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It is interesting to note the corollary that, if /A = 120?, then ZP = 90?, 
whatever the values of /B and /.C. 

C. F. PARRY 
7 Auclum Close, Burghfield Common, Reading RG7 3D Y 

Groups in modular arithmetic 

K. ROBIN McLEAN 

It has often been noted that modular arithmetic provides a rich source 
of supply of groups. Indeed, a remarkable theoremt asserts that any finite 
commutative group can be found by a sufficiently diligent search through 
the multiplicative groups and subgroups of modular arithmetic! During 
the last few years two articles in this area have appeared in Mathematics 
Teaching. In the first [1], Tim Brand drew attention to the fact that such 
a multiplicative group can have an identity element other than 1. (For 
example, 8 is the identity of the group {2,4, 8} under multiplication mod 14.) 
More recently [2] Geoff Saltmarsh described an ingenious way of finding 
the identity and put forward an interesting conjecture about these groups. 

Here I shall look at things from a slightly different standpoint, being 
concerned not only with the groups themselves but also with the ring of 
integers modn in which each group in embedded. In particular I would like 
to examine the way in which the group structure influences the ring structure 
and vice versa, for the interaction between different types of structure is 
often a fruitful avenue to explore. I have not found it easy to decide how 
far to go with proofs. Both the articles referred to [1, 2] were written in 
the spirit of open-ended investigation, and in such situations there is a danger 
that an over-zealously supplied proof may spoil someone else's fun. On the 
other hand it is often interesting to see what sort of ideas are used in a 
proof and how the ideas are combined in the overall strategy. In the end 
I decided to prove a modified version of Saltmarsh's conjecture (his 

t The theorem is stated without proof on p. 280 of F. J. Budden's The fascination of 
groups (Cambridge, 1972). My own proof depends on Dirichlet's theorem about prime 
numbers in arithmetic progressions. 
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original version is very nearly true!), because this seems an appropriate 
response to what he wrote, but for the rest I shall proceed mainly by 
examples which indicate how things go, whilst still (I hope) leaving enough 
unsignposted territory for other people to explore if they wish. 

Before looking at groups or rings I shall simply state the following lemma 
which will be useful later for finding both identity elements and inverses: 

If x andy are coprime integers, then there are integers a and b such that 

1 =ax -by. 

For example, if x = 8 and y = 15, we can take a = 2 and b = 1 giving 

1=2x8-1 x 15. 

Another way of expressing 1 in terms of 8s and 15s is given by adding 
8 x 15 - 15 x 8 to both sides. We then get 

1=7 x 15-13 x 8. 

In practice, possible values for a and b can often be spotted. They can 
always be found by using Euclid's algorithm (see, for example, [3] pp. 26-31) 
to calculate the h.c.f. (=1) of x and y and then working backwards. 

Now let us start with a ring (e.g. Z12, the ring of integers mod 12) and look 
for multiplicative groups inside it. What are the possibilities for the identity 
element, e, of such a group? Clearly we need to have 

e2=e. 

Any solution of this equation is called an idempotent, because all its powers 
must be the same, viz. 

e = e2 = e3= e4 = 

Conversely, each idempotent is the identity of a multiplicative group, for 
the set {e} itself is such a group. 

In a ring as small as Z12 it is possible to spot the idempotents using 
trial and error, but it is instructive to see how they can be found systemati- 
cally. Suppose that e is an integer whose residue mod 12 is an idempotent. 
Then 

e2 _ e (mod 12). (1) 
Hence 

e(e- 1) = 0 (mod 12). (2) 
It follows that e and e - 1 must be coprime (because they are consecutive) 
integers whose product is a multiple of 12. Disregarding the obvious idem- 
potent residues 0 and 1 (mod 12) which arise when one of the integers e 
and e - 1 is itself a multiple of 12, we are left with the case when one of 
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these integers is a multiple of 4 and the other is a multiple of 3. The 
next step is to apply our preliminary lemma to express the difference, 1, 
between e and e - 1 as the difference between a multiple of 4 and a multiple 
of 3. The obvious way of doing this is to write 

1 =4-3, (3) 
which corresponds to e = 4 and e - 1 = 3. Our method ensures that these 
values satisfy equation (2), and we get the idempotent e = 4 (mod 12) as a 
solution to equation (1). Alternatively we can add 4 x 3 - 3 x 4 to (3) 
to get 

1=3 x 3-2 x 4=9-8. 

