MATHEMATICAL ASSOCIATION

supporting mathematics in education

78.1 A (Very) Short Proof of Fermat's Little Theorem Author(s): Stephen P. Kennedy
Source: The Mathematical Gazette, Vol. 78, No. 481 (Mar., 1994), p. 48
Published by: The Mathematical Association
Stable URL: http://www.jstor.org/stable/3619430
Accessed: 24/03/2010 21:12

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mathas.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@ jstor.org.

The Mathematical Association is collaborating with JSTOR to digitize, preserve and extend access to The Mathematical Gazette.

Notes

78.1 A (very) short proof of Fermat's little theorem

Fermat's little theorem states that if a and p are positive integers, p a prime which does not divide a, then $a^{p-1} \equiv 1(\bmod p)$. The standard textbook proofs rely on complicated divisibility results or ring theory. A little combinatorics makes the proof very simple, and emphasises the hypotheses. The key is the following lemma, whose straightforward proof is left to the reader.
Lemma. If w is a string of arbitrary symbols of length p, a prime, and w is not a single symbol repeated p times, then the cyclic permutations of p are distinct.

For example, if w is the string $a b b a b$, then w and its cyclic permutations $b b a b a, b a b a b, a b a b b$, and $b a b b a$ are distinct. On the other hand, the string abab and its cyclic permutations $b a b a, a b a b$, and $b a b a$ are not distinct. All strings with non-distinct cyclic permutations are of this form - the concatenation of some number of copies of a shorter substring. Notice that the length of the repeated substring must then divide the length of the original string.
Theorem. If a and p are positive integers and p is prime, then p divides $a^{p}-a$.

Let $A=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{a}\right\}$ be a set of arbitrary symbols. Form all possible strings of length p of elements of A, with repetition allowed. There are a^{p} such strings. Some of them are special - the strings which consist of a single symbol repeated p times, e.g. $x_{1} x_{1} x_{1} \ldots x_{1}$. There are a such trivial strings, and, hence, $a^{p}-a$ other strings. Each of these nontrivial strings has length p, a prime, and therefore has p distinct cyclic permutations. Partition the set of non-trivial strings into cyclic permutation classes. each class contains p elements, and each element is in a unique class. Therefore, p must divide $a^{p}-a$.

Fermat's little theorem follows by dividing both sides of the congruence $a^{p} \equiv a(\bmod p)$, by a. It is a pleasure to acknowledge helpful conversations with Matthew Stafford on this topic.

