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0= ((4 — sal) Xmg1, (4 — $aI) Xmg—1) + (M6 — 1)*2(Xomgy Xima)-
From this we can conclude that for m,>1
(A -_ SaI)Xma-l = 0.

By repeating this argument successively in (17) we find that X3=0 for 5>1.
This shows that the solution in (16) contains only one nonvanishing element.
This implies that all B, in (8) vanish for 5> 1. Therefore the Jordan canonical
form of 4 is diagonal.

This last result can be strengthened considerably. We require the following
lemma; its proof is trivial.

LeEMMA. If X, and Xy are eigenvectors of a normal mairix corresponding to
distinct eigenvalues sq and sy then (Xa, Xs)=0; that is X. and X, are orthogonal.

The eigenvectors of 4 corresponding to a multiple eigenvalue can always be
orthogonalized by the Gram-Schmidt process. This means that the transforma-
tion matrix T, which is.composed of the eigenvectors of 4 can be so chosen as
to be unitary. That is T*T =I. We summarize these results in the following:

TrEOREM. If A is normal we can find a unitary matrix T such that TAT* is
diagonal.

This work was supported by the NSF, under grant GP-165.

A PROOF OF THE PRIME NUMBER THEOREM
E. GROSSWALD, University of Pennsylvania

1. Introduction. Let w(x) denote the number of primes not exceeding some
real number x and define the symbol of asymptotic equivalence by stipulating
that f(x) ~g(x) shall mean the same as lim,. f(x)/g(x) = 1. It is our purpose to
give a proof of the following statement, known as

TrE PRIME NUMBER THEOREM: 7(x)~x/log x.

The proof, while neither as short as Landau’s [2], nor as elementary as the
proofs of Selberg [3], Erdss [1], or Wright [5], seems to have the advantage
of great clarity. Like Landau’s proof, it uses only some easily established
properties of the Riemann zeta function in the half plane Re s=1.

Let p stand for primes, # for natural integers and define, as usual, {(s) for
s=co-1t by

(1) =T =p)t =2 o> 1

and by analytic continuation otherwise. We take for granted the following
properties:
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@) ¢s) —(s—1)"1 and g‘?(.w;) + (s — 1)~! are analytic for ¢ = 1;

(3) fors=1+44dt, §(s) 20 and ¢(s), %—(s), g—;_— (s) are all O(log® ¢)

O<a< ®)ast— .

Here and in what follows, all logarithms, including log ¢(s), are obtained by
direct analytic continuation from the branch that is real for real s> 1. The first
result of (2) (and much more) may be obtained from the Euler-Maclaurin sum
formula. The first assertion of (3) follows (after de la Vallée-Poussin) from the
observation that (1) leads, for o>1, to |{¥(0)¢*(e+if)¢(o+2if)| =1, which is
inconsistent, on account of (2), with the assumption that {(1-4£) =0; the other
assertions of (3) may be obtained essentially by the Euler-Maclaurin sum for-
mula. The second assertion of (2) follows from the first, because of (1) and the first
of (3). We shall also have to use the following two well-known lemmas:

LeMMA 1 (RIEMANN-LEBESGUE). Let the function f(t) be differentiable and ab-
solutely integrable on (0, «), then the improper integral J(y)= [y f(t)e'wdt con-
verges for every real y and J(y) =0(1) as y— .

LeEMMA 2 (TAUBERIAN). Let f(x) be positive and nondecreasing; if [fu=f(u)du
~x(log x)71, then f(x)~x(log x)~L.

2. Sketch of the proof. From (1) with ¢>1 we obtain

log¢(s) = — X log(1 — p~) = — Zj: {w(n) — 7(n — 1)} log (1 — ™)

3w log (1 — (n+ 1)~ — log (1 — n~)}

n=2

L n+1 d
2 w(n) f = (log (1 — x~))dx

n

0

> w(n)s f on"l(x’ — )z =5 f wx*l(xs — 1)z (x)dx.

n=2

These formal operations are easily justified if ¢ > 1. After division by s, the right
hand side is almost exactly the Mellin transform of w(x). It actually 4s a Mellin
transform, not quite of w(x), but, as we shall show, of the closely related func-
tion f(x) = Y m_, m~w(xlm). The difference between f(x) and =(x) is compara-
tively small. If ¢ is the greatest integer not exceeding log x/log 2, then, for
m > g, x!™ < 2 so that w(x!™) = 0; hence, f(x) = D> &4, m~'w(xlm) = 7(x)
+ >0 o mw(xt™), But

