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Prime Number Records 

Paulo Ribenboim 

Paulo Ribenboim received his B.S. from the University of Brazil 
and his Ph.D. from the University of Sao Paulo. Professor 
Emeritus of Mathematics at Queen's University, Ontario, he is 

widely known as a lively lecturer on algebra and number theory 
and has held academic positions in 11 countries. Recent ap- 
pointments include the University of Paris, the Mathematics 
Institute at the University of Munich, and the Mathematical 
Sciences Research Institute at Berkeley. He enjoys travel, classi- 
cal music, the arts, and fine food. 

The theory of prime numbers can be roughly divided into four main inquiries: How 

many prime numbers are there? How can one produce them? How can one 

recognize them? How are the primes distributed among the natural numbers? In 

answering these questions, calculations arise that can be carried out only for 
numbers up to a certain size. This article records the biggest sizes reached so 
far?the prime number records. 

All the world loves records. They fascinate us and set our imaginations soaring. 
The famous Guinness Books of Records, which has appeared in surprisingly many 

editions, contains many noteworthy and interesting occurrences and facts. Did you 

know, for example, that the longest uninterrupted bicycle trip was made by Carlos 

Vieira of Leiria, Portugal? During the period June 8-16, 1983, he pedalled for 191 

hours nonstop, covering a distance of 2407 km. Or did you know that the largest 
stone ever removed from a human being weighed 6.29 kg? The patient was an 

80-year-old woman in London, in 1952. And nearer our usual lines of interest: 

Hideaki Tomoyoki, born in Yokohama in 1932, quoted 40,000 digits of tt from 

memory, a heroic exploit that required 17 hours and 20 minutes, with pauses 

totalling 4 hours. Leafing through the Guinness Book, one finds very few scientific 

records, however, and even fewer records about numbers. 

Not long ago I wrote The Book of Prime Number Records [3], in which I discuss 

the feats of mathematicians in this domain so neglected by Guinness. How this 

book originated is a story worth telling. Approached by my university to give a 

colloquium lecture for undergraduate students, I sought a topic that would be not 

only understandable but interesting. I came up with the idea of speaking about 

prime number records, since the theme of records is already popular with students 

in connection with sports. The interest of the students so exceeded my expecta- 
tions that I resolved to write a monograph based on this lecture. In the process I 

learned of so many new facts and records that the brief text I had planned kept on 

expanding. Thanks to colleagues who supplied me with many helpful references, I 

was at last able to complete this work. 

I must confess that when preparing the lecture I did not know a lot (indeed I 

knew very little!) about the theorems for primes and prime number records. For 

me all these facts, although quite interesting, were not tied together. They seemed 

to be just isolated theorems about prime numbers, and it was not clear how they 
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could be woven into a connected theory. But when one wishes to write a book, the 

first task is to shape the subject matter into a coherent whole. 

The scientific method may be considered as a two-step process: first, observation 

and experiment?analysis; then formulation of the rules, theorems, and orderly 

relationships of the facts?synthesis. Stated in these terms, my task was thus to 

present a synthesis of the known observations about prime numbers, with an 

emphasis on the records achieved. Any originality of my work undoubtedly lies in 

the systematic investigation of the interplay between theory and calculation. This 

undertaking needs no justification if one keeps in mind what role the prime 
numbers have in the theory of numbers. After all, the fundamental theorem of 

elementary number theory says that every natural number N> 1 can be expressed 
in a unique way (except for the order of the factors) as a product of primes. Prime 

numbers are thus the foundation stones on which the structure of arithmetic is 

raised. 

Now, how did I go about organizing the theory of prime numbers? I began by 

posing four direct, unambiguous questions: 

1. How many prime numbers are there? 

2. How can one generate primes? 
3. How can one know if a given number is prime? 
4. Where are the primes located? 

As we shall see, out of these four questions the theory of prime numbers naturally 
unfolds. 

How Many Primes Are There? 

