MATHEMATICAL ASSOCIATION

supporting mathematics in education

82.6 A Generalisation of Euler's Theorem Author(s): Thomas Koshy
Source: The Mathematical Gazette, Vol. 82, No. 493 (Mar., 1998), p. 80
Published by: The Mathematical Association
Stable URL: http://www.jstor.org/stable/3620158
Accessed: 24/03/2010 21:12

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mathas.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@ jstor.org.

The Mathematical Association is collaborating with JSTOR to digitize, preserve and extend access to The Mathematical Gazette.

82.6 A generalisation of Euler's theorem

One of the celebrated results in number theory is Euler's theorem:
If m is a positive integer and a any integer with $(a, m)=1$, then $a^{\Phi(m)} \equiv 1(\bmod m)$, where (a, m) denotes the gcd of a and m. This result can be generalised to a finite number of positive integers m_{i}, as the next theorem shows, where $[a, b]$ denotes the lcm of the positive integers a and b.

Its proof employs the fact that if $a \equiv b\left(\bmod m_{i}\right)$, where $1 \leqslant i \leqslant k$, then $a \equiv b\left(\bmod \left[m_{1}, m_{2}, \ldots, m_{k}\right]\right)$. For example, $293 \equiv 113(\bmod 6)$ and $293 \equiv 113(\bmod 9)$, so $293 \equiv 113(\bmod [6,9])$, that is, $293 \equiv 113(\bmod 18)$.

Theorem Let $m_{1}, m_{2}, \ldots, m_{k}$ be any positive integers and a any integer such that $\left(a, m_{i}\right)=1$ for $1 \leqslant i \leqslant k$. Then

$$
a^{\left[\Phi\left(m_{1}\right), \Phi\left(m_{2}\right), \ldots, \Phi\left(m_{k}\right)\right]} \equiv 1\left(\bmod \left[m_{1}, m_{2}, \ldots, m_{k}\right]\right) .
$$

Proof: Let $M_{k}=\left[\Phi\left(m_{1}\right), \Phi\left(m_{2}\right), \ldots, \Phi\left(m_{k}\right)\right]$. By Euler's theorem, $a^{\Phi\left(m_{i}\right)} \equiv 1\left(\bmod m_{i}\right)$ for every integer i, where $1 \leqslant i \leqslant k$. Since $\Phi\left(m_{i}\right) \mid M_{k}$, it follows that $M_{k} / \Phi\left(m_{i}\right)$ is a positive integer, and

$$
a^{M_{k}}=\left[a^{\Phi\left(m_{i}\right)}\right]^{M_{k} / \Phi\left(m_{i}\right)} \equiv 1^{M_{k} / \Phi\left(m_{i}\right)} \equiv 1\left(\bmod m_{i}\right) .
$$

By the above result, this yields the desired conclusion, $a^{M_{k}} \equiv 1$ $\left(\bmod \left[m_{1}, m_{2}, \ldots, m_{k}\right]\right)$.

It is worth noting that Phythian's extension [1] of Fermat's Little Theorem follows from the above theorem when each m_{i} is a distinct prime.

Reference

\rightarrow J. E. Phythian, Divisors using Fermat's theorem, Math. Gaz. 54 (Dec. 1970) pp. 402-404.

THOMAS KOSHY

Framingham State College, Framingham, MA 01701-9101, USA

82.7 Equal sums of squares

Two squares

If you want to find all integer solutions of the equation $6 p+15 q=0$, you first divide by 3 to get $2 p+5 q=0$ and then, since 2 and 5 are coprime, you can argue that p is an integer multiple of 5 and q the same multiple of 2 but of opposite sign. The result is $p=5 n$ and $q=-2 n$. The argument fails unless you first remove the highest common factor of 6 and 15.

This leads naturally to the following procedure. To find all solutions in integers of the equation

$$
\begin{equation*}
a p+b q=0 \tag{1}
\end{equation*}
$$

you work out $m=(a, b)$, set $a=m f, b=m g$ so that (1) becomes

$$
\begin{equation*}
f p+g q=0 \tag{2}
\end{equation*}
$$

