

The Editor's Corner: The New Mersenne Conjecture<br>Author(s): P. T. Bateman, J. L. Selfridge, S. S. Wagstaff, Jr.<br>Source: The American Mathematical Monthly, Vol. 96, No. 2 (Feb., 1989), pp. 125-128<br>Published by: Mathematical Association of America<br>Stable URL: http://www.jstor.org/stable/2323195

Accessed: 24/03/2010 20:23

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @ jstor.org.


Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

# The Editor's Corner: The New Mersenne Conjecture 

P. T. Bateman, J. L. Selfridge*, and S. S. Wagstaff, JR.**

It is well known that Mersenne stated in his Cogitata [4] that, of the fifty-five primes $p \leqslant 257,2^{p}-1$ is itself prime only for the eleven values

$$
p=2,3,5,7,13,17,19,31,67,127, \text { and } 257 .
$$

It is also well known that his list had five errors: $p=67$ and 257 should have been removed from the list while $p=61,89$, and 107 should have been added to it.

Several authors $[\mathbf{1}, \mathbf{2}, \mathbf{3}]$ have speculated about how Mersenne formed his list. It is easy to notice that all numbers on his (incorrect) list lie within 3 of some power of 2 . However, Mersenne certainly knew that $2^{11}-1$ is composite and hence that not all primes $p=2^{k} \pm 3$ produce prime $M_{p}=2^{p}-1$. The next prime of this form not on Mersenne's list is $p=29$. He surely knew that $M_{29}$ is composite, as it has the small divisor 233. Also 263 divides $2^{131}-1$. Mersenne's list is explained by the rule
$M_{p}$ is prime if and only if $p$ is a prime of one of the forms $2^{k} \pm 1$ or $2^{2 k} \pm 3$ (1) except for the omission of $p=61$. In fact Mersenne stated in [5, Chap. 21, p. 182] a rule very similar to (1). (The verb "differs"-not "exceeds," as some have guessed -is omitted from his sentence, but Mersenne supplied it in a corrigendum on the back of page 235.) Drake [2] quotes this sentence from [5], locates the missing verb and argues that (1) was in fact Mersenne's rule. He suggests that 61 was missing from [4] either because of a typographical error or because Mersenne mistakenly believed that $M_{61}$ is composite. When copying a list, like "...,61,67, ...", containing two adjacent similar items, it is a common error to omit the first of these (here "61").

Now the question presents itself: Is there a neat way to distinguish the Mersenne hits like $31,61,127$ from the Mersenne misses like $67,257, \ldots$ and $89,107, \ldots$ ? When $\left(2^{127}+1\right) / 3$ was proved prime, we began looking at the other $\left(2^{p}+1\right) / 3$. We noticed that they were prime for the hits and composite for the misses! Is this accidental? Will "a little more computing" find a counterexample?

We replace (1) by this new, related conjecture that when both sides of (1) are true, $\left(2^{p}+1\right) / 3$ is prime, and when ( 1 ) is false, $\left(2^{p}+1\right) / 3$ is composite. Restating this conjecture we get the

New Mersenne Conjecture. If two of the following statements about an odd positive integer $p$ are true, then the third one is also true.
(a) $p=2^{k} \pm 1$ or $p=4^{k} \pm 3$.
(b) $M_{p}$ is prime.
(c) $\left(2^{p}+1\right) / 3$ is prime.

It is not necessary to assume that $p$ is prime, for if $p$ is composite (or 1 ), then statements (b) and (c) are both false and the conjecture holds.

