
0 1 

Figure 3. Two (disjoint) 4-cycles for g2. 

Our analysis depends on counting the periodic points of ga: 

Lemma 2. 

(i) The function ga has an points of period n. 
(ii) For all integers a > 1 and all integers n > 1, an- =m 1 m(ga). 

Proof: The points of period n are the fixed points of gn. But, 

1 
an .x for 0 < x -< 

ga ( 1 j +1 
tan x- j for an, V x a f 

a ~ 
? a~ 

for 1 < j < an - 1. Thus, the graph of gn consists of an line segments of slope an. 
As a consequence, the diagonal intersects this graph in an points, giving us an 
fixed points for gn. Hence ga has an n-periodic points. 
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By Lemma 1 the points of period n are points of minimal period m for some 
m I n. Part (ii) now follows from part (i). U 

Now we are ready to use dynamical systems ideas to prove a standard result 
from number theory. 

Theorem 1. For all integers a ? 2 and all primes p, aP_ a (mod p). 

Proof: By Lemma 2, aP =Aj +Ap = a +Xp. Hence aP - a =Ap, which is divisi- 
ble by p by Lemma 1. Thus aP a (mod p). X 

Hence, Fermat's Little Theorem, for a > 2, is a simple consequence of counting 
fixed points of gaP. 

Some texts state the next result as Fermat's Little Theorem. It follows from 
Theorem 1 by noting that aP - a = a(aP-1 - 1) and imposing the condition that 
p does not divide a. 

Corollary 1. For all integers a ? 2 and all primes p such that p does not divide a, 
ap-1 1 (mod p). 

By using arguments similar to those in the proof of Theorem 1, one can prove 
the following generalizations of Fermat's Little Theorem for certain types of 
composites. 

Theorem 2. 

(i) Let p and q be distinct primes and a 2 2. Then pq I (aPq - aP - aq + a). 
(ii) Let p be a prime and a ? 2 be an integer. Then pk divides aPk - apk1 for all 

k ? 1. 

Euler generalized Fermat's Little Theorem to composite numbers. His result, 
known as Euler's theorem, states that if n is any positive integer relatively prime to 
a, then a+(n)-- 1 (mod n), where +(n) is the number of positive integers not 
exceeding n that are relatively prime to n. Standard results about +(n) include 
?O(pr) -pt _ pr-l for prime p, and 4(ab) = +(a)+(b), when a and b are 
relatively prime; we do not know of any dynamical explanations of these results. 
With these facts and Theorem 2, we can deduce Euler's theorem: for n = 1lip'i 

a(n)= arHi(PNi) = a 

But by Theorem 2, pri I aPi-(aPH'-Pirl- 1) and if a and pi are relatively prime, 

riI ( aPiri-P - 1) 

Then aHFI(Pjrj-Pjr) 1 (mod p[') for each i. Since the pi's are relatively prime, 
Euler's theorem follows. 

Our final results involve determining the locations, not simply the number, of 
periodic points of ga. As observed in the proof of Lemma 2, the graph of gn 

consists of an straight line segments, each of slope an. We can use similar triangles 
to find the coordinates of the fixed points of gan, hence of the periodic points of ga. 
Figure 4 illustrates the case for a = 2 and n = 2. 
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Ink ~~~~E 

C 

A 

0 
B G D HIF I 

Figure 4. Finding the coordinates of periodic points of ga by similar triangles. 

Remark 1. Observe that AOAB - AOCD - AOEF. From the definition of gna 
we see that OB = BD = DF, so OA = AC = CE. This implies A OAG -AOCH 
- AOEI, from which we see that OG = GH = HI. That is, successive fixed points 

of gn are separated by the same distance. We now use this idea to determine the 
n-periodic points of ga precisely, and establish two additional number-theoretic 
results. 

Proposition 1. 

(i) The n-periodic points of ga are j/(an - 1) for j = 0, . . ., an - 1. 
(ii) If gcd (Q, an - 1) = 1, then j/(an - 1) is a minimal n-periodic point of ga. 

Proof: The similar triangle argument in Remark 1 shows that the fixed points of 
gn must be evenly spaced. As indicated in the proof of Lemma 2, we know there 
are an such points. Since the first and last fixed points are 0 and 1 and the points 
are evenly spaced, it follows that the fixed points are j/(an - 1) for 0 < j < an - 1. 
This proves (i). 

Moreover, it must be the case that j/(an - 1) is a point of minimal period n if 
j and an - 1 are relatively prime. Otherwise, being a point of lower minimal 
period would require that j/(an - 1) could be reduced to a fraction with a smaller 
denominator of the form ak _ 1. This proves (ii). U 

We use Proposition 1 to prove the next result, which is often used in the 
construction of finite fields [5, p. 82]. 

Corollary 2. Let m, n, a be integers such that m, n > 1 and a ? 2. Then m I n if and 
only if am - 11 an - 1. 

Proof: Suppose m I n and consider x0 = 1/(am - 1). By Proposition 1, x0 is a 
point of minimal period m for ga, and since m I n, x0 is also a point of period n. 
Thus 

11 
a- 1 ? an - 1 

for some integer j and so am - 1 1 an 1. 
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Conversely, suppose that am - 1 1 a' - 1 and again consider x0 = 1/(am - 1). 
By Proposition 1, x0 is a point of minimal period m. Since am - 1 1 an - 1, we 
have 

1 k 

? am - an - 1 

for some integer k. Proposition 1 ensures that x0 is an n-periodic point, and since 
x0 is a minimal m-periodic point, it must be the case that m I n by part (i) of 
Lemma 1. U 

Using Proposition 1, we can partition the n-periodic points into classes by a 
simple divisibility condition. 

Proposition 2. If j1/(a8 - 1) and j2/(an - 1) belong to the same n-cycle, then 

gcd(j,, an - 1) = gcd(j2, an - 1). 

Proof: Consider xi = j/(an _ 1). Then the numerator of xi,1 is a j - 1 (an - 1) 
for some 1, 0 < ? < a. Then gcd(a j - I(an - 1), an -1) = gcd(a j,an - 1) - 
gcd(j, an - 1), as desired. U 

For example, consider the minimal 4-cycles for g2. There are three such cycles, 

{ 1 2 4 8 } 7 14 13 1 }, and { 3 6 12 9 

In the first two 4-cycles, the numerators and denominators have a greatest 
common divisor of 1, in the third, a greatest common divisor of 3. 

Our final result can be proved using ideas from group theory, but it is also a 
consequence of Propositions 1 and 2. Recall that +(n) is the number of positive 
integers not exceeding n that are relatively prime to n. 

Corollary 3. For any integers a 2 2 and n > 1, n I 4(an-1). 

Proof: Consider the points j/(an - 1) for which gcd(j, an - 1) = 1. By part (ii) of 
Proposition 1 these points generate minimal n-cycles, and by Proposition 2 these 
points are the only points in such minimal n-cycles. By the greatest common 
divisor condition, we know that there are a total of 4(a n- 1) points in these 
minimal n-cycles. Since each minimal n-cycle contains n distinct points, it follows 
that n I 0(a- 1). 0 
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Note added in proof. A proof similar to our proof of Theorem 1 has appeared recently in Lionel 
Levine, Fermat's Little Theorem: A Proof by Function Iteration, Math. Magazine 72 (1999) 308-309. 
The dynamical aspects of the approach are emphasized differently in Levine's paper and ours, and the 
results in the latter parts of the two papers diverge. 
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