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MAGIC CUBES AND HYPERCUBES 

Magic cubes and hypercubes 
S. N. COLLINGS 

Because of 'modern mathematics' most people are aware of different 
number scales. Ordinarily there is the decimal scale, while computers 
use the binary system and sometimes, I believe, the octal system based on 
8s. Other scales may appear to be freakish, or mere excuses for arithmetical 
manipulations; yet at times they can be useful. 

Another of the current interests is congruence arithmetic. If the integers 
a and b have the same remainder when divided by m, we say that a and b 
are congruent modulo m. In symbols, 

a - b (mod m) if a - b is a multiple ofm. 

Everyone is aware that the days of the week represent a modular situation; 
that is that in a given month, date a is the same day of the week as date b 
if and only if 

a - b (mod 7). 

However, this does not appear to be any improvement over colloquial 
English, and generally there must be the impression that congruence arith- 
metic (also called modular arithmetic) is one of those mathematical 
abstractions which from its artificiality cannot tell us anything about 'real 
arithmetic' and the real world. Once again you would be surprised. Below 
we shall combine the ideas of different bases and modular arithmetic to 
produce new results in an extension of magic squares. 

Magic squares are familiar enough; every line of numbers (parallel to a 
side) adds up to the same sum. Less familiar are magic cubes possessing 
exactly the same property. The figure shows a magic cube of dimensions 
33. In addition to the property stated, every line through the centre cell of 
this cube is also magic, whether it is parallel to a side or not. 

It is relatively easy to generate a magic hypercube with pn cells in n 
dimensions, where p is an odd prime but not a factor of(n + 1). We work in 
the scale of p, and we add and multiply (mod p) without carrying from one 
column to the next. Thus 

212 212 
+211 x 2 

120 121 

Taking a corner cell as origin, any cell in the hypercube has coordinates 
of the form (x, x2, ..., xn) where each x is a residue (modp). We denote the 
number to go into this cell byf(x1, x,..., xn). 
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It remains to define the functionf over the hypercube: 
(i) For all (x1, x2, ..., xn),f(x1, x2, ..., x) is an n-digit number in the scale 

of p. 
(ii) f(0,0,..., 0)= 00...0. 
(iii) f(1, 0, 0,...,0)= 211 ...1, 

f(xl, 0, 0, ...,0)= x1 x 211 ...1. 
(iv) Similarly forf(0, x2, 0, ...,0),f(0, 0, x3, ...,0), ...,f(0, 0 0, ...,x,). 
(v) f(X1, X2, ...,x) =f(X1,,0, ...,0) +f(O,x2, 0, ...,0) +... 

+f(0,0,0,, ..x,). 

2 
4 

<' 1 

; ' 

If we do this with p = 3, n = 3, add 1 to all the cell numbers and then 
convert to the scale of 10, we get the magic cube already mentioned. 

In conclusion, a word about the peculiar addition and multiplication 
which never "carry 1". These do not look like any operations we have seen 
before; the reason is simple-they are not really arithmetical operations at 
all. They are contracted representations of operations on polynomials. 

Given any 3-digit number abc, it is obviously closely associated with the 
polynomial ax2 + bx + c. Indeed, from another point of view, ax2 + bx + c 
is merely the written-out version of the number abc in the scale of x; but x 
remains a variable. Adding the numbers abc, a'b'c' without carrying is 
equivalent to adding the corresponding polynomials, and it gives (a + a')x2 + 
(b + b')x + (c + c'). Doubling the number is equivalent to doubling the 
polynomial, and it gives (2a)x2 + (2b)x + 2c. Obviously with the poly- 
nomials there is no question of carrying, for no number ofxs is algebraically 
equivalent to any x2. Finally, if the coefficients a, b, c of the polynomials 
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belong to a congruence field modulo 3, then we get just those results men- 
tioned earlier on. Thus 

(2x2 + x + 2) + (2x2 + x + 1) = x2 + 2x, 
and 

2(2x2 + x + 2) x2 + 2x + 1. 
S. N. COLLINGS 

The Open University, Walton Hall, Milton Keynes, Bucks. MK7 6AA 

Function boxes: a model for differentiation 
A. G. HOWSON 

The paper begins with a description of a diagrammatical model which 
I used when lecturing on elementary calculus to a class of engineers. The 
second part suggests how the use of the model might be extended to provide 
a framework on which one could build up the theory of differentiation of 
functions of one or more real variables. For the purposes of this article 
it is assumed that the reader is familiar with this theory-the paper, there- 
fore, merely gives the outline of a possible approach. The keynote of the 
lecture course to the engineers was 'plausibility' rather than 'rigour' and my 
use of 'function boxes' was sparked off by the fact that the class were using 
flow diagrams and 'black boxes' in a number of other courses-most notice- 
ably in that given by the person who lectured immediately before me and 
who, in his progress up the technological scale to the electronic computer, 
had clearly not encountered that mundane educational aid, the blackboard 
duster. The grand finale of the one-term course was to be an introduction 
to partial differentiation and, in particular, the chain rule-a piece of 
mathematics which students often find difficult and which I hoped to make 
easier by means of an approach using a simple type of 'flow' diagram. 

The idea of a function box is to be found in SMP Book 2, where a function 
is seen as a kind of sausage machine-into the machine called 'square' 
goes 5, and out comes 25 (Fig. 1). Alternatively, in place of 'square' one 
can write down the appropriate formula and can generalise the situation by 
allowing an arbitrary input (Fig. 2). 
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