

On Pseudoprimes Which are Products of Distinct Primes
Author(s): K. Szymiczek
Source: The American Mathematical Monthly, Vol. 74, No. 1, Part 1 (Jan., 1967), pp. 35-37
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2314051
Accessed: 24/03/2010 21:39

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @ jstor.org.

ON PSEUDOPRIMES WHICH ARE PRODUCTS OF DISTINCT PRIMES

K. Szymiczer, Katowice, Poland

A composite number n is said to be pseudoprime if $n \mid 2^{n}-2$. Let $P(x)$ denote the number of pseudoprimes $\leqq x$ and let $P_{k}(x)$ denote the number of square-free pseudoprimes $\leqq x$ having k distinct prime factors. P. Erdös [1] proved that for x sufficiently large,

$$
\begin{equation*}
P(x)<2 x \exp \left\{-\frac{1}{3}(\log x)^{1 / 4}\right\} \tag{1}
\end{equation*}
$$

and stated that there is an estimation of $P(x)$ from below $P(x)>c \log x$, which is due to D. H. Lehmer.

In the present paper I prove the inequality $P_{2}(x)>\frac{1}{4} \log x$, and also estimations of $P_{k}(x)$ and $P(x)$ from below. As a consequence of (1) I shall prove that the series $\sum 1 / P_{n}$, where P_{n} is the nth pseudoprime, is convergent.

Now we prove the following lemma.
Lemma. If k is a natural number $\geqq 2$ and x is sufficiently large, then

$$
\begin{equation*}
P_{k+1}(x) \geqq P_{k}(\log x) . \tag{2}
\end{equation*}
$$

Proof. Let n be a pseudoprime which is product of $k \geqq 2$ distinct odd primes. In view of a theorem of Z sigmondy [3], there exists a prime $p>n$ such that $p \mid 2^{n-1}-1$ and $n-1 \mid p-1$. Thus,

$$
\begin{equation*}
n p \mid 2^{n-1}-1 \tag{3}
\end{equation*}
$$

On the other hand, $n p-1$ is divisible by $n-1$, since $n-1 \mid p-1$ and $n p-1$ $=n(p-1)+n-1$. Then by (3) we get

$$
n p \mid 2^{n p-1}-1
$$

i.e. $n p$ is a pseudoprime which is product of $k+1$ distinct odd primes. We observe that if n and m are natural numbers, $n \neq m$, and p, q are primes such that $p>n$, $q>m$, then $n p \neq m q$. If $n p=m q$ and $p>n$ then m is divisible by p, hence $m \geqq p$, and we get $m>n$. In view of symmetry $m<n$, which is contradictory. Consequently $n p \neq m q$. Thus, if n, m are distinct pseudoprimes having $k \geqq 2$ distinct prime factors, the adequate pseudoprimes $n p$ and $m q$ are distinct, too.

From (3) it follows that

$$
p \mid\left(2^{(n-1) / 2}-1\right)\left(2^{(n-1) / 2}+1\right)
$$

and therefore

$$
p \leqq 2^{(n-1) / 2}+1<e^{n / 2}
$$

Thus, if $n \leqq \log x$ then $p n<e^{1 / 2 \log x} \log x=x^{1 / 2} \log x<x$. Hence, for every pseudoprime $n=p_{1} \cdots p_{k} \leqq \log x$ there exists at least one pseudoprime $p_{1} \cdots$ $p_{k} p<x$. Thus, by the above remark, we obtain (2).

Theorem 1. If $x \geqq 22^{22}-1$, then

$$
\begin{equation*}
P_{2}(x)>\frac{1}{4} \log x . \tag{4}
\end{equation*}
$$

Proof. Let m be an odd number >3. In view of Zsigmondy's [3] theorem there exist prime numbers p and q such that

$$
\begin{equation*}
p\left|2^{m}-1, q\right| 2^{m}+1, m|p-1,2 m| q-1 \tag{5}
\end{equation*}
$$

Since p and m are odd, $2 m \mid p-1$. Further,

$$
p\left|2^{m}-1\right| 2^{q-1}-1, q\left|2^{2 m}-1\right| 2^{p-1}-1:
$$

hence, by a theorem of J. H. Jeans [2], $p q$ is pseudoprime. From (5) we get

$$
p q<2^{2 m}-1
$$

Thus, for every odd number $m>3$ there exists a pseudoprime of the form $p q$ which is less than $2^{2 m}-1$.

