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Mathematical

1. INTRODUCTION

The Prime Number Theorem is a remark-
able and rather deep result in the theory
of numbers. The aim of this article is to
show that this theorem can be made plaus-
ible by quite simple and elementary
methods which, in addition, give a fascin-
ating insight into the stochastic nature of
that theorem.

The material of this article is intended
for use at the college level to integrate
and motivate chapters on probability, se-
quence and series (especially the harmonic
series), and the logarithmic function
usually treated in most elementary math-
ematics courses.

The heuristic arguments in this article
can be tightened up, but that cannot be
done at college level.

For every real number x let #(x) be the
number of primes less than or equal to x.
One finds that #(10) = 4, =(100) = 25,

7(1000) = 168, etc. The function x —» 7(x).

will be called the prime number function.
All attempts to find a formula for n(x)
representing m(x) in “‘closed form” by a
finite number of “known” functions have
failed, and will necessarily fail. There are,
however, some simple asymptotic expres-
sions for 7(x), such as

* dt x
() fz logt logx’

Two expressions f(x) and g(x) are said to
be asymptotically equal, f(x) ~ g(x), if
lim, . f(x)/g(x) = 1.

The fact that [*(1/log ¢) d and x/log x
are asymptotically equal is easily estab-
lished by partial integration, while the fact
that

Yot (1)

() ~ 2 logt
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is a rather deep result in the theory of
numbers, usually called the Prime Number
Theorem. The following table shows that
the integral logarithm [* (1/log )d is an
excellent approximation to n(x):

x () FF(1/log 1y dt
103 168 178
106 78 498 78 628
109 50 847 534 50 849 235

The asymptotic equality (1) was found in.

Gauss’s notes of 1796, without proof, and
was never published by Gauss himself. A
proof of (1) was first published in 1896
by Hadamard and de la Vallée Poussin.
We shall try to make (1) plausible by
introducing probabilistic arguments.

2. THE SIEVE OF ERATOSTHENES
AND THE PRIME NUMBERS

The flowchart given below defines asiev-
ing process, here called the E-process, but
known since antiquity under the name of
the Sieve of Eratosthenes.

The E-process may be applied to an
arbitrary set M of natural numbers and
will then produce a subset My of M; the
elements of My are called the prime ele-
ments of M.

By applying the E-process to the special
set {2, 3, 4, ..., n}, n being a natural
number =2, the set of the ordinary primes
not greater than n is obtained.

The E-process

[E 1] Let m be the smallest number in the
given set M which is not yet can-
celled or framed.

[E 2] Frame m (i.e., draw a circle around
G‘m,,)!

[E 3] Cancel all multiples 2m, 3m, 4m, . . .
belonging to M (even if these have
already been cancelled before).

(E 4] If there are any numbers left in M
which are not yet cancelled or
framed, go to [E 1].

[E 5] End. The framed numbers are the
Prime Elements of M.

The students should be encouraged to
experiment and apply the E-process to
different sets M.

If the E-process is applied to the special
set M = {2, 3,4, ..., 100}, the situation
after four executions of the loop [E 1] —
(E 4] is shown by Figure 1.

The next time the loop [E 1] — [E 4]
is executed, the number 11 will be framed
and its multiples 22, 33, 44, .. ., 99 will be
cancelled. Whenever during the execution
of the E-process a number mis framed, all
the numberspreceding mare already either
framed or cancelled.
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3. A RANDOM SIEVE AND
RANDOM PRIMES

The fundamental idea in the subsequent
investigations is to replace the E-process
of Section 2 by a random sieving process,
the SE-process. The E-process can then be
considered as a determinate special case
of this- new random process. The SE-
process is defined by the following flow-
chart and can be applied to an arbitrary set
M of natural numbers.

The SE-process

[SE 1] Let m be the smallest number in
the given set M which is not yet
cancelled or framed.

[SE 2] Framem (i.e.,drawacirclearound
G‘m,’)!

Forall x > mand x € M, cancel x
with probability 1/m (even if x has
been cancelled before).

[SE 3]

[SE 4] If there are any numbers left in M
which are not yet cancelled or

~ framed, go to [SE 1].

[SE 5] End. The framed numbers are the
Random Prime Elements of M.

~ If the SE-process is applied to a set of the
form {2, 3, 4, ..., n}, the framed numbers
are called random primes. The students
should be encouraged to experiment and
apply the SE-process to different sets,
using tables of random numbers for the
random cancellations. A result of the appli-
cation of the SE-process to the set {2, 3,
4, ..., 100} is shown by Figure 2.

The determinate E-process and the sto-
chastic SE-process can be considered as
equally effective sieving processes in the
following sense: if a number m happens
to be framed during the execution of both
processes, then in both cases about 1/m of

@E®s ® X X & (9
2 (D@3 24 15 (6) DL 18 % 24
21 2D @)@ 28 26 2 26 H
3 % 25 3¢ 35 ¥ (D EY 39 24
M 2L 3 44 25 46 4T 26 24 H6-
61 57 53 54 b€ 9% 5 5€ 54 69
o 62 66 06 S 60 BY 69 69 70
KR 74 K W6 W K W Bd
8t 87 BE 84 85 ¥ 87 88 89 (0
M 9703 94 % 96 X (69 96 100

Figure 2.

the numbers in any ‘“‘large” subsequent
string of numbers {m + 1, m + 2, ...,
m + n} will be cancelled. By the E-process
[n/m] numbers of this string will be can-
celled with certainty; by the SE-process
numbers will be cancelled at random, but

-the expected number of cancellations in

the string asymptotically equals n/m.