It is easy to find examples of primes $p$ for which all three statements are true $(p=3,5,7,13,17,19,31,61,127)$ or all three are false $(p=29,37,41,47, \ldots)$ or

[^0]Table for "The New Mersenne Conjecture"

| $p$ | $p=2^{k} \pm 1$ or $4^{k} \pm 3$ ? | $2^{p}-1$ prime? | $\left(2^{p}+1\right) / 3$ prime? |
| :---: | :---: | :---: | :---: |
| 3 | yes ( -1 ) | yes | yes |
| 5 | yes ( +1 ) | yes | yes |
| 7 | yes ( -1 or +3 ) | yes | yes |
| 11 | no | no: 23 | yes |
| 13 | yes ( -3 ) | yes | yes |
| 17 | yes ( +1 ) | yes | yes |
| 19 | yes ( +3 ) | yes | yes |
| 23 | no | no: 47 | yes |
| 31 | yes ( -1 ) | yes | yes |
| 43 | no | no: 431 | yes |
| 61 | yes ( -3 ) | yes | yes |
| 67 | yes ( +3 ) | no: 193707721 | no: 7327657 |
| 79 | no | no: 2867 | yes |
| 89 | no | yes | no: 179 |
| 101 | no | no: 7432339208719 | yes |
| 107 | no | yes | no: 643 |
| 127 | yes ( -1 ) | yes | yes |
| 167 | no | no: 2349023 | yes |
| 191 | no | no: 383 | yes |
| 199 | no | no: 164504919713 | yes |
| 257 | yes ( +1 ) | no: 535006138814359 | no: 37239639534523 |
| 313 | no | no: 10960009 | yes |
| 347 | no | no: 14143189112952632419639 | yes |
| 521 | no | yes | no: 510203 |
| 607 | no | yes | no: 115331 |
| 701 | no | no: 796337 | yes |
| 1021 | yes ( -3 ) | no: 40841 | no: 10211 |
| 1279 | no | yes | no: 706009 |
| 1709 | no | no: 379399 | yes |
| 2203 | no | yes | no: 13219 |
| 2281 | no | yes | no: 22811 |
| 2617 | no | no: 78511 | yes |
| 3217 | no | yes | no: 7489177 |
| 3539 | no | no: 7079 | yes (prp) |
| 4093 | yes ( -3 ) | no | no |
| 4099 | yes ( +3 ) | no: 73783 | no: 2164273 |
| 4253 | no | yes | no: 118071787 |
| 4423 | no | yes | no |
| 8191 | yes ( -1 ) | no: 338193759479 | no |
| 9689 | no | yes | no: 19379 |
| 9941 | no | yes | no |
| 11213 | no | yes | no |
| 16381 | yes ( -3 ) | no | no: 163811 |
| 19937 | no | yes | no |
| 21701 | no | yes | no: 43403 |
| 23209 | no | yes | no: 4688219 |
| 44497 | no | yes | no: 2135857 |
| 65537 | yes ( +1 ) | no | no |
| 65539 | yes ( +3 ) | no | no: 58599599603 |
| 86243 | no | yes | no |
| 110503 | no | yes | no |
| 131071 | yes ( -1 ) | no: 231733529 | no: 2883563 |
| 132049 | no | yes | no |
| 216091 | no | yes | no |
| 262147 | yes ( +3 ) | no: 268179002471 | no: 4194353 |
| 524287 | yes ( -1 ) | no: 62914441 | no |

exactly one is true ( $p=67,257,1021, \ldots$ for only (a) true; $p=89,107,521, \ldots$ for only (b) true; and $p=11,23,43,79, \ldots$ for only (c) true). However, the New Mersenne Conjecture is true for all $p$ less than 100000 , which is the current limit of the search for Mersenne primes. It is valid also for all $p$ between $10^{5}$ and $10^{6}$ for which at least one of the three statements is known to hold. We expect that the three statements are true simultaneously only for the nine primes mentioned above.

The Table above summarizes what is known about our conjecture. It lists all odd primes $p$ satisfying at least one of these three conditions:
(1) $p<1000000$ and $p=2^{k} \pm 1$ or $p=4^{k} \pm 3$.
(2) $p<100000$ and $2^{p}-1$ is prime.
(3) $p<4000$ and $\left(2^{p}+1\right) / 3$ is prime.