This yields the idempotent e = 9 (mod 12). We might expect that further 
variations of this theme such as 

1 =7 x 4 - 9 x 3= 28 - 27 
or 

1 =7 x 3 - 5 x 4= 21-20 
would produce more and more idempotents, but in each case we return to 
one of the members of our original pair 4 and 9 (mod 12), because 

28 -4 and 21 9 (mod 12). 
The pair of idempotents which we have found have the interesting 

property that their sum is 1 and their product is 0 (mod 12): 

4+9 - 1 (mod 12), 4x 9 - 0(mod 12). 
It is a general feature of life that idempotents go about in pairs of this 
type, the best known pair being 0 and 1. To see this, let e be an idempotent 
in any ring with identity 1; then 

(1 -e)2 = 1 - 2e + e2 = 1 - 2e + e = 1 - e, 

so thatf= 1 - e is also an idempotent. Clearly 

e+f= 1 
and 

ef= e( - e) = e - e2 = 0. 

This result can be useful for finding the second idempotent of a pair. For 
example, having found e 4 (mod 12), we could have worked out 

f 1 -e = 1-4 =--3 = 9(mod 12). 
Tim Brand wrote about surprising identity elements. Indeed they are- 

and you can arrange for the favourite number of your choice to be one! 
Writing in Silver Jubilee year I shall assume that your favourite number is 
e = 25. If you insist on choosing 1977, you will be pleased to know that this 
is the identity of the group {1977, 5931} under multiplication mod 7908. But 
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to see what is going on we shall work with e = 25. We require this to be 
an idempotent in arithmetic mod n: 

e2 = e (mod n) 
e(e - 1) = 0 (mod n) 

o n is a factor of e(e - 1) = 25 x 24 = 600. 

For example, taking the factor n = 40, we get 
252 25 (mod 40). 

But, you may ask, where is the group which has 25 for its identity? Now if 
you were only offered a group with a single element {25}, you might well 
feel a sense of anticlimax; so let us see if we can find any larger group 
with identity 25 within the ring 240 of residues mod 40. 

Any group element, g, must be a multiple, ge, of the group identity 
e = 25. Hence the only possible group elements are in the set 

R ={O,e,2e,. ..,7e} 
of multiples of the idempotent e = 25 (mod 40). The set R has only 8 
elements because 8e = 0 (mod 40). It is no accident that R looks 
remarkably like Z,, the ring of integers mod 8. For R and Z8 turn out 
to be isomorphic rings with e taking the place of the residue 1 (mod 8) 
and with (e.g.) the element 3e corresponding to the residue 3 (mod 8). 
(Note how the fact that e2 - e forces the set R to be closed under multi- 
plication and shows that e is the multiplicative identity of R.) 

At this stage we have shown that any group G with identity 25 inside 
Z40 must be contained in the ring R, i.e. we must have GcR. It does 
not follow that every element of R necessarily lies in G. Indeed it is clear 
that the only elements of R which have any chance of lying in G must 
have multiplicative inverses with respect to the common identity element e 
of G and R. A pleasant result (which applies to any ring R with identity e) 
is that we can form a group by taking all the elements of R which have 
inverses. This group, 

G(R) = {r e R:3r-1 e R such that rr-1 = r-r =e}, 

is called the group of invertible elements of R. It is not hard to verify 
that G(R) is a group. Readers may care to attempt this as an exercise. 
In our own particular case, 

R= {0,25,50,..., 175} (mod 40). 

Picking out the invertible elements, we get 

G(R) ={25, 75,125, 175} (mod 40). 