[ q aq
0= D mlx(xtim) £ D mlxlim < 3 1all? = 3(g — 1)x1/2 < (2 log 2)~1«?/? log «,
m=2

m=2 m=2
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so that
4 m(x) = f(x) + O(+'/* log %);

clearly, f(x) =0 for x<2. For later use we also note that f(x) <w(x)+x? log x,
so that, a fortiori,

) f(®) < 2.

In order to prove the Prime Number Theorem it is sufficient, therefore, to prove
that f(x) =x (log x)~!- (1+0(1)), because then the same is true of w(x), the error
term in (4) being of lower order than o(x(log x)~1).

Assuming for a moment that [;x1(x*—1)~r(x)dx = [7’f(x)x~*"'dx, we have
obtained so far that, for > 1,

(6) s7llog ¢(s) = f1 wf(x)x""ldx.

Equation (6) can be “solved” for f(x), by the classical theorem on the inversion
of Mellin transforms, which yields
‘ oiT
@) f(®) = 2mxi)~! lim s™1x2 log ¢(s)ds,
T o oyr
valid for any ¢> 1. And once we have found f(x), our problem is completely solved
by (4), which gives 7(x).
One may indeed attempt to evaluate the integral in (7) directly. By (2),
log ¢(s)=—log (s—1)+log h(s), with log k(s)=log((s—1)¢{(s)) analytic in
o1, and, by routine computations (almost identical to those that we shall per-

form here)
T
—(272)~? lim s71? log (s — 1)ds

T—w c—iT

is found to be equal to x(log x)~*+o(x(log x)1). The proof that the “error term”
c+iT

lim s log k(s)ds

Toew J oy
is sufficiently small is not trivial. While one may now take even ¢=1 (because
log k(s) stays analytic for s=1-4f) Lemma 1 is not directly applicable; indeed,
for s=1+1t, (3) only shows that s~ log h(s) =0 log ¢). This is not sufficient
to insure the absolute convergence of the integral, which would be the simplest
way to show that the convergence is uniform with respect to x.

In order to avoid these difficulties, it is preferable to return for a moment
to (6) for a very slight change which will insure the absolute convergence of the
integrals involved. For that purpose, set g(x)=_ffu~Yf(u)du; then g(x)=0 for
x <2 (because f(x) =0 for x <2) and, by (5), g(*) <Tu~1(2u)du <2x. Also, g'(x)
=x"1f(x) and, after an integration by parts, the second member of (6) may be
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rewritten as

1 1 1

For ¢>1, the integrated term vanishes and instead of (6) we obtain

(©) g 5() = [ g (0> 1;
1
hence instead of (7) we obtain
ct+sT
7 g(x) = (2wi)t lim s72x° log ¢(s)ds (c>1).
T c—iT

If we replace log {(s), as before, by —log (s—1)4log %(s), then (7’) becomes

(8) g(x) = (%) + Iy(x),
where
c+eT
Ii(x) = — (2wi)~! lim s~2x* log (s — 1)ds,
Tsw c—iT
' c+iT
I(x) = (2xi)? !l'im s~ 22 log h(s)ds.
—wo oo T

We shall show first that I(x) =o0(x(log x)™'); next, that I;(x) =x(log x)~!
+o(x(log x)7'). Then it follows from (8) that g(x) =x(log x)~'+o(x(log x)™).
Lemma 2 leads then to f(x) =x(log x)~!+o(x(log x)~1) and, on account of (4),
the theorem will be proven.

