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chunked up M-group. His program, written in APL is fantastically more 
beautiful than the BASIC program given earlier. For further reading you 
might like to try 

[1] The fascination of groups by F. J. Budden (C.U.P.) 
[2] Topics in algebra by I. N. Herstein (Wiley). 

NICK MACKINNON 
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Modular arithmetic and cryptography 
J. B. READE 

Even the purest of pure mathematics can have a crucial influence on practical 
problems. In this article we show how a topic in pure mathematics (modular 
arithmetic) originally pursued for its own interest only, turns out to have 
unexpected application to an area of communication theory (cryptography). 
The fact that at the present time it is easy to construct large prime numbers but 
very difficult to factorise large composite numbers has made it possible to 
devise simple codes which are uncrackable by known methods. 

The modulus 

We take a positive integer m which we call the modulus and we identify any 
pair of integers which differ by a multiple of m. For example, if m = 4, then 

= 5 = 9 = 13 =3 =-7 etc. We shall write, for example, 

2 =6 141 

and say 2 equals 6 modulo 4. 
Situations in real life where we are unconsciously working with a modulus 

are the 24-hour clock (m = 12; e.g. 17.30 = 5.30 = half past 5) and days of the 
week (m = 7; e.g. 23 March, 30 March fall on the same day of the week since 
23 = 30171). Observe that, for example, if m = 7, then any integer is equal to 
one of the numbers 0, 1, 2, 3, 4, 5, 6 and to find which one we simply divide by 
7 and take the remainder. For example, 34 = 6171, and there are essentially 
only 7 different numbers when the modulus is 7. In general if the modulus is m 
there are only m essentially different numbers namely 0, 1, 2, ..., m - 1. 

Arithmetic with a modulus 

For example, with m = 4 we have 

1 + 1 =2 but 2+2=4=0. 
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We can draw up a Cayley table which gives a complete description of addition 
with modulus 4 and another for multiplication: 

+4 0 1 2 3 X4 0 1 2 3 

0 0 1 2 3 0 0 0 0 0 

1 1 2 3 0 1 0 1 2 3 

2 2 3 0 1 2 0 2 0 2 

3 3 0 1 2 3 0 3 2 1 

Subtraction goes similarly but division is where the problems start. 
Example 1 m = 4 What is 2/3? Suppose 2/3 = x. Then 3x = 2. We can solve 

this equation by referring to the Cayley table for multiplication with modulus 
4. We simply look for a 2 in the row corresponding to 3 and obtain the answer 
for x by observing which column we are in. In this case x = 2. So 2/3 = 2 
(modulo 4). 

Example 2 m = 4 What is 3/2? Suppose 3/2 = x. Then 2x = 3. But row 2 
hasn't got a 3 in it. So the equation 2x = 3 has no solution (modulo 4) and 3/2 
does not exist in this case. 

Example 3 m = 4 What is 2/2? If we put 2/2 = x we-get 2x = 2 which has 
two solutions x = 1 or 3. So 2/2 has two values namely 1 and 3 (modulo 4). 

The above examples show that in some cases divsion is possible with a 
unique value, but that it may sometimes happen that division is impossible or 
yields more than one value. This is actually a phenomenon we have all met 
before in ordinary arithmetic, though it may not have been put in these terms. 
In ordinary arithmetic division is possible and with a unique valueprovided we 
are not dividing by zero. Division by zero is impossible except in the case 0/0 
where division is non-unique, in fact 0/0 = anything since the equation Ox = 0 
is satisfied by any x. 

Referring to the Cayley table for multiplication with modulus 4 it is easy to 
see that division by 1 or 3 will always produce a unique value since the rows for 
1 and 3 each contain all the numbers 0, 1, 2, 3 once and once only. Division by 
O or 2 is either impossible or non-unique. Looking now at the table for 
multiplication with modulus 5 we see that in this case unique division is 
possible by any number except zero: 

x5 0 1 2 3 4 

0 0 0 0 0 0 

1 0 1 2 3 4 

2 0 2 4 1 3 

3 0 3 1 4 2 

4 0 4 3 2 1 

199 



200 THE MATHEMATICAL GAZETTE 

The general rule is that unique division is possible when dividing by any 
number n which is coprime with the modulus m, i.e., m, n have no common 
factors. 

Powers and roots 

For m = 5 we can draw up a table of powers as follows: 

X X2 X3 X4 X5 

0 0 0 0 0 

1 1 1 1 1 

2 4 3 1 2 

3 4 2 1 3 

4 1 4 1 4 

Observe that 

/1 =(l or 4)= +1, 

J4 = (2 or 3)= +2, 
but that /2, /3 don't exist. This is not unlike the situation in ordinary 
arithmetic where certain numbers have two square roots (positive numbers) 
and certain numbers have no square root (negative numbers). 

Every number has a unique cube root modulo 5 but only 0, 1 have a 4th root 
and 1 has four 4th roots. Every number is its own 5th root (modulo 5). 