Reducing mod 40 and rearranging gives 

G(R) = {5,15, 25, 35} (mod 40). 
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Since G(R) was formed by taking all the elements of 740 which have 
inverses with respect to e = 25, any group with this identity inside Z40 must 
be a subgroup of G(R). 

Every group discussed by Brand and Saltmarsh is in fact the group of 
invertible elements of some ring. For all such groups Saltmarsh's conjecture 
is true. He claimed that if 

G = {e, a, b,...} (mod n) 

is a multiplicative group and k is an integer coprime to n, then 

H= {ke, ka, kb,...} (mod kn) 
is a multiplicative group isomorphic to G. We have just met an example of 
this, for, since the rings Z4 and R are isomorphic, their groups of invertible 
elements 

G(8) = {1, 3,5,7} (mod 8) 
and 

G(R) = 5, 15,25,35} (mod 40) 
must also be isomorphic. However, if we take subgroups of these groups, 
things are not so straightforward. For example, if we take the subgroups 

G1={1,5} and G2={1,3} (mod8) 
and put k =5, then the corresponding sets are 

H1={5,25} and H2={5,15} (mod40). 
A quick check shows that H1 is a group, but H2 is not. What has gone wrong ? 
Can we repair the damage? 

Ideally we would like to have some way of telling in advance whether 
the set H which Saltmarsh constructed will be a group. Fortunately there 
is a simple criterion for deciding this, as I have found. In order to describe it 
and to prove a modified version of Saltmarsh's conjecture, I shall use a 
notation which distinguishes clearly between an integer such as r and 
its corresponding residue r modulo n. 

If H is a multiplicative group, then (unlike H2) it must possess an 
identity, in particular an idempotent element. Thus there must be an 
integer m whose residue m belongs to G such that 

(km)2 = km (mod kn). 
It follows that (km)2- km is divisible by kn. Hence km2 - m is divisible 
by n, i.e. 

km2 = m. (4) 

Since m E G, there exists a residue m-1 E G such that 

mm-1 = e. 
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Multiplying (4) by m-2 gives 
ke = m-, (5) 

which shows that the residue ke belongs to G. 
Conversely, if ke e G, then there is a residue m E G such that (5) holds. 

Let g E G. Multiplying (5) by mg gives 

kmg = g. (6) 

With the natural interpretation of kmg as an element of H, it is easy to 
verify that the map 0: G -* H given by g -> kmg is a 1-1 mapping of G 
onto H and that 0(g)80(g2) = 0(g,g2) for all gl,g2 e G. It follows that H 
is a group isomorphic to G. Further, from (6), the inverse map -1: H -> G 
is simply reduction mod n, as Saltmarsh stated. 

Looking back to the groups G, and G2 with their common identity 
element e - 1 (mod 8), we have n = 8 and k = 5 so that ke =- 5 (mod 8). 
This residue belongs to H, but not to H2, which explains why HI is a group 
but H2 is not a group. 

We have seen that if G is a group, then H is a group if and only if 
ke E G. But what has happened to Saltmarsh's condition that k should 
be coprime to n? It seems to have disappeared entirely. However, it turns 
out that a somewhat less restrictive condition on k can be recovered as 
Saltmarsh suspected. I shall not provide any further proof but simply 
assert that if ke e G, then k is coprime to a certain factor q of n, where q 
is defined as the least positive integer such that qe = 0 (mod n). A further 
example will illustrate this point. 

Let 

G = {6,12,18, 24} (mod 30) 
and 

H= {18,36,54,72} (mod 90). 

Then G is a multiplicative group with e - 6 (mod 30). The modulus n = 30, 
so that q = 5. We have k = 3, which is coprime to q. Despite the fact that k 
is not coprime to n, it is easy to check (either directly or because ke E G) 
that H is a group isomorphic to G. 