3. Proof of the lemmas. For completeness, we indicate here the proof of the
lemmas used.

Proof of Lemma 1. The function f(¢) being absolutely integrable, we can de-
termine T35 and ¢ so that, for T1=T, eS¢

lf:f(t)e“ﬂdt = f : [ @] dt < %,,,| fo ‘ F()esnds

for arbitrarily small 7>>0. Next, keeping T and e fixed and integrating by parts,

we obtain
b T
Byl

ﬁ e
éy“{lf(T)l + [f9] + fflf’(t)ldt} <in

¢ ]
-§fo If(t)ldf<—3“

(iy)~t {e""f(t)
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for sufficiently large ¥ and the lemma follows.
Proof of Lemma 2. Given any €>0, set y =x(14¢€) and, for sufficiently large x,
consider the quantity ¢= fYu~'f(u)du. On the one hand, by hypothesis,

z

1 — )x(log 2) < f w Y (u)du < (1 4+ e®)=x(log x)—l’,

so that

¢ = flvu_lf(“)d“ - j;z“_lf(u)d% <1+ &)ylogy)™t — (1 — &)x(log x)~?

< (log ) {1 + €y — (1 — )a} = x(log A+ )1 +e — (10— &)}
= x(log ) te(1 + €)2;
on the other hand, by the monotonicity of f(x), ¢=fYu~'f(u)du =f(x) [tu—'du
=f(x) log (y/x)=f(x) log (1+e€). Hence,
f(x) = ¢/log(1 + €) < x(log #)~{e(1 + €)2/log (1 +.6} = x(log x)~1(1 + &3

and (x~log x)f(x) <(1+4¢€)? for arbitrarily small ¢>0; similarly, one shows that
(x~'log x)f(x) > (1—€)? for arbitrarily small ¢>0, if only % is large enough and
this finishes the proof of the Lemma.

4. Proof of the theorem. It only remains to fill in the details of the different
steps sketched without proofs in Section 2.

(a) Proof of (6). From f(x) = D m_, m~lw(xlm) = > %_, m~lr(x!m) it follows
that

0 © g 0 ©
f fx)a—tdx = S m i (wtm) ae iy = Y f m () e 1d,
1 1 m=1 m=1v 1

because of the uniform convergence of the series. In each integral we make the
change of variable x=y™, obtaining

fxwf (ride = 3 f1 “roy iy = f1 w( > ‘Ir(x)x‘”“_1>dx

m=1 m=1
= f (2t — 1) n(x)dx,
1

the termwise integration being again justified by the uniform convergence of the
series (for 1 £x < », and constant > 1).
(b) Estimation of I;(x). By Cauchy’s theorem on residues,

4T
Iy(x) = (27)~! lim (1 4 )2t titg (D ds,
T—w

-T

where g,(f) =log #(1+41t). Hence, setting
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+T
I;(y) = lim (1 4 dt)2g:(t) e, I(x) = (27)~'%I;3(log x).
T—w -
Integrating by parts, we obtain
+T +r
I3(y) = lim {(iy)"le“”(l + i) 2g.(¢) — (i)t a+ it)‘3g2(t)e“”dt}
T—w —T -7

with
g:() = (1 + it)gl (1) — 2iga(t)
=ifs(6 - v+ £ 9) - 2108 6 - D1}
¢ e=14it
Using (3), we see that gi(f) and gz(f) are both differentiable for real ¢,
g1(t) = log {(s — 1)§()}e=1ris = log ¢ + O(log log 2),

and g:(f) = o (t log* ) for t— ». Hence, the integrated term of I3(y)—0 as T—
and Lemma 2 is applicable to the last integral. It follows, as claimed, that

Ii(y) = o(y™) and I.(x) = (2r)~wls(log ) = o(x(log x)™Y).

(c) Computation of I (x). In I (x) we move the line of integration to ¢=1,
with a small semi-circular indentation T' around the singularity s=1. This is
permitted by Cauchy’s theorem on residues, because the integrand goes to zero
as t— o and has no singularities for 0= 1, s%1. Hence,

1—in 14T
—2mili(x) = zl'im {f +f +f s72x* log (s — l)ds} .
— 1T r Ltin

The contribution of the integral along I' can be made arbitrarily small, by tak-
ing 7 sufficiently small. Indeed,

fs‘zx’ log (s — 1)ds
r

/2 .
B ’f (1 + ne®)224" log (ne) - yie®ds l
—7/2 x

/2
< (t =ttt [ | log (re®) | do
/2

—_—

/2
S (1 — )ty f (logn* + | 6] )ds

—7/2
= (1 — n)2tty{rlogn 4 3n?} —0
as 7—0. Hence,
oHiT —n T
lim st log (s — 1)ds = ixlim lim { f + f (1 4 )2 log (it)dt} ,
Tow c—iT 70 T—w -T ]

and Ii(x) becomes — (27)~'xI(log %), with
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-y r'd

