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C2n + = 2C2n + C2n - 

C2n = 2C2n-I + C2n-2- 

From the last two equations, 2c2n +1 = 4c2n + (C2n - 2n- 2). Substituting 
this into the first equation, we get c2n + 2 = 4c2n + (c2n - C2n - 2) + C2n and 
so Vn + 1 - 6Vn + vn -1 = 0 is a recurrence relation for the square roots of 
all the square/triangular numbers. 

Reference 
1. T. Cross, Square-triangular numbers, Math. Gaz. 75 (October 1991), 

pp. 320-323. 
2. H. Davenport, The higher arithmetic: an introduction to the theory of 

numbers, Hutchinson, London (1952). 
DONALD KEEDWELL 

Department of Mathematics and Statistics, University of Surrey, 
Guildford GU2 7XH 

84.40 Reflections on Euclid's algorithm 
Euclid's algorithm enables one to find the greatest common divisor of 

two numbers and solutions of linear Diophantine equations. The purpose of 
this short note is to draw attention to the fact that the algorithm operates on 
pairs of integers, and to emphasise this by rewriting it explicitly in these 
terms. An example will suffice to give the main ideas. 

Consider the problem of solving the equation 58x + 1 ly = 1. This is 
accomplished in the usual way from the equations 

58 =5 x 11 + 3 

11 =3x3+2 

3= 1x2+1 

2=2x1+0 

(although the last equation is usually omitted). The algorithm can be 
displayed geometrically by representing each pair of integers (a, b) by a 
rectangle. In the example we are considering, the pair (58, 11) is 
represented by a 58-by-11 rectangle, which is then partitioned into five 11- 
by-11 squares and a residual 11-by-3 rectangle. This residual rectangle is 
now partitioned into three 3-by-3 squares, leaving a new residual rectangle 
of size 3-by-2. The process continues until there is no residual rectangle. 
Clearly, this graphical representation exactly mirrors the steps in the 
algorithm, and so perhaps makes the process more accessible to a younger 
audience. Articles written along these lines for upper secondary school 
students, together with an interactive computer program, can be found at 
http: //nrich.maths.org. 

Working with the same example, we can also write 
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Working with the same example, we can also write 
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{580 _ 1 0lll 

-3( f1 0 (1 (23 1 0)1; 

from which we obtain 

or1 -1 1 e can aso write this 

) 1 0 1 0 1 0 1 0 q 11 

4 -2158 
1* 1 

wher e denotes a term that need not be computed. By equating the top 
rows in this last equation, we obtain the solution x = 4 and y = -21 of 
58x + ly = 1. Observe that, as all matrices here have a determinant of 1 
or -1, we can also write this as 

'5S\ '4-21 q 21\ I 

,where21p + 4q = 1. 
11i; p? q 0 \oj ,-p 4 

t 

Thus the solution can be found simply by multiplying the matrices in (1) 
(instead of the usual repeated substitution and simplification). 

This approach to Euclid's algorithm is simpler than (but equivalent to) 
the description of the algorithm in terms of continued fractions. An 
explanation of what follows can be found in almost any text that discusses 
continued fractions. Briefly, the expression 

(u) =a b( x) 
va c d:i,Y 

is the homogeneous form of the M6bius map 

/ = a(xly) + b 

c(xly) + d' 

with the usual conventions regarding oo. In the special case when 
b = c = 1 andd = Othisreduces to 

u/v = a +- 
x/y 
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and the composition of such maps (which corresponds to the product of the 
matrices) leads directly to continued fractions. In our example we have 

58 1 1 1 = 5+ = 5+ 5+ 
11 11/3 + 1 3+ 3 + 2 3 + 

3/2 1+ 1+- 
2 

In fact, the columns of the successive matrix products are the convergents of 
the continued fraction expansion for 58/11, as can be seen from the 
calculations 

/5 1) 3 1) (165) 5 1 )13 1 1 1 il 21 16) 

\ 0 1 0 1' 
1 0 1 0 4 3 ' 

and 

1 16 1 21 
5+ - 5 + 

3 3 3 1 4 3+ 

A. F. BEARDON 

DPMMS, Centre for Mathematical Sciences, Wilberforce Road, 
Cambridge CB3 OWB 

84.41 An interesting conjecture 
a 

The column vector v = b is called a Diophantine triplet if each of 
c 

ab + 1, bc + 1, ca + 1 is a perfect square. Take the matrix 
'0 0 /0 

A = 0 2 and the vector v = 2. Define the v(i = 1, 2, 3,...) 
-1 2 3 4 

by vi = Avi_ i. Then we conjecture that vi is a Diophantine triplet for all 
non-negative integers i. This has been verified for many values of i. 
Perhaps an interested reader could supply a proof (or counter-example) of 
this conjecture. 

M. N. DESHPANDE 
Institute of Science, Nagpur 440001, India 

Editor's Note 

la\ I2t - a 
Consider the set of vectors of the form v = b= 2t where t 

c 2t + a 
and a are integers such that 1 + 3t2 = a2. Then 
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la\ I2t - a 
Consider the set of vectors of the form v = b= 2t where t 

c 2t + a 
and a are integers such that 1 + 3t2 = a2. Then 

ab + 1' 4t2 2at + 1 t2 - 2at a2 (t - a)2\ 
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