Our exploration of groups in modular arithmetic has revealed a 
fascinating interplay between groups and rings. Group identities led us to 
idempotents and we saw how to find these elements in a given ring (in our 
case in Z12). Conversely it is possible to start with a given integer (e.g. 
e = 25) and then to find a ring (e.g. 240) in which the residue of e is an 
idempotent. Multiples of this idempotent make up a ring R, whose group 
of invertible elements we examined. This led to Saltmarsh's conjecture 
about groups. To conclude this article I would like to return to Z2t to 
illustrate the strong influence which the idempotents exert on the overall 
structure of a (commutative) ring. The results are simple to describe, have 
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links with vectors and geometry and offer scope for further investigations 
in other rings. 

We saw earlier that in Z12 there are exactly two pairs of idempotents, 
viz. the obvious pair 0 and 1 and the potentially more interesting pair 
e = 4 andf= 9. We also noted that 

4+9 1 and 4x9 0 (mod12). 
Another striking property of this latter pair of idempotents is that each 
element of the ring Z2 can be expressed as a linear combination of e andf. 
To show the patterns clearly it is worth writing out a full list of elements 
in this form. (In this list, equality means equality of residues modulo 12.) 

0 =Oe+Of 4= le+Of 8 =2e+0f 
= le+ If 5=2e+ If 9=Oe+ If 

2=2e+2f 6=Oe+2f 10= le+2f 
3=Oe+3f 7= le+3f 11 =2e+3f 

Moreover, in each of these expressions the coefficients of e and f are 
unique, provided that we interpret the coefficient of e as an element of 
Z3 and the coefficient of f as an element of Z4. Another feature of 
the expressions is that if we choose an element such as 11, the coefficients 
are given by 

11- 2 (mod3) and 11 3 (mod4). 
It is hard to avoid thinking of the idempotents e = 4 and f= 9 as unit 

vectors and the coefficients as coordinates. Who can refrain from trying to 
sketch the "position" of each element in the ring? Suppose we draw an 
"e-axis" and an "f-axis"... (Fig. 1). 

fA 

3 7 11 

6 10 2 

9 1 5 

0 4 8 

FIGURE 1. 

We can even interpret 4 + 9 1 (mod 12) vectorially! It is clear that each 
of the twelve elements of /12 corresponds to one of the twelve lattice 
points, and because we have only a finite number of points the picture 
appears somewhat restricted. If we are prepared to accept a certain amount 
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of ambiguity in the position of each element we can, of course, extend the 
picture by indefinite repetition to cover the whole plane (Fig. 2). 

0 4 8 0 4 8 0 4 8 0 4 8 01 

3 7 11 3 7 11 3 7 11 3 7 11 3 

6 10 2 6 10 2 6 10 2 6 10 2 6 

9 1 5 9 1 5 9 1 5 9 1 5 9 

0 4 8 0 4 8 0 4 8 0 4 8 0 

3 7 11 3 7 11 3 7 11 3 7 11 3 

6 10 2 6 10 2 6 10 2 6 10 2 6 

9 1 5 9 1 5 9 1 5 9 1 5 9 

0 4 8 0 4 8 0 4 8 0 4 8 0 

3 7 11 3 7 11 3 7 11 3 7 11 3 

6 10 2 6 10 2 6 10 2 6 10 2 6 

9 1 5 9 1 5 9 1 5 9 1 5 9 

0 4 8 0 4 8 0 4 8 0 4 8 0 

FIGURE 2. 

This diagram has several advantages over the previous one. For 
instance, we can follow right through the sequence 0, 1,2, 3, 4,... of elements 
by moving smoothly along a diagonal instead of jumping around. 
Additions such as 10+ 5 = 3 (mod 12) which have no easy vectorial 
interpretation in the first diagram can now be illustrated in a wide variety 
of mutually consistent ways. The second diagram also shows that a pattern 
which repeats itself in cycles of 3 units horizontally and 4 units vertically 
will repeat in cycles of 12 units along suitably chosen diagonals. This 
aspect of the diagram illustrates the fact that C12, the cyclic group of 
order 12, is isomorphic to the direct product C3 x C4 of cyclic groups of 
orders 3 and 4. 