As is well known, Euclid in his Elements proved that there are infinitely many 

primes, proceeding as follows: Assume that there are only finitely many primes. 
Let p be the largest prime number and P be the product of all primes less than or 

equal to p\ then consider the number P plus 1: 

p+i=(ru)+i 
Q<P 

Two cases are possible: either (a) P + 1 is prime, or (b) P + 1 is not prime. But if 

(a) is true, P + 1 would be a prime number larger than p. And if (b) holds, none of 

the primes q <p is a prime factor of P + 1, so the prime factors of P + 1 are all 

larger than p. In both cases the assumption that there is a largest prime p leads to 

a contradiction. This shows that there must be an infinite number of primes. 
From this indirect proof one cannot deduce a method for generating prime 

numbers, but it prompts a question: Are there infinitely many primes p such that 

the corresponding number P + 1 is also prime? Many mathematicians have de- 

voted calculations to this question. 

Record. p = 13649 is the largest known prime for which P + 1 is also prime; here, 
P + 1 has 5862 decimal digits. This was found by H. Dubner in 1987. 

There are many other proofs of the existence of infinitely many primes; each 

reveals another interesting aspect of the set of all prime numbers. Euler showed 
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that the sum of the reciprocals of the prime numbers is divergent: 

From this we again see that there cannot be only finitely many primes. Euler's 

proof can be found in many elementary books on number theory or real analysis, 
such as [1], and permits an interesting deduction. For any e > 0, no matter how 

small, we know 

OC J 
<oo. ^ 

nl+* 

Hence the prime numbers are closer together, or are less sparsely scattered along 
the number line, than are numbers of the form nl+e. For example, the primes lie 

closer together than the squares n2, for which Euler showed 

E- = - 

Another simple and elegant proof that infinitely many primes exist was given by 

Polya. It clearly suffices to find an infinite sequence F0,F1,F2,F3,... of pairwise 

relatively prime natural numbers (i.e., no two having a common divisor greater 
than 1); since each Fn has at least one prime factor, then there are infinitely many 

primes. It is easy to prove that the sequence of Fermat numbers Fn = 22" + 1 has 

this property. Clearly neither Fn nor Fn+k (k > 0) is divisible by 2; and if p is an 

odd prime factor of Fn, then 22" = - 1 (mod p), so that 22"+ = (22")2 = 1 (mod p). 
Thus Fn+/c = 2 (mod p), and since p > 2, it follows that p does not divide Fn+k. I 

will devote further attention to the Fermat numbers after the next section. 

Generating Prime Numbers 

The problem is to find a "good" function /: N -> {prime numbers). This function 

should be as easy to calculate as possible and, above all, should be representable 

by previously well-known functions. One may place additional conditions on this 

function, for example: 

Condition (a). f(n) equals the nth prime number (in the natural order); this 

amounts to a "formula" for the nth prime number. 

Condition (b). For m ?= n, f(m) ^f(n); this amounts to a function that generates 
distinct primes, but not necessarily all the primes. 

One can also seek a function / defined on N with integer values (but not 

necessarily positive values) that fulfills 

Condition (c). The set of prime numbers coincides with the set of positive values 

of the function. This is a far looser requirement and one that can be fulfilled in 

unexpected ways, as we shall later see. 
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To begin, let's discuss formulas for prime numbers. There are plenty of them! In 

fact many of us in younger days sought?often with success?a formula for the nth 

prime number. Unfortunately, all these formulas have one thing in common: They 

express the nth prime number through functions of the preceding primes that are 

difficult to compute. Consequently these formulas are useless for deriving proper- 
ties of the prime numbers. Nevertheless, I will give as an illustration one such 

formula, found in 1971. I do so in honor of its discoverer, J. M. Gandhi, a 

mathematician who died far too young, who also worked on Fermat's Last 
Theorem.1 

To simplify the statement of the formula, I will introduce the Mobius function 

jjl: N -> Z, given by 

if n = \ 

if n is square-free and a product of r distinct prime factors 

otherwise. 