The general rule for saying when a unique nth root exists modulo m is quite 
complicated. We can give an answer in certain cases. For example, if m = p, a 
prime, the rule is that there is a unique nth root if n is coprime with p - 1. 
Observe that in the example above we have m =p = 5 and p - 1 = 4 so we 
expect to be able to take unique nth roots for n = 1 and 3 which is exactly what 
we found. 

Example m =p = 11 We have p - 1 = 10 so we can, for example, take 
unique cube roots. To find x'/3 systematically we solve 

u=3110|; i.e. 3u= 11101. 

In fact, multiplying both sides by 3, we get 

-u=9u=31101 and u=-3=71101. 

(N.B. Multiplication or division of an equation is only valid by a number 
which is coprime with the modulus.) We therefore find 

xl/3= x7 I111. 

Hence, for example, 

2/3=27= 128=71111 and 3' /3=37 =2187=9 ll91, 
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which can be confirmed by observing that 

73= 343 = 21111 and 93 =729 = 3 111. 

The case m = pq where p, q are prime is the one we need for the application 
to cryptography. The rule here is that unique nth roots exist when n is coprime 
with (p - 1)(q - 1). 

Example m =pq = 10 We have (p- l)(q - 1)= 4 so, for example, x'/3 
exists uniquely. Solving u= 1/3141 we get u = 3 (see the Cayley table for 
multiplication modulo 4). Therefore, for example, 

2/3 = 23 = 81101 and 31/3 = 33= 27 = 71101, 

which is confirmed by observing 

83 = 512 = 2 101 and 73 = 343 = 3 101. 

Application to cryptography 

The application is based on the fact that, whereas computer programmes 
exist which can find 50 digit primes in seconds, when it comes to factorising 
100 digit numbers into prime factors, the only available computer 
programmes at the present time take centuries. This makes it possible for me to 
construct 100 digit numbers m = pq where p, q are 50 digit primes which you 
will be unable to factorise. 

To set up a code which exploits the above fact we need a coding modulus 
m =pq ( >26) and a coding power c coprime with (p - 1)(q - 1). For example, 
we can take m = 33, c = 3 since 3 is coprime with (p - 1)(q - 1) = 20. 

To encode a message we convert letters to numbers by taking A = 01, 
B = 02, C = 03 etc, and take the cubes of these numbers modulo 33. Suppose 
the message is 

HAVE A NICE DAY. 

We get, converting to numbers, 

08 01 22 05 01 14 09 03 05 04 01 25, 

and, cubing each number (modulo 33) gives 

17 01 22 26 01 05 03 27 26 31 01 16. 

To decode the message we need the decoding power d which is obtained by 
solving d = 1/31201. In fact, d= 7. Taking 7th powers (modulo 33) of 
successive pairs of digits in the encoded message we recover the original 
message in its numerical form and hence its verbal form. 

In practice the coding modulus is a 100 digit number obtained by 
multiplying together two 50 digit primes. The numerical message is encoded 
by grouping its digits in blocks of 100 and taking the encoding power of each 
block. To decode one has to know the prime factors of the coding modulus in 
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order to be able to work out the decoding power. Each receiver publishes his 
personal coding modulus and coding power but keeps the prime factors of his 
coding modulus (and his decoding power) a secret. Anyone can then send him 
a message but he is the only one who can decode it. 

Exercises 

1. Show that for coding modulus 29, possible coding powers are 3,5. Find 
the corresponding decoding powers. 

2. Show that for coding modulus 55, possible coding powers are 3,7. Find 
the corresponding decoding powers. 

3. Decode the following message given that the coding modulus is 35 and 
coding power is 5: 

11 1524201301 141101202401 22 1023300801 11 1130 1301 14. 

4. What do you think the possible coding powers are for the coding 
modulus 30? Check your answer by trying a few examples. 

5. Why is 2 never a possible coding power? 

Further reading 
S. Landau, Primes, codes and the National Security Agency, Notices of the American Math. 

Soc., 30, 7-10 (1983). 
C. Pomerance, Recent developments in primality testing, Math. Intelligencer, 3, 97-105 

(1981). 

J. B. READE 

Department of Mathematics, The University, Manchester M13 9PL 

A singular impact? 
MATTHEW LINTON 

While I worked at Teeside Polytechnic I had some difficulty in arriving in the 
morning by 9.00. Not being an early bird my desire was to pull into the car- 
park at 8.58, but this I did not seem able to achieve. If I left home at 8.15 the 
journey was smooth and trouble-free, and I was at my parking place by 8.50. 
Whereas if I left a moment later there were a couple more cars at the estate 
exit, each succeeding roundabout and set of traffic lights was busier, and 
eventually I drove into the car-park at 9.05-not only five minutes late, but 
also quite likely finding the spaces all full and having to resort to street 
parking. It seemed that no matter how I varied my start time the arrival 
interval of 8.50 to 9.05 was somehow inaccessible to me. Of course some 
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