Readers who enjoy geometry may prefer a third diagram which appears to 
combine the advantages of both earlier ones. The great merit of the first 
diagram is that it shows a 1-1 correspondence between points and ring 
elements, a feature which is entirely lost in the second figure. Suppose that we 
try to preserve this 1-1 correspondence. We shall need to glue together all 
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the points labelled 0 in the second diagram, all those labelled 1 and so on. 
The natural way to do this is first to roll the diagram over and over into a 
cylinder so that all the copies of the "f-axis" coincide. Then bend the cylinder 
into a torus and keep pushing it through itself until all the copies of the 
"e-axis" coincide. (If you think of the cylinder as a snake with a head 
at one end and a tail at the other, the snake must swallow its tail to form 
the torus. The tail then slips right down the body of the snake until it 
reaches the tail position when it is swallowed again... and so on.) In the end 
we get our third diagram, in which a ring is shown as a ringt (Fig. 3)! 

FIOURE 3. 

FIGURE 3. 

At this stage it seems reasonable to introduce coordinates into the ring 
Z12 based on coefficients of e and f. For example, since 11 = 2e + 3f, we 
shall identify the element 11 with the point (2, 3), where the e-coordinate is 
taken mod 3 and thef-coordinate is taken mod 4. (Both the second diagram 
and the torus show how natural it is to regard the first coordinate as an 
element of 73 and the second as an element of 74.) 

All calculations in 712 can be done by working with the separate e- and 
f-coordinates in Z3 and 74 respectively. As we might expect, addition looks 
very like ordinary vector addition. For example, 

11 =2e+ 3f= (2,3), 
5 =2e +f= (2,1); 

(2,3)+(2, 1)=(2 +2, 3+ 1)=(1,0) 
and 

11 + 5 4 (mod12). 

More surprisingly, multiplication goes through in the same way. For 
example, 

(2,3) x (2,1)=(2 x 2,3 x 1)=(1,3) 
and 

11 x 5 = 7 (mod12). 

t I would be interested to know the origin of the word "ring" in abstract algebra. 
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A direct evaluation of (2e + 3f)(2e +f) shows that the basic facts e2 = e. 
f2=f and ef= 0 are responsible for this pleasant behaviour of 
multiplication. 

Just as a large group can be formed from two given smaller ones by 
constructing their direct product, so it is possible in a similar way to con- 
struct what is called the direct sum of two rings. In this direct sum both 
addition and multiplication are done componentwise. Here we have 
exhibited the ring ,12 as the direct sum of Z3 and Z4. Let us look briefly 
at the effect which this split in the ring structure has on the corresponding 
groups of invertible elements. 

It is not often realised that our opening lemma can give a quick way of 
finding inverses. For example, to find the inverse of 7 in Z,2 we express 1 
as the difference between a multiple of 7 and a multiple of 12: 

1=7x7-4x 12. 
Thus 

1 7x7 (mod12), 
which shows that 7 is its own inverse in Z12. The same answer can be 
reached by inverting the coordinates (=residues) of 7 in Z3 and Z4: 

7-1 = (1,3)-1 = (1-, 3-l) = (1,3)= 7. 

Now let G, be the group of invertible elements of Z,. Then 

G3= {1,2}, G4= {1,3}, 
and 

G2= {1, 5, 7, 11} = {(1, 1), (2, 1), (1, 3), (2, 3)}. 

This shows that the split in the ring structure of '12 caused by the idem- 
potents e andfhas forced the group G,2 to decompose into a direct product 
G3xG4. 

We have come a long way in our exploration of the interaction between 
groups and rings. Readers who wish to explore further might care to try 
the exercises which follow-and, if you are still keen on having 1977 as an 
identity, there is a group of order 864 in arithmetic modulo 3 906 552 all 
waiting for you to discover. 