Now if Pi,p2,p3,... is the sequence of prime numbers in increasing order, set 

Pn-i=PiP2'..pn-i> ^en Gandhi's formula is 

Pn 1 - 
log2 

Here log2 indicates the logarithm in base 2 and [x] denotes, as usual, the largest 

integer less than or equal to the real number x. One can see how difficult it is to 

calculate pn using Gandhi's formula! 
Now we sketch the construction of a function that generates prime numbers. 

E. M. Wright and G. H. Hardy in their famous book [1] showed that if (o = 

1.9287800... andif 

/(") (with n twos) 

then f(n) is prime for all n > 1. Thus /(l) = 3, /(2) = 13, and /(3) = 16381, but 

/(4) is rather hard to calculate and has almost 5000 decimal places. However, as 

the exact value of a> depends on knowledge of the prime numbers, this formula is 

ultimately uninteresting. 
Do any truly simple functions generate prime numbers? There are no such 

polynomial functions because of the following negative result: 

Result. For every f&Z[Xv...,Xm] there are infinitely many m-tuples of inte- 

gers (n1?..., nm) for which \f(nv ..., nm)\ is a composite number. 

Other similar negative results are plentiful. 

Well, then, are there polynomials in just one indeterminate for which many 
consecutive values are primes? More precisely: Let q be a prime number. Find a 

polynomial of degree 1, in fact a polynomial of the form fq(X) 
= dX + q, whose 

values at the numbers 0,1,..., q - 1 are all prime. Then / generates a sequence 
of q prime numbers in arithmetic progression with difference d and initial value q. 

1J. M. Gandhi, born in 1933, died on January 23, 1982, after an apparently harmless operation. 
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For small values of q finding fq is easy: 

q d Values at 0, 1,..., q - 1 

2 12 3 

3 2 3 5 7 

5 6 5 11 17 23 29 

7 150 7 157 307 . 907 

However, we do not know how to prove that this is possible for every prime 
number q. 

Records. In 1986, G. Loh gave the smallest values of d for two primes: 

Forq=ll, d= 1536160080. 

For q = 13, d = 9918821194590. 

One can also examine the related problem: to search for the longest sequences 
of primes in arithmetic progression. 

Record. The longest known sequence of primes in arithmetic progression consists of 
22 terms in the sequence with first term a = 11410337850553 and difference 
d = 4 609098 694 200 {work coordinated by P. Pritchard, 1993). 

Euler discovered quadratic polynomials for which many values are primes. He 

observed that if q is the prime 2, 3, 5, 11, 17, or 41, then the values 

fq(0),fq(l),...,fq(q-2) of the polynomial fq(X)=X2+X + q are prime. (Evi- 

dently fq(q 
- 1) = q2 is not prime, so this sequence of consecutive prime values is 

the best one can hope for.) For q = 41 this gives 40 prime numbers: 

41,43,47,53,..., 1447,1523,1601. 
The next question is obvious: Can one find primes q > 41 for which the first 

q - 1 values of Euler's quadratic are all prime? If infinitely many such primes q 

exist, we could generate arbitrarily long sequences of primes! However, the 

following theorems say this is not to be: 

Theorem. Let q be a prime number. The integers fq(0), fqd),..., fq(q 
- 2) are all 

primes if and only if the imaginary quadratic field QiyT?Aq) has class number 1 

(G. Rabinovitch, 1912). 

(A quadratic field K has class number 1 if every algebraic integer in K can be 

expressed as a product of primes in K, and if any two such representations differ 

only by a unit, i.e., an algebraic integer that is a divisor in 1 in K.) 

Theorem. Let q be a prime number. An imaginary quadratic field Q(\/l 
- Aq) has 

class number 1 if and only if Aq- 1 = 1, 11, 19, 43, 67, or 163, that is, q = 2, 3, 5, 

11, 17, or 41. 