When a number is asserted to be composite, a factor is given if one is known. The factors of $M_{131071}$ and $M_{524287}$ were found by Robinson [6]. The 1065-digit number $\left(2^{3539}+1\right) / 3$ passed a probabilistic primality test, but we did not give a complete proof that it is prime.

It is a simple consequence of quadratic reciprocity that if $p \equiv 1(\bmod 4)$, then the factors of $2^{p}-1$ are congruent to 1 or $6 p+1(\bmod 8 p)$, and if $p \equiv 3(\bmod 4)$, then the factors of $2^{p}-1$ are congruent to 1 or $2 p+1(\bmod 8 p)$. This observation is the starting point for a heuristic argument [7] which concludes that the number of $p$ less than $y$ for which $M_{p}$ is prime is about $e^{\gamma} \log _{2} y \approx 1.78 \log _{2} y$, where $\gamma$ is Euler's constant.

Likewise, one can show that if $p \equiv 1(\bmod 4)$, then the factors of $\left(2^{p}+1\right) / 3$ are congruent to 1 or $2 p+1(\bmod 8 p)$, and if $p \equiv 3(\bmod 4)$, then the factors of $\left(2^{p}+1\right) / 3$ are congruent to 1 or $6 p+1(\bmod 8 p)$. A heuristic argument like the one mentioned above concludes that the number of $p$ less than $y$ for which $\left(2^{p}+1\right) / 3$ is prime is also about $e^{\gamma} \log _{2} y$.

The total number of natural numbers less than $y$ with one of the forms $2^{k} \pm 1$ or $4^{k} \pm 3$ is about $3 \log _{2} y$. Hence, the number of primes less than $y$ with one of these forms is $O(\log y)$.

In view of the foregoing heuristics and the fact that there are about $y / \log y$ primes less than $y$, the probability that any one of the three statements holds for a randomly chosen prime $p$ less than $y$ is $O\left(y^{-1} \log ^{2} y\right)$. If the three statements were independent random events, then the expected number of primes $p$ greater than $L$ for which at least two of the statements hold is about $C \int_{L}^{\infty} y^{-2} \log ^{4} y d y$, which is finite. Substituting $L=100000$ gives an upper bound on the expected number of failures of the New Mersenne Conjecture. Assuming a reasonable value for $C$ (about 9 ) we find that the expected number of failures is less than 1 . This is one reason why we believe that the conjecture is true. Another reason is that it holds for all $p$ less than 100000 as well as those larger $p$ for which it has been tested.

We are grateful to Duncan A. Buell and Jeff Young for testing the primality of $\left(2^{p}+1\right) / 3$ for several $p>50000$, using a Cray 2 computer.

## REFERENCES

1. R. C. Archibald, Mersenne's numbers, Scripta Math., 3 (1935), 113.
2. Stillman Drake, The rule behind 'Mersenne's numbers', Physis-Riv. Internaz. Storia Sci., 13 (1971) 421-424. MR 58\#26870.
3. Malcolm R. Heyworth, A conjecture on Mersenne's conjecture, New Zealand Math. Mag., 19 (1982) 147-151. MR 85a:11002.
4. M. Mersenne, Cogitata Physico Mathematica, Parisiis, 1644, Praefatio Generalis No. 19.
5. ___ Novarum Observationum Physico-Mathematicarum, Tomus III, Parisiis, 1647.
6. Raphael M. Robinson, Some factorizations of numbers of the form $2^{n} \pm 1$, Math. Tables Aids Comput. 11 (1957) 265-268, MR 20 \#832.
7. S. S. Wagstaff, Jr., Divisors of Mersenne numbers, Math. Comp., 40 (1983) 385-397, MR 84j: 10052.

[^0]:    *Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115
    **Department of Computer Sciences, Purdue University, West Lafayette, IN 47907

