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MERSENNE-FORM AND FERMAT-FORM
NUMBER CONGRUENCES

R. R. SEEBER, IBM, Poughkeepsie, N. Y.

This note gives congruences for Mersenne-form and Fermat-form numbers,
the principal results being given by Theorem 2 and by (6) and (10) of Table 1;
both (6) and (10) are similar in form to Wilson’s Theorem.

All results after Theorem 2 are given in tabular form. Tables 2 and 3 give
subsidiary statements, not all new, some of which are required for Table 1
proofs.

We define Mersenne-form and Fermat-form numbers by

(1) M(n) =2 —1,
and
)] F(n) = 27 4 1.

Here and in what follows the letters denote nonnegative integers unless further
restricted.

The proofs depend on a theorem given by an anonymous writer [1]. He
employed nth roots of unity and the irreducibility of the associated cyclotomic
equation to prove:

THEOREM 1. If n is a prime, then the sums of the numbers 1,2, 3, - - -, n—1
taken t at a time, for a fixed t, 0 =t <n, when divided by n give each of the residues
1, 2,3, - -+, n—1 an equal number of times, D(n—1, t), and the residue zero one
more time or one less time according as t is even or odd.

REMARK. D(n—1, t) is given by ((*;!) —(—1)%)/n.
Also since 2*=1 (mod M(n)), we have

3) 2kntm = 2m (mod M(n)).
Expanding the products gives, for n>1,

n—1

(4 MOMQ) -+ - M(n—1) = 3 (—1)t4(n — 1, 1)
and
(5) FQ)F@2) -+ -Fn —1) = "2—:1 Aln — 1,9,

t=0

where A (n—1, ¢) is the sum of all those terms of the complete product in (5) that
can be formed by selecting ¢ of the powers of 2 and #—1—¢ of the 1’s.

We see that the terms in the sum 4 (n—1, ) are powers of 2, some of which
may equal or exceed 2». By virtue of (3) we may reduce these to powers less than
n but greater than or equal to zero, thus forming the new set of coefficients
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B(n—1, t) where
B(n —1,1) = A(n — 1, {)(mod M(n)).

But the exponents in the powers of 2 in the sums B(n—1, ) were thus derived
exactly in conformity with Theorem 1. Hence, if # is prime, we have:

Bn—1,0) =2(D(n — 1,1) + (=1)) + D(n — 1,) (21 + 22 + - - - + 227Y)
=D —1,)20+ 21+ 22+ - - - + 2*1) 4 (—1)* = (—1)%(mod M(n)).
This gives:
THEOREM 2. 4 (n—1, t)=(—1)* (mod M(n)) if n is prime.

This theorem is somewhat more than we need to prove (6) and (10), which

now follow from (4) and (5), respectively.
Also, since A(n, t)=2"A(n—1, t—1)+A(n—1, t) for 0<t<n, we have by
Theorem 2 and (3):

COROLLARY. A (n, £)=0 (mod M (n)) for 0<t<n if n is prime.

TaBLE 1. Congruences

WOMm)=2"—1; @Q)F@n)=2"+1.

Ref. No. Congruences Conditions Refs. for Proofs
©) | MQ)MQ2) - Mn—1)
=(—-1)""n (mod M(n)) | if # is a prime. Th. 2
M | MOMQ) -+ - Mn—1)=+n (mod M(n)) | only if »n is a prime. (15), (20)
®) | MOM@2) -+ M(n—1)=0 (mod M(n)) | iff n=6. Ref. [3]
©) | MQO)MQ2) - Mn—1)
=(n/2)M@n/2) (mod M(n)) | if n=2F", an
(10) | FO)FQ2)+++ Fn—1)=1 (mod M(n)) | if n is an odd prime. Th. 2
(11) | FQ)F@2) -+ - Fn—1)=0 (mod M(n)) | iff n=2%*", (10), (15), (21)

(12) | FA)FQR) « - - F(n—1)=F(n/2) (mod M(n)) | if n/2is an odd prime. | (10), (16)
(13) MA)YMQ) -+ M(n—1)
=+F(1)FQ2)+-+ F(n—1) (mod F(n)) |if n=4k+1)£1. 4), (%)

The converse of (6) is included in (7), and (8) was given by Zsigmondy [3].
We return later for the proofs of (7), (9), (11), (12), and (13).