The imaginary quadratic fields of class number 1 were determined in 1966 by A. 

Baker and H. M. Stark, independently and free of the doubt that clung to 

Heegner's earlier work in 1952. 

po4 THE COLLEGE MATHEMATICS JOURNAL 



Thus the following unbeatable record has been attained: 

Record. q = 41 is the largest prime number for which the values fq(0), fq(l), 
..., fq(q 

- 2) of the polynomial fq(X) 
= X2 + X + q are all primes. 

It is worth mentioning that in the solution of this quite harmless-looking problem a 

rather sophisticated theory was required. Details are given in another article [2]. 
We now turn to some polynomials whose positive values coincide with the set of 

prime numbers. The astonishing fact that such polynomials exist was discovered in 

1971 by Yu. V. Matijasevic in connection with the tenth Hilbert problem. Here are 

the records, which depend on the number of unknowns n and the degree d of the 

polynomial: 

Yu. V. Matijasevic (not explicit) 
J. P. Jones, D. Sato, H. Wada, andD. Wiens 

Jones et al. (not explicit): Lowest d 

Yu. V. Matijasevic (not explicit): Lowest n 

It is not known whether the minimum values for n and d are 10 and 5, 

respectively. 

Recognizing Prime Numbers 

Given a natural number N, is it possible to determine with a finite number of 

calculations whether N is a. prime? Yes! It sufRces to divide N by every prime 
number d for which d2 <N. If the remainder is nonzero every time, then N is 

prime. The trouble with this method is that a large N requires a large number of 

calculations. The problem, therefore, is to find an algorithm A where the number 

of computations is bounded by a function fA of the number of digits of N, so 

fA(N) does not grow too fast with N. For example, fA(N) should be a polynomial 
function of the number of binary digits of N, which is 1 + [log2(A0L Essentially, 
this number is proportional to the natural logarithm log N, since log2(A0 = 

log7V/log2. 
This problem remains open?we do not know whether such a polynomial 

algorithm exists. On the one hand, we cannot prove the impossibility of its 

existence; on the other hand, no such algorithm has yet been found. Efforts in this 

direction have produced several primality-testing algorithms. According to the 

point of view, they may be classified as follows: 

Algorithms for arbitrary numbers 

Algorithms for numbers of special form 

Algorithms that are fully justified by theorems 

Algorithms that are based on conjectures 

Deterministic algorithms 
Probabilistic algorithms 

To clarify these notions I offer some examples. 
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One algorithm applicable to arbitrary numbers is that of G. L. Miller (1976), the 

complexity of which can be estimated only with the help of the generalized 
Riemann conjecture. Assuming this conjecture, for Miller's algorithm the estimate 

fA(N) < C(log AO5 is valid, where C is a positive constant. Thus this is an 

algorithm whose polynomial growth rate remains uncertain. By contrast, the 

algorithm of L. M. Adleman, C. Pomerance, and R. S. Rumely (1983) possesses a 

completely assured complexity estimate, and the number of computation opera- 
tions as a function of the number of binary digits of N is bounded by 

(log A0clogloglogyv where C is a constant. The complexity is therefore in practice 
not far from polynomial, and this algorithm can be applied to an arbitrary 

integer N. 

Both of these algorithms are deterministic, unlike those I shall now describe. 

First, I must introduce the so-called pseudoprime numbers. Let a > 1 be an 

integer. For every prime p that does not divide a, Fermat's Little Theorem says 
qp-\ = i (modp). But it is quite possible for a number N> 1 with aN~l = 1 

(mod N) to be composite?in which case we say N is pseudoprime for the base a. 

For example, 341 is the smallest pseudoprime for the base 2. Every base a has 

infinitely many pseudoprimes. Some among them satisfy an additional congruence 
condition and are called strong pseudoprimes for the base a\ they too are infinite in 

number. 