4. THE EXPECTED NUMBER OF
RANDOM PRIMES

Whenever the SE-process is applied to a
set of the form {2, 3, 4, ..., n}, ultimately
every number in it will be either framed,
i.e., be a random prime, or cancelled. Let
X, be the number of random primes thus
obtained. X, is a stochastic variable and its
expectation E(X,), or shortly E,, is the
expected number of random primes in the
set {2,3,4,...,n}.

Let p, bethe probability that the natural
number k is framed, i.e., not cancelled,
during an execution of the SE-process.
Then E,, the expected number of random
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primes in {2, 3, 4, ..., n}, is given by
n
En = kZ Dk- (2)

Our next step is to derive a nonlinear dif-
ference equation by which the probabil-
ities p; may be determined.

If during an execution of the SE-process
the number k happens to be framed, this
number k can be conceived as the source
of a cancellation wave, called the k-wave,
which “hits”” any subsequent number with
probability 1/k.

In order that a number m be hit by a
k-wave, two events must take place:

(a) the number k must be framed, which
occurs with probability py;

(b) m must be hit by the cancellation wave
emanating from k, which occurs with
probability 1/k.

It follows that an arbitrary number m s hit
by a k-wave, k < m, with probability p;/k.
The probability that m is not hit by a k-
wave is then 1 — (pi/k).

Now, the probability that m is framed is
Pm- But in order to be framed, m must not
be hit by any k-wave for k < m. Therefore

M:H@_%. 3)

k<m k

Substituting m + 1 for m in (3),

- _ Pk
p'”+l_k<1r_nI+1(1 k)’ @)

and dividing (4) by (3) yields our funda-
mental difference equation fortheframing
probabilities:

Pm+1 = DPm* <1 - %) (5)
with initial value p, = 1. One easily obtains
p3=1/2,py = 5/12,.... Witha computer
one can easily compute E, by using (5) and

Q).

5. AN ASYMPTOTIC EXPRESSION
FOR THE EXPECTED NUMBER
OF RANDOM PRIMES

Starting from (2) and (5) one easily arrives
at the asymptotic equality

n
E, ~ f2 (1/1og ¢) dt. ©)

Inverting (5) yields

| m
Pm+1 Pm(m - Pm)
1 1

=—+ . 7
Pm m — Pm ( )

Since 0 < p, < 1, the following in-
equality derives from (7):
A 1 PR 3
DPm m Pm+1 Pm m— 1
Setting m = 2,3,4,...,n — 1in(8)and
adding the resulting inequalities yields
(observing that p, = 1):

n—1 1 1 1 n—1 1
>—<—<1l-———3+ ¥y =09
m=1M  Dpy n—1 m=1m
By using Figure 3 the students readily
convince themselves that

n—=1
1 _ rrdx
»f\zlm_fz X + G

=logn + G,  (10)

where G, is the area of the shaded domain
in Figure 3. The sequence (G,), obviously
being monotonically increasing and satis-
fying 0 < G, < 1 for all n, has a limit,
and it can be shown that lim,,,,G, = p ~
0.577, Euler’s constant.

Making use of (10), inequality (9) can be
rewritten as

logn<L<2+logn,
Pn



or equivalently as

1 1
2+logn<p”<logn’

implying that

o1
log n’

Pn (11)

i.e., the probability of n being a random
prime is asymptotically 1/1og n.

Figure 3.

Making use of (11), the equality (2) can
be given the following form:

n n
E,= X pi~ X (1/log k)
k=2 k=2

~f2 (1/log t) dt ~ n/logn, (12)

which establishes the Prime Number
Theorem for Random Primes.

The observation in Section 3 that the E-
process and the SE-process are equally
effective makes it plausible (but does not
prove) that (12) is valid even for the ordin-

ary primes. Our elementary methods will

take us this far.

6. THE EXPECTED NUMBER OF
DIFFERENT PRIME FACTORS

According to Hardy [4] a number is called
“round” if it is the product of a consider-
able number of comparatively small fac-
tors. We here define the roundness of a
number z as the number of different prime
factors of n, and try to get an idea of the
average roundness of a number.

For this purpose we switch over to an
SE-process and random primes. The num-
ber of random prime ““factors” ofanumber
n equals the number of different k-waves
hitting n. Let w, denote the average num-
ber of k-waves hitting n. Since the prob-
ability of n being hit by a k-wave is p,/k,
the following equality must hold:

_ Pk
wp =X T 13)

k<n

Using the results of Section 5,

Py 1
k;;",,k ,fg,,k-logk

nodt
~ ~1
J; [log ? oglog n,

one arrives at the following asymptotic
expression for w,;

w, ~ loglog n.

(14)

This is the random counterpart of a well-
known result by Hardy and Ramanujan of
1917 stating that a composite number n
has an average number of loglog » dif-
ferent prime factors.

An excellent survey of the Prime Num-
ber Theorem is to be found in [4]. The
sources of the heuristic random methods
expounded in this article may be found in
the literature cited in [3], [2] and [5].
Other elementary and heuristic methods
in connection with the Prime Number
Theorem are to be found in [1] and [6].
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