In Table 2 we give quotients and remainders for divisions of M’s and F’s.
We need only the remainders but also give the quotients for the proofs. Let
Q(x, ) be the quotient and R(x, y) be the remainder on dividing x into y in
the usual way, i.e.,

(14) y = 2Q(x,9) + R(x,3), 0= R(x,9) <=

By dividing M (5) into M (12) in binary, it is easy to “see” the derivation of (15).
(Compare [2].)
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TaBLE 2. Quotients and Remainders

23

Q) Mn) = 2»— 1;

(2) Fin) = 2»+ 1;

(14) y = 2Q(x, 3) + R(x, y),

0= R(x,y) <=

Ref. No. x ¥ Q(x, v) R(x, v) Conditions
Qb)~1 i ’
as) | #e) 1) ( 3 21»') 2RGa) MR, o) 5>0
$=0
Gyt 5> 2or
(16a) | 2(5) o | ("% ) oo FR(®, ) S RG0) =0
Q(2a)-1
a6b) | M) F(o) ( ST 241 0 b=2andR(,0) = 1
fm0
(16c) | #0) F@) | Fa) 0 b=t
Q(2h.a)-1
(17a) | F(b) M(a) ( > 2”") 2RI (B) | M(R(, a) R(2b,0) < 5,56 >0
S0
Q(ha)-1 2ROaHM(B) | M(b — R(, a))2R0
U | Fe 4@ | ("% ) o | =10 — ke, > o ° PSR
(17¢) | F(b) M@) | Ma@—1) 1 e>0,6=0
ard) | Fe) M@ |o 0 4=b=0
(18a) | F@) Flo) ( s zw) r@oyE) | FRE, o) R@b,a) <b,5> 0
=0
Q(2b.a)—1
asb) | 7o) F(a) ( S 2%) M@ +1 | 0 R(2b,0) = b,b >0
amart N RO | MB—RE, 0))2R00-+2
8o | F® ro | (g +URG) | =FO-MERE, ay>0 | © <P <K&
asa) | Fo) Fla) | 21 1 ¢>0,5=0
ase) | Fo) Fl@ |1 0 4=b=0
a9) | Fe) -
MERG, )| FO) |1 MR®G,8) > 0 0 < b < R(25,0)
Q(5,12)—1
10000100 = (25 + 1)2? = ( > 25i) 2R(5,12)
1)1 =0
11111
11111
11111

11 = M(2) = M(R(5, 12)).

In similar fashion we may derive (16), (17), and (18); however, the proofs in
each case, including (19), follow directly by seeing that (14) is satisfied for the
given conditions.
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TabLE 3. Highest Common Divisors

) Mmy=2»—1; Q) Fm)=2+1;  (14) y=2Q(x, ) +R(®, ), O0=R(x,y)<x.

Ref. No.| x y (x,9) Conditions Rej;;f:};
(20) | M®)| M(a)| M((,a)) | b>0. 15)
(21a)| Fb) | M(a)| F(b) a=0. (15), (16)
(21b) | F(®) | M(a)| F((b,a)) | a>0,5>0, R(2(b, a), a)=0. @17, (18)
Q21c) | F@) | M(a)| 1 Otherwise than for (21a) and (21b).

(22a)| F®) | F(a) | F0) a=b=0. (16), (18)
(22b)| F() | F(a) | F((b,a)) | ¢>0,b>0, R(2(b, a), a) >0, R(2(b, a), b) >0. 19)
(22¢c) | F() | F(a) | 1 Otherwise than for (22a) and (22b).

In (20), (21), and (22) of Table 3 we give highest common divisors for M’s
and F's. By considering the remainders in successive steps of Euclid’s algorism,
we see that their possible forms are given in the remainders column of Table 2.
A little consideration shows that divisors in all cases will have to be of form
F(u) or M(v). Then Table 2 is used to identify the divisors that will leave a zero
remainder for both arguments of (x, y).

Returning to Table 1, consider the proof of (7). Assume % is composite with

k

(23) n=11 b

where the p; are distinct primes and ¢;=pj}:. Since g;l n, M (gi)l M(z) by (15);
and M(g:)| MQ)MQ) + - - M(n—1)+nfori=1,2, - - -, k. If k>1, then g;<#n
and M(q:) is among the factors M (1), M(2), - - -, M(n—1); hence, M(q;)]n
also. Since # is a common multiple of all the M(g,), it is a multiple of their least
common multiple. Since the g; are coprime, the 3(g;) are also coprime by (15).
Hence the least common multiple of the M(g;) is their product, and we have
M(g)M(g) - - - M(qx)| @12 * + + ¢ But this is impossible since M(g;) >g; for
gi>1. Thus for £>1, n cannot be composite.