I(y) = lim lim { f + f (1 4 i)~ log (it)e"‘"dt} .
70 T—ow Vo M

We may shorten the computations slightly by observing that the integral

JZ% - - - di is the complex conjugate of the integral [T - - - dt. The latter one is

computed explicitly. By an integration by parts,

T

T
f (1 + it)~2(log t + 3mi)eiwdt = (iy)~leiw(1 + it)~2(log t + §mi)
7

"
r v
— (iy)”lf a+ it)—s{rl + i+ = — 2ilog t}e“”dt.
1

Here the integral [T(1-+it)=3(i+m—2i log #)eiwdt satisfies the conditions of
Lemma 1, so that it is o(1). If we let T— «, the integrated term vanishes at
the upper limit and we remain with

T
lim (1 + it)~2 log (it)e*vdt
T—w 7 -
= — (iy! {(1 + ip)~2(log 9 + Fmwi)eitn -+ f T+ it)"%“”dt} .
7

Adding the complex conjugate and taking the limit as 7—0, we obtain
{log n+ 4w logg — §mi
(1 + in)? (1 — i)

I(y) = — (ip)~* lim

70

f © eity e—illl L
— d -
+ {z(1 T 1 — u)s} Et o0

v

= — ()t tim {lloga- (¢4 — =) + e + )] (1 + 0()

70
® ity — g—ity © pl(t)ec'm + Pz(t)e_“” ’
—_—d! f dt} -1).
+j; - + u e + o(y™)

Here p1(f) and p.(t) are fifth degree polynomials in ¢; hence, by an integration by
parts and Lemma 1, the last integral is O(ny~!) +0(y~!) and we obtain

0 etty_

T o

1) ==y lim {2logn-sin ym+rcosyn) (1-+0G)+2
70 " 24t

= —7ry‘1—2y‘1f lsintydido(y ™) =—y! (1r+2f vtsiny dv)
0 0

+o(y™) = —2ry+o(y™).

Hence, I;(x) = — (27)~%xI(log x) becomes I;(x) =x(log x)~'+o(x(log x)~?) and,
by (8), g(x) =x(log x)~*)+o(x(log x)™). As we have already seen, it now fol-
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lows from Lemma 2 that f(x) =x(log x)~'+4o(x(log x)~1) and, on account of (4)
the proof is complete.

This paper was written with the support of the National Science Foundation Contract NSF-G
24348.
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ON GENERATORS AND DEFINING RELATIONS FOR
THE UNIMODULAR GROUP I,
GEORGE K. WHITE, University of Toronto
1. Introduction. In this paper, M, (z=2, 3, - - - ) shall denote the unimodu-

lar group of all real #Xn matrices with integral entries and determinant +1.

Burrowes Hunt [5; 6] has for some time interested himself and his student
Beldin in the unimodular groups, and the latter [1] has given in his thesis (un-
published) an expression which yields for any given # two elements 4, BEIR,
which suffice to generate M,. Trott [7] has since deduced independently another
pair of generators U,, U for M,.. Two other recent papers of interest, kindly
brought to my attention by Professor Hunt, are one by Brenner [2] (who finds
yet another pair of generators S, 7’ of M,), and one by Sze-Chien Yien [8]
who gives a set {Bi;, U} of more than two generators, and goes on to find com-
plete defining relations for all M,, using the sets { B, Ul.

This brief bibliography by no means exhausts the literature: there are, for
instance, further references in [3], chapter 7. In this paper we restrict our at-
tention to the particular group My, and the Beldin gerrerators {4, B}. Our goal
is to supply a simple abstract 2-generator definition of I, by providing suitable
defining relations for 4, B. We achieve this in sections 2 and 3 by first impos-
ing relations (3) on the symbols 4, B to define an abstract group 9, and then
proving that $~I, (Lemma 1) utilizing results set forth in [3]. In section 4,
we make use of the Fibonacci numbers to deduce and state some further simple
relations between 4, B, and to find concise expressions for Z= — E (where E de-
notes the identity), in terms of 4, B.

I should like to thank Professor Coxeter for his interest and help in connection
with this paper. I am also grateful to Professor Hunt for, among other things,
providing us with material from Beldin’s thesis.
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