An algorithm is called a probabilistic prime number test if its application to a 

number N leads either to the conclusion that N is composite or to the conclusion 

that with high probability N is a prime number. Tests of this type include those of 

R. Baillie and S. S. Wagstaff (1980) and M. O. Rabin (1980). In these tests one 

examines certain "witnesses." Let k > 1 (for example, k = 30) and let ax = 2, 

a2 = 3,...,ak be primes that will serve as witnesses. Should a witness fail to satisfy 
the condition af~x 

= 1 (mod N), then N is surely composite. If for every witness 

ai the preceding congruence holds (that is, if N is pseudoprime for the base a^ for 

j=l,2,...,k) then N is with high probability a prime number. Rabin's test is 

similar, using more restrictive congruences, which lead to better probabilities. This 

test leads to the conclusion that N either is certainly composite or with probability 
1 - 

(1/Ak) is prime. For k = 30, then, the test gives a false result only once out of 

every 1018 values of N. These probabilistic tests are clearly very easy to apply. 
Now we turn to prime number tests applicable to numbers of the form N ?1, 

where many if not all of the prime factors of N are known. The tests for N + 1 

depend on a weak converse, due to Pepin, of Fermat's Little Theorem, while those 

for N - 1 use the Lucas sequence. 
In 1877 Pepin showed that the Fermat numbers Fn 

= 22" + 1 are prime if and 

only if 2>{Fn~l)/2 = -1 (mod Fn). The search for primes among the Fermat numbers 

Fn has produced several records. 

Record. The largest Fermat number known to be prime is F4 = 
6^537. 

Record. Fxx is the largest Fermat number all of whose prime factors have been 

determined (R. P. Brent and F. Morain, 1988). 

Record. ^23471 ^ tne largest Fermat number known to be composite', it has the 

factor 5 X 223473 + 1 (W. Keller, 1984). 

Record. F22 is the smallest Fermat number not yet proven prime or composite. 
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For the Mersenne numbers, Mq 
= 2q - 1, with q a prime, one applies the Lucas 

test (1878): Let S0 = 4, Sk + 1 = S% 
- 2, for k > 0. Then Mq is prime if and only if 

Mq is a divisor of Sq_2. This test makes it possible to discover very large primes. 

Record. To date, 33 Mersenne primes are known. The largest Mersenne prime now 
known is Mq for q = 859433, a number whose decimal expression has 258,716 digits. 
It was found with a Cray computer by D. Slowinski, in 1993. 

The next smaller Mersenne primes are Mq for q = 756839, q = 216091, and 

q = 132049 (all by Slowinski). Such large numbers could not be tested for primality 
were it not for their special form. 

Record. The largest known composite Mersenne number is Mq for q = 39051 X 26001 
- 1 (W. Keller, 1987). 

For many years?from 1876, when E. Lucas proved M127 prime, until 1989?the 
title "largest prime number" was always held by a Mersenne prime. That became 

true again in 1992, but in the three intervening years another champion reigned: 

Record. The largest prime known today that is not a Mersenne prime is 391581 X 

2216193 _ ^ pQr tn-s discovery we are indebted to six mathematicians; in reverse 

alphabetical order (and why notl) they are S. Zarantonello, J. Smith, G. Smith, B. 

Parady, L. C. Noll, andJ. Brown. 

The Distribution of the Prime Numbers 

At this point we know the following: 

1. There are infinitely many prime numbers. 

2. There is no reasonably simple formula for the prime numbers. 

3. One can determine whether a given number is prime if it is not too large. 

What can one say about the way the primes are distributed among the natural 

numbers? Earlier I gave a hint in connection with Euler's proof of the existence of 

infinitely many primes: The primes are closer together than are, for example, the 

squares. A quite simple way to discuss the distribution of the primes is to count the 

number of primes less than a given number. For every real x > 0, set tt(x) = |{prime 
numbers p\p <x}\. Thus ir is the function that counts the prime numbers. To have 

a good idea of the behavior of ir we can compare it with simpler functions. This 

approach leads to results of an asymptotic nature. 