Exercises 

1. Show that in a field the only idempotents are 0 and 1. 
2. In Z30, the ring of integers mod 30, find idempotents e,, e2 and e3 such 

that 2e, = 3e2 = 5e3 = 0 and e, + e2 + e3 = 1. Iff, = e2 + e3,f2 = e3 + e 
andf3 = e, + e2, check thatf, f2 andf3 are also idempotents. 

3. Let R = {0, m, 2m,..., (n - 1)m} (mod mn). Find conditions which m and 
n must satisfy in each of the following cases: 

(i) R contains a non-zero idempotent. 
(ii) R contains a (multiplicative) identity element. 
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(iii) The only idempotents of R are the residues 0 and 1 (mod mn). 
(iv) R is a field. 

In each case, try to find conditions on m and n which are exactly 
equivalent to the numbered statement. 

4. Let R be the set of all matrices of the form 

[a 01 

[o b], 

where a and b are real numbers. Find all the idempotents of R and 
interpret the equations e +f= 1 and ef= 0 in matrix form. 
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Constructing a ring without unique factorisation 

COLIN R. FLETCHER AND M. LIDSTER 

1. Unique factorisation 
The study of unique factorisation is almost as old as mathematics itself. 

The so-called Fundamental Theorem of Arithmetic, which states that every 
integer greater than 1 can be factorised into a product of primes in only 
one way, was probably the first major theorem proved. It is interesting to 
note that Euclid (c. 300 B.C.) did not give the result in this form. He 
proved (IX 14) that "if a number be the least that is measured by prime 
numbers, it will not be measured by any other prime number except those 
originally measuring it" (see [1]). 

However, it was not until the advent of abstract algebra, and in particular 
ring theory, that the subject took up the form in which we know it today. The 
fundamental concept is that of an irreducible element. This by convention 
is not zero nor a unit (i.e. a divisor of the identity) and is defined by the 
property that any factorisation of an irreducible can be further factorised 
to make the irreducible appear among the factors. So in Z, the ring of 
integers, the units are +1 and -1, and all positive and negative prime 
numbers are irreducible. Uniqueness is defined up to order and up to 
multiplication by units. For example, 6 has only the factorisations 

(iii) The only idempotents of R are the residues 0 and 1 (mod mn). 
(iv) R is a field. 

In each case, try to find conditions on m and n which are exactly 
equivalent to the numbered statement. 

4. Let R be the set of all matrices of the form 

[a 01 

[o b], 

where a and b are real numbers. Find all the idempotents of R and 
interpret the equations e +f= 1 and ef= 0 in matrix form. 

References 
1. T. E. Brand, Some surprising identity elements, Maths Teaching 64, 50-52 

(September 1973). 
2. G. S. Saltmarsh, Identity elements, Maths Teaching 79, 33 (June 1977). 
3. H. Davenport, The higher arithmetic. Hutchinson (1952). 

K. ROBIN MCLEAN 

School of Education, 19-23 Abercromby Square, P.O. Box 147, 
Liverpool L69 3BX 

Constructing a ring without unique factorisation 

COLIN R. FLETCHER AND M. LIDSTER 

1. Unique factorisation 
The study of unique factorisation is almost as old as mathematics itself. 

The so-called Fundamental Theorem of Arithmetic, which states that every 
integer greater than 1 can be factorised into a product of primes in only 
one way, was probably the first major theorem proved. It is interesting to 
note that Euclid (c. 300 B.C.) did not give the result in this form. He 
proved (IX 14) that "if a number be the least that is measured by prime 
numbers, it will not be measured by any other prime number except those 
originally measuring it" (see [1]). 

However, it was not until the advent of abstract algebra, and in particular 
ring theory, that the subject took up the form in which we know it today. The 
fundamental concept is that of an irreducible element. This by convention 
is not zero nor a unit (i.e. a divisor of the identity) and is defined by the 
property that any factorisation of an irreducible can be further factorised 
to make the irreducible appear among the factors. So in Z, the ring of 
integers, the units are +1 and -1, and all positive and negative prime 
numbers are irreducible. Uniqueness is defined up to order and up to 
multiplication by units. For example, 6 has only the factorisations 
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