Let x be sufficiently large and m be the greatest odd number for which

$$
\begin{equation*}
2^{2 m}-1 \leqq x \tag{6}
\end{equation*}
$$

By the above argument, there are at least $(m-3) / 2$ of pseudoprimes of the form $p q$ less than x, i.e.

$$
P_{2}(x) \geqq \frac{m-3}{2}
$$

We see that there are at least $(m-3) / 2$ pseudoprimes $p q$, where p, q are primes satisfying (5), whereas there exist pseudoprimes $p q$ not satisfying (5), for example:

$$
\begin{aligned}
& 17 \cdot 257,\left(17\left|2^{8}-1,257\right| 2^{8}+1\right) \\
& 23 \cdot 89,\left(23 \cdot 89=2^{11}-1\right)
\end{aligned}
$$

We also remark that for $m=11$ there are two pseudoprimes satisfying (5), namely $23 \cdot 683$ and $89 \cdot 683$. Thus, if $x \geqq 2^{22}-1$, we may write

$$
\begin{equation*}
P_{2}(x) \geqq \frac{m-3}{2}+3>\frac{m+2}{2} \tag{7}
\end{equation*}
$$

From the definition of m in (6) it follows that

$$
x<2^{2(m+2)}-1<e^{2(m+2)}
$$

whence $m+2>\frac{1}{2} \log x$, which, together with (7) gives (4), and the theorem is proved.

Remark. It may be easily shown that the inequality (4) holds for $x \geqq 1387$, but not for any other $x: 1<x<1387$.

Theorem 2. If k is a natural number $\geqq 2$ and x is sufficiently large, then $P_{k}(x)>\frac{1}{4} \log _{k-1} x$, where $\log _{k} x$ denote the k times iterated logarithm.

Proof. The statement can be easily proved by induction on k if one applies Theorem 1 and our lemma.

Theorem 3. If k is a natural number and x is sufficiently large, then

$$
P(x)>\frac{1}{4} \log \left\{x \prod_{n=1}^{k} \log _{n} x\right\}
$$

Proof. For sufficiently large $x, P(x)>P_{2}(x)+P_{3}(x)+\cdots+P_{k+2}(x)$, whence, by Theorem 2,

$$
\begin{aligned}
P(x) & >\frac{1}{4}\left\{\log x+\log _{2} x+\cdots+\log _{k+1} x\right\} \\
& =\frac{1}{4} \log \left\{x \prod_{n=1}^{k} \log _{n} x\right\} .
\end{aligned}
$$

Now we prove another result.
Theorem 4. The series $\sum 1 / P_{n}$, where P_{n} is the n-th pseudoprime, is convergent.

Proof. If we put $x=P_{n}$ then the right hand side of (1) becomes

$$
n<2 P_{n} \exp \left\{-\frac{1}{3}\left(\log P_{n}\right)^{1 / 4}\right\}
$$

Since $n<P_{n}$, we have

$$
\begin{equation*}
\frac{1}{P_{n}}<\frac{2}{n \exp \left\{\frac{1}{3}(\log n)^{1 / 4}\right\}} . \tag{8}
\end{equation*}
$$

On the other hand, for large $m, m^{1 / 4}>4 \log m$, and thus for sufficiently large n,

$$
(\log n)^{1 / 4}>4 \log \log n
$$

Hence $\frac{1}{3}(\log n)^{1 / 4}>\log (\log n)^{4 / 3}$, and

$$
\begin{equation*}
\exp \left\{\frac{1}{3}(\log n)^{1 / 4}\right\}>(\log n)^{4 / 3} \tag{9}
\end{equation*}
$$

From (8) and (9) we get

$$
\frac{1}{P_{n}}<\frac{2}{n(\log n)^{4 / 3}}
$$

and Theorem 4 follows from the well-known convergence of $\sum 2 /\left\{n(\log n)^{4 / 3}\right\}$.

References

1. P. Erdös, On almost primes, this Monthly, 57 (1950) 404-407.
2. J. H. Jeans, The converse of Fermat's theorem, Messenger of Math., 27 (1897-8) 174.
3. K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. und Physik, 3 (1892) 268-284.