When only 15 years old, C. F. Gauss conjectured from his studies of prime 
number tables that 

tt(x) 
logx 

That is, the limit of the quotient 

tt(x) 

x/log X 
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as x -> oo exists and equals 1. An equivalent formulation is 

dt 

\o%t 

The function on the right is called the logarithmic integral and is denoted Li. 
Gauss's assertion was proved in 1896 by J. Hadamard and C. de la Vallee Poussin; 

previously P. L. Chebyshev had shown that the limiting value, if it exists, must be 1. 

This theorem belongs among the most significant results in the theory of prime 
numbers, for which reason it is customarily referred to as the Prime Number 

Theorem. However, this theorem obviously says nothing about the exact value of 

ir(x). For that purpose we have the famous formula that D. F. E. Meissel found in 

1871, expressing the exact value of ir(x) in terms of ir(y) for all y <x2/3 and 

prime numbers p <xl/2. 

Record. The largest integer N for which ir(N) has been exactly calculated is 
N=1017 (byM. Deleglise, 1992). The value is tt(1017) = 2625557157654233. 

The differences 

r(x)- 
logx 

and W(x) -Li(x)\ 

do not remain bounded as x -> oo. Evaluating these error terms as exactly as 

possible is enormously important in applications of the Prime Number Theorem. 
On the basis of tables it was first conjectured, and then proved (J. B. Rosser and L. 

Schoenfeld, 1962), that for all x > 17, x/log x < tt(x). This is interesting because, 
by contrast, the difference Li(x) - ir(x) changes sign infinitely many times, as J. E. 

Littlewood (1914) showed. In 1933, S. Skewes showed that the difference Li(x) - 

tt(x) is negative for some x0 with x0 <eeC . As a matter of fact, this change in 

sign occurs much earlier: 

Record. The smallest x0 for which Li(x) ? ir(x) is negative must be less than 

6.69 X 10370 (H. J. J. te Riele, 1986). 

The most important function for studying the distribution of primes is the 

Riemann zeta function: For every complex number s with Re(s) > 1, the series 

Y%=ll/ns is absolutely convergent; it is also uniformly convergent in every half- 

plane {s|Re(s) > 1 + e) for any e > 0. The function ? thus defined can be extended 

by analytic continuation to a meromorphic function defined in the entire complex 

plane, with only one pole. The pole is at the point 5 = 1, has order 1, and the 

residue there is 1. It was the study of the properties of this function that ultimately 
made the proof of the Prime Number Theorem possible. The function ? has zeros 

at - 2, - 4, - 6,..., as one can easily show with the help of the functional equation 
satisfied by ?. All other zeros of ? are complex numbers a + it (t real) with 

0<o-<l. 

The so far unproved Riemann hypothesis says: The nontrivial zeros of the 

Riemann zeta function are located on the critical line \+it (t real). Without 

going into the details, I will just observe that many theorems about the distribution 

of primes can be proved with the assumption of the Riemann hypothesis. It is 

therefore of fundamental importance to determine the nontrivial zeros of ?. By 
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symmetry considerations, it suffices to determine the zeros with t > 0, which can be 

listed in a sequence <rn + itn, where tn < tn + l and in case tn = 
tn + x we require that 

<rn<(rn + v (It must first be shown that there are at most a finite number of zeros of 

? for each value of t.) 

Record. For n < 1500 000 001 all the zeros crn + itn of the Riemann zeta function 
are located on the critical line', that is, an = \. These calculations were carried out in 

1986 by J. van de Lune, H. J. J. te Riele, and D. T. Winter. 

Record. In 191 A, N. Levinson showed that at least one third of the zeros of the 

Riemann zeta function are on the critical line, and in 1989 /. B. Conrey improved 
this result, replacing 1/3 by 2/5. 

