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ON PSEUDOPRIMES WHICH ARE PRODUCTS OF DISTINCT PRIMES
K. Szymiczex, Katowice, Poland

A composite number # is said to be pseudoprime if #| 2» —2. Let P(x) denote
the number of pseudoprimes <x and let Px(x) denote the number of square-free
pseudoprimes =x having & distinct prime factors. P. Erdés [1] proved that for
x sufficiently large,

) Px) < 2x exp{ —3(log x)”‘},

and stated that there is an estimation of P(x) from below P(x) >¢ log x, which
is due to D. H. Lehmer.

In the present paper I prove the inequality Pa(x) >% log x, and also estima-
tions of Pix(x) and P(x) from below. As a consequence of (1) I shall prove that the
series 9 1/Pn, where P, is the nth pseudoprime, is convergent.

Now we prove the following lemma.

LEMMA. If k is a natural number =2 and x is sufficiently large, then
(2) Prii(x) = Pi(log x).

Proof. Let n be a pseudoprime which is product of £ =2 distinct odd primes.
In view of a theorem of Zsigmondy [3], there exists a prime p># such that
pl2~1—1 and n—1|p—1. Thus,

3) np| 21 — 1.

On the other hand, np—1 is divisible by #—1, since n—1|p—1 and np—1
=n(p—1)+n—1. Then by (3) we get

np|2mt — 1,

i.e. np is a pseudoprime which is product of k41 distinct odd primes. We observe
that if » and m are natural numbers, # m, and p, g are primes such that p >,
g>m, then np=mq, If np=mq and p>n then m is divisible by p, hence m = p,
and we get m>n. In view of symmetry m <#, which is contradictory. Conse-
quently nps£mgq. Thus, if #, m are distinct pseudoprimes having k=2 distinct
prime factors, the adequate pseudoprimes #p and mg are distinct, too.

From (3) it follows that

p| @b — 1) 200 4 1),
and therefore
p =S 202 41 L enl2,

Thus, if #=<log x then pn<el2le= Jog x=x'2 log x<x. Hence, for every
pseudoprime n=p, - - - prSlog x there exists at least one pseudoprime p; - -« -
piup <x. Thus, by the above remark, we obtain (2).
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THEOREM 1. If x=222—1, then
4) Py(x) > % log x.

Proof. Let m be an odd number >3. In view of Zsigmondy’s [3] theorem
there exist prime numbers p and ¢ such that

(5) pl2m—1,gl2n+ 1, m|p—1,2m|q—1.
Since p and m are odd, 2m| p—1. Further,
plom— 1] 201 — 1, g| 22m — 1| 201 — 1:
hence, by a theorem of J. H. Jeans [2], pq is pseudoprime. From (5) we get
pg < 2% — 1.

Thus, for every odd number m >3 there exists a pseudoprime of the form pg
which is less than 22»—1,
Let x be sufficiently large and m be the greatest odd number for which

(6) 2m — 1 < .

By the above argument, there are at least (m — 3)/2 of pseudoprimes of the form
pq less than x, i.e.

m— 3

Py(x) =

We see that there are at least (m—3)/2 pseudoprimes pg, where p, g are
primes satisfying (5), whereas there exist pseudoprimes pg not satisfying (5),
for example:

17-257, (17] 28 — 1, 257 28 + 1),
23-89, (23-89 = 2! — 1),

We also remark that for m =11 there are two pseudoprimes satisfying (5),
namely 23683 and 89-683. Thus, if x=222—1, we may write

m— 3 m -+ 2
+ 3> 5 .

) Py(x) 2

From the definition of  in (6) it follows that
X < 22mtD) _ 1 < g2lmtd)

whence m-+2>3% log %, which, together with (7) gives (4), and the theorem is
proved.

REMARK. It may be easily shown that the inequality (4) holds for x = 1387,
but not for any other x: 1 <x<1387.
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THEOREM 2. If k is a natural number =2 and x is sufficiently large, then
Pi(x) > % logr x, where logs x denote the k times iterated logarithm.

Proof. The statement can be easily proved by induction on % if one applies
Theorem 1 and our lemma.

THEOREM 3. If k is a natural number and x is sufficienily large, then

k
P(x) > % log {x IT10g. x} .

n=1

Proof. For sufficiently large x, P(x) > P2(x) +Pa(x) + - - - +Pry2(x), whence,
by Theorem 2,

P(x) > }{Iog z+loge & + - - - + logiya x}
k
= 1log {x 11 tog. x} .
n=1
Now we prove another result.

TureorReEM 4. The series Zl/P,,, where P, is the n-th pseudoprime, is con-
vergent.

Proof. If we put x =P, then the right hand side of (1) becomes
n < 2P, exp{ — 3(log P,)V/4}.
Since < P,, we have
1 2
po— < .
P, nexp{3(log )"}
On the other hand, for large m, m'/*>4 log m, and thus for sufficiently large #,

(log n)Y4 > 4 log log =.

@®

Hence }(log #)Y4>log(log #)*/3, and
©) exp{(log n)!/4} > (log m)**.
From (8) and (9) we get
1
P,  n(log m)4%’
and Theorem 4 follows from the well-known convergence of ) 2/{#n(log n)*/3}.
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