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s(s - a) = p(p + q) x q(p - q) = pq(p2 - q2). (4) 

The usual formula to find the area of a triangle is Area = 1? base x height. 
Using this and (4) we have 

A = ?(p2 - q2) x 2pq = 
pq(p2 - q2) = s(s - a). 

I later realised that there was no need to use Pythagorean triples, where all 
the sides are integers, only Pythagoras' Theorem. In fact formula (1) works if 
and only if the triangle is right-angled. If (1) holds then using Heron's formula 
for the area of a triangle with sides of lengths a, b and c, 

A = s s(s - a) (s - b)(s c), 
we have 

\/s(s - a)(s - b)(s - c) = s(s - a). 

Squaring both sides and dividing by s (s - a) we obtain 

(s - b)(s- c) = s(s - a). 

Expanding the brackets and rearranging gives 

bc = s(b + c - a) 

where 2s = a + b + c. Thus 

2bc = (b + c + a)(b + c - a) 

which simplifies to 

a2 = b2 + c2. 

By the converse of Pythagoras' Theorem the triangle is right-angled. 
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79.58 Prime values of polynomials 
The thoughts which follow were triggered by reading the discussion of a 

computer based approach to the factorisation of quadratics in the excellent 1992 
Mathematical Association report Computers in the mathematics classroom. In 
this, on pages 68 and 69, the values of x2 + 5x + 4 and x2 + 5x + 5 for 
x = 0, 1, ... ,9 are contrasted, it being noted that in the latter case 'the 
predominance of prime number [values] reflects the impossibility of expressing 
x2 + 5x + 5 as the product of linear factors with integral coefficients'. 

In what follows, we shall suppose all polynomials to have integer 
coefficients and we recall Gauss' Lemma - that factorisations of such 
polynomials over 0 and Z are equivalent. 
Result 1 If p is a quadratic and p (x) is prime for 5 integer values of x, then p is 
irreducible. 

For if p(x) = a(x)b(x) with a, b linear, then a(x) = +1, b(x) = +1 are 
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satisfied by at most 4 distinct integer values of x: and if p (x) is prime for some x 
then necessarily a (x) = ?+1 or/and b (x) = +1. This result - and its proof - 
generalises immediately to give: 
Result 2 If p is a polynomial of degree n and p (x) is prime for 2n + 1 integer 
values of x, then p is irreducible. 
(Just observe that a(x)= +1, b(x) =+1 have at most 2(deg(a) + deg(b)) = 2n 
integer solutions.) 

These conditions are, of course, far from necessary for irreducibility: for 
example, the irreducible monic quadratic x (x + 1) + 4 takes just (non-prime) 
even values for integer x and, for prime p > 5, the monic polynomial 
xP - (p + l)x + 6p (which is irreducible by Eisenstein's criterion with prime 
2) takes values which, by Fermat's little theorem, are all composite and 
multiples of p. 

We conclude with two open (hard?) problems: 

Problem 1 For each n, does there exist a reducible polynomial p of degree n 
for which p (x) is prime for 2n values of x? (In this sense, Result 2 would then be 
best possible. To get you started, (x - 1) (x - 5) will do for n = 2.) 

Problem 2 With extra hypotheses on p, more can be asserted: thus if a 
quadratic with positive coefficients is prime for 3 positive integer values, then it 
is irreducible by a similar argument to that given for Result 1. What must 3 be 
replaced by in order to guarantee that a polynomial of degree n with positive 
coefficients is irreducible? 

NICK LORD 
Tonbridge School, Kent TN9 lJP 

79.59 Balancing and golden rectangles 

It is always intriguing to meet old 
friends in new contexts. Consider the 1 x 

following standard-looking problem: 
What x x x square must be removed 
from the 1 x 1 square lamina shown 
in Figure 1 so that the remaining . 

gnomon has centre of mass at the x 1 - x 
comer of the square removed? 

FIGURE 1 

Taking moments about the left-hand edge in the usual way, this requires 
that: 

ix x 
2 

+ x(1 - X) = i x 1 

removed gnomon original 
square square 

whencex3 - 2x+ 1 = Oor(x - l)(x2 +x - 1) = 0. 
Thus either x = 1 (interpret) or x = 1/?(/5 - 1) = 1/r where T, the 
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