The foregoing considerations are based on the asymptotic behavior of the 

function tt and on the function ?, which is very useful for estimating the error 

terms. One can say that they deal with the estimation of it "at infinity." Next we 

turn to the local behavior if it?estimating the gaps between the prime numbers. 

Here the fundamental question is: Knowing the nth prime pn, where will one find 

the following prime pw + 1? Thus, one is concerned with the sequence of differences 

dn =pn + x ~Pn- It is easy to see that limsup dn = oo? that is, arbitrarily long blocks 

of consecutive composite numbers exist. Here is one: For any N, the N consecutive 

numbers 

(N+1)\ + 2,(N+1)\ + 3,...,(N+1)\ + (N+1) 

are composite. It has amused some mathematicians to find the largest blocks of 

consecutive composite numbers between fairly small primes?the widest gaps 
between such primes. 

Record. The largest gap between prime numbers that has been effectively calculated 

consists of the 863 composite numbers following the prime P = 6 505 941701960 039 

(unpublished; communicated to the author in 1993, by S. Weintraub). 

The question about wide gaps between not too large primes can be made more 

precise. Let us look at the sequence dn/pn of relative gaps. As early as 1845 J. 

Bertrand postulated from a study of tables that a prime always lies between pn and 

2pn, for every n > 1. It was Chebyshev who first proved this result, which can be 

written in the form pn + x < 2pn or, better, dn/pn < 1. This result, while amusing, is 

much weaker than what can be deduced by using the Prime Number Theorem: 

dn 
lim ? = 0 

The theory of gaps between prime numbers has led to the following conjecture: 
For every s > 0 the inequality pn + l <pn +p]/2+? holds for all sufficiently large n. 

Record. The latest entry in a long line, the current record was the work of C. J. 

Mozzochi in 1986: pn + l <pn +pl/2 +11/20~1/384. 

What about the limit inferior of the difference sequence dn7 Two prime 
numbers p and p' (p <pr) are said to be twin primes if p' ?p = 2. We still do not 

know if there are infinitely many twin primes, i.e., if liminf dn = 2. The question is 
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delicate. In 1919 V. Brun showed that the sum over all pairs of twin primes 

e(-+?y=*<?. 
\P P + 2J 

It follows that if there are infinitely many twin primes, which one expects to be the 

case, then they are thinly dispersed. In 1976, Brun's constant was calculated by R. 

P. Brent: B = 1.90216054. 

Record. The largest known pair of twin primes is 1706595 X 211235 ? 1. The pair 
was discovered in 1990 by B. K. Parady, J. F. Smith, and S. Zarantonello of the 

"six from Amdahl," the same group currently holding the record for the largest 
non-Mersenne prime. 

Conclusion 

Lest this presentation grow too long, I have had to pass over many fascinating 

questions, such as the behavior of primes in arithmetic progression, to say nothing 
of the Goldbach conjecture. Fortunately these and many other facts have been 

both recorded and amply explained in a book [4] that is just waiting to be read! I 

will close with two curiosities to work into your repertoire. 
A repunit is an integer of the form Rn = 111... 1, with n decimal digits equal to 

1. We do not know if there are infinitely many prime repunits, but we do have the 

following record. 

Record. H. C. Williams and H. Dubner showed in 1986 that jR1031 is a prime 
number. 

Only four other repunits that are primes are known: R2, Rl9, R23, and R3n. 
I offer one final noteworthy record?but if you want to know why and how it was 

found, you must ask H. Dubner, who announced it in 1988. 

Record. The largest known prime number whose digits are also all prime is 

101104- 1 

7532x^-r 
+ 1- 

The observation and study of the prime numbers is a fruitful as well as diverting 

activity. Mathematicians derive much enjoyment from it, and that alone is worth 

the labor. In time, one comes to consider the prime numbers as friends?friends 

who bring us problems! 

AcknowledgmenL Translated from the German by Bart Braden and Ellen Curtin. 
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