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NOTES 
Edited by Jimmie D. Lawson 

A Simple Congruence modulo p 

Winfried Kohnen 
. . . 

Congruences for prime numbers p have always been of great interest. Examples 
include Fermat's Little Theorem (nP _ n (mod p)) or Wilson's theorem 
((p-1)!--1 (modp)). In the following we consider the congruence relation 
modulo p extended to the ring of rational numbers with denominators not divisible 
by p. For such fractions m/n-r/s (mod p) if and only if ms-nr (mod p), and 
the residue class of m/n is the residue class of m times the inverse of the residue 
class of n in Zp. 

The purpose of this note is to state and prove the following result. 

Theorem. Let p be an odd przme. Then 

E k. 2k - E ( 1) ( (1) 
k=l k=l k 

Proof: First note the identity 

, k (1 -X) = E k ( k )(Xk - 1) (N E N, x (E R) (2) 

Indeed, the derivative of the left-hand side of (2) is 

k-1 1 (1 X) (l X) 

E (1 X) 1 - (1 -X) X 

while the derivative of the right-hand side is 

E (-1) k ( N ) Xk- 1 

Hence the derivative of both sides are equal. Also (2) is true for X = 1. 
In (2) we set N = p - 1 and X = -1. From p - k - -k (mod p), we deduce 

(p-1) (P-1) (p k) _(_lik(modp) 

and 

p-l 1 p-l 1 p-l 1 

k-lk k-lP-k kElk ( dp), 
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and thus equation (2) simplifies to 

p-1 2k P-1 ( _ lik 

E k E k (modp). ( 
k=l k=l 

In the sum on the left we replace k by p - k - -k (modp) and use Fermat's 
Little Theorem to obtain 

p-1 2k p-1 1 p-1 1 

k E k*2k 2 E k.2k (modp). 
k=l k=l k=l 

The sum on the right of (3) we rewrite as 

E ( 1) + E ( 1) - 2 E ( 1) ( d ) 

This proves (1). 
In the literatureS congruences of a type similar to (1) can be found; however, in 

general they are of a much deeper nature. For example, in [1] with the help of 
properties of the Pell sequence ((1 + 4)n)n < N it is shown that 

E k 2k - E k (mod p) * (4) 

It seems unlikely that (4) can be proved with the simple approach we have used 
here. 
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A (;eometrical Method for Finding 
an Explicit Formula for the 
Greatest Conlmon Divisor 

Marcelo Polezzi 

This note presents an explicit formula for the greatest common divisor (g.c.d.) of 
two integers derived using a simple geometrical argument. 

In [1], chapter 3, an expression was deduced, from which one can easily obtain a 
formula for the g.c.d. as a particular case. HoweverS the derivation of that 
expression is veiy tiring and lengthy. 
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