If k=1, then n=g,=5% and s;>1. Since plln, M(pl)IM(n) by (15); and
M(p1)| MA)MQ2) -+ - M(n—1)+n. Now p1<n and M(p;) is among the factors
MQ), M(2), - - -, M(n—1); hence, M(p1) l n also. Since M (1) > 1, we must have
M(p1) =1} where 0<t=<s; and p1| M(p1). This is false for py=2. If p;>2, then
p1| M(p1—1) by Fermat’s Theorem. But p; cannot divide both M(p;) and
M(p1—1) since (M(p1), M(p1—1))=M((p1, pr—1)) =1 by (20). Hence # is not
composite, which completes the proof of (7).

Next consider the proof of (9). Since

M(n) = M(21) = M(2)F(2Y) = M(n/2)F(n/2),

we must show that



1968] MERSENNE-FORM AND FERMAT-FORM NUMBER CONGRUENCES 25

C=MUOM?2) - -M2*— 1M+ )M+ 2) - - - M(2*+ 2% — 1) — 2*
= 0 (mod F(2%)).

Now by (17b) we have M(2* + x) = M(2¥) — M(x) (mod F(2¥)) if 0 < 2%
SR(2+, 2k4x), ie., if 0=x<2% But M(2¥)—M(x) = F(2%¥) —2—(F(x)—2)
= F(2%) — F(x). Thus M(2*+x)= — F(x) (mod F(2*) if 0 £x <2* and

C=MMOMQ) - M2 = D)(=DFQ)F(2) - - - F(2* — 1) — 2* (mod F(2¥))

or C=(—1)'MQ2)M(4) - - - M(2**1*—2)—2*% (mod F(2%)). This telescoping is
repeated, giving C=(—1)%(M(2%))*M(4) M (8) - - - M(2¥+1—4)—2* and finally
C=(—1)¥(M(2%))*—2* (mod F(2%)). Since this expression is divisible by
M(2%)+2 = F(2%), thus C=0 (mod F(2*)), thereby completing the proof of (9).

Now consider the proof of (11). The first part follows immediately since
M(2¥+1) = F(2°) F(2') - - - F(2*). If n is not a power of 2, it is either an odd prime
or has an odd prime divisor p; both of these cases lead to contradictions. In the
former case, F(1)F(2) - + - F(n—1)=1 (mod M(n)) by (10). In the latter case
with # = pm, we have M(p)| M(n) by (15) and thus M(p)| FA)F(2) - - -
F(n—1). But by (21c), (F(x), M(p)) =1 for 0 <x <m, since p >0 and R(2(x, p), p)
>0. Thus M(p){F(1)F(2) - - - F(n—1), completing the proof of (11).

To prove (12), it is only necessary to show that

(24) F(1)F(2) - - - F(n/2 — 1)F(n/2 + DE(n/2 + 2) - - - F(n — 1)
=1 (mod M (n/2)),

since M(n)=F(n/2)M(n/2) with #/2 an odd prime. By (16a), F(n/2+x)
= F(x) (mod M(n/2)),sincen/2>2for0<x<n/2.Also F1)F(2) - - - F(n/2—1)
=1 (mod M(n/2)) by (10). Hence (24) is satisfied and (12) is proved.

Finally, to prove (13), we observe, first, that 2trtm=(—1)¥2= (mod F(n)),
which is similar to (3); and, second, that A(x, x—f) =2G+D/2=G+Dtg (x, ),
which follows from symmetry considerations in the definition of A4 (x, £). Now
applying (4) and (5), we have (13) directly.

As to the converses of (9), (10), (12), and (13), we can offer them only as
conjectures; the conjectures have been verified by computation for # <35 for
the converse of (13) and for # <71 for the others. For the converse (10), we see
by (21) that there is no immediate proof in the manner of that for (7); obviously
n must be odd. Also it appears likely that there are additional relationships
similar to (9) and (12).

The author is indebted to L. Hellerman for a suggestion used in the proofs and to the referee
for directing attention to reference 3.
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