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MATHEMATICAL NOTES 

3042. On Mersenne's primes, Fermat's primes and even perfect 
numbers 

Theorem I. Let n be an odd integer > 1. A necessary and suffi- 
cient condition for n to be a Mersenne's prime is that 

p2- 1 =0 (mod In(n +1)), 

p being the product of all positive odd integers <n. 
Theorem II. Let n be an even integer >2. A necessary and 

sufficient condition for (n + 1) to be a Fermat's prime is that 

(p-1)(p2+ 1)=0 (mod in(n+ 1)), 

p being the product of all positive odd integers <n. 
Theorem III. For any integer x> 3 to be an even perfect number, 

it is necessary and sufficient that (i) x is a triangular number and 
(ii) p2 -_ 1 0 (mod x), p being the product of all positive odd integers 
<n, where x = n (n + 1) (the nth triangular number). 

Proof of Theorem I. Suppose n is a Mersenne's prime, say 2r+l - 1. 

p= 1 .3.5 ... .(2r+l-3)- -(2r+1-2) . -(2r+l -4) 
-2 (mod 2r+l - 1) 

* p2 _ _ (2r+l _ 2)! (mod 2r+l - 1) 
= 1 (mod 2r+l - 1), by Wilson's theorem. (1) 

Now consider the two sets of numbers, viz; 1, 3, 5, ..., 2r - 1 and 
2r + 1, 2 + 3, ..., 2r+l - 3, 2r+1 - 1. Each set is clearly a reduced 
residue system modulo 2r. Theiefore to each member 1 of the first 
set corresponds a unique member 1' of the second set such that 
l' 1 (mod 2r). Taking the product of all such congruences (2r-l 

congruences in number), we have 

p (2r+1 - 1) _ 1 (mod 2r) 

. p2 1 (mod 2r) (2) 

Since (2r, 2r+l - 1) = 1, from (1) and (2) we see that 

p2- 1 0 (mod n(n + l)). 

Thus the condition is necessary. 
If p2 -1 =0 (mod n(n + 1)/2), it immediately follows that n is a 

prime and n + 1 is a power of 2, since n is odd > 1; so that n is a 
Mersenne's prime. Hence the condition is sufficient. 

Proof of Theorem II. Suppose (n + 1) is a Fermat's prime, say 
22r + 1. Since n is an even integer > 2, r> 1. 

p= 1.3.5 ... .(22 -1)= -22 . -(22-2) ..... -2(mod22 + 1) 

Since r> 1, p2 - (22) ! (mod 22 + 1) 

- -1 (mod 22y + 1) by Wilson's theorem. 
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Using the same argument as in the proof of theorem I, we can 
prove that p = 1 (mod 22r-l). 

Thus we see that 

(p - 1)(p2 +1)-= 0 (mod 'n (n +1)) 
and so the condition is necessary. 

If (p - 1) (p2 + 1) = 0 (mod in (n + 1)), it immediately follows that 
(n + 1) is a prime and ?n is a power of 2, since n is even > 2. By the 
well-known result that if 2t + 1 is a prime, then t is a power of 2, 
it follows that (n + 1) is a Fermat's prime. Hence the condition is 
sufficient. 

Proof of Theorem III. Suppose x is an even perfect number. 
It is well known that x must be of Euclid's type, namely 2r (2r+l - 1) 
where 2r+1 - 1 is a prime. Clearly x is the (2r+1- 1)th triangular 
number, so that the condition (i) is satisfied and (ii) is also satisfied 
in virtue of Theorem I. Thus the conditions are necessary. 

If x> 3 is a triangular number, say 1n (n + 1) and p2 - 1 =0 (mod x), 
p being the product of all positive odd integers <n, we shall prove 
that n is odd > 1. Since x> 3, n> 2. Suppose if possible that n is 
even; then by the above congruence it is clear that ?n is a power of 
2, say 2r and n +1 -=2'+l+1 is a prime. By the result already 
mentioned in the proof of theorem II, it follows that (n + 1) is a 
Fermat's prime and hence p2 +1 =0(mod (n+ 1)). But by hypo- 
thesis we have p2 - 1 =0 (mod (n + 1)). Therefore (n + 1) must 
divide 2 which is a contradiction to the supposition that n is even. 
Thus n is odd > 1. By theorem I, it follows that n is a Mersenne's 
prime; so that x is an even perfect number. Hence the conditions 
are sufficient. 
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3043. Volume of a triangular pyramid 
Let 0, Pl, P2, P3 be the vertices and V the volume. The following 

two determinantal formulae 

36V2=OPlOP20P2 1 cos (1, 2) cos (1, 3) 
cos (2, 1) 1 cos (2, 3) 
cos (3, 1) cos (3, 2) 1 (1) 

and 
36V2= 

OPI (OP~ + OP - PlP2)/2 (OP2 + OP3 -P_P)/2 
(OP2 + OP - P2P?)/2 OP2 (OP2 + OP - P,P)/2 
(OP2 + OP2 - P3P)/2 (OP2 + OP - P3P)/2 Op2 

(2) 

Using the same argument as in the proof of theorem I, we can 
prove that p = 1 (mod 22r-l). 

Thus we see that 

(p - 1)(p2 +1)-= 0 (mod 'n (n +1)) 
and so the condition is necessary. 

If (p - 1) (p2 + 1) = 0 (mod in (n + 1)), it immediately follows that 
(n + 1) is a prime and ?n is a power of 2, since n is even > 2. By the 
well-known result that if 2t + 1 is a prime, then t is a power of 2, 
it follows that (n + 1) is a Fermat's prime. Hence the condition is 
sufficient. 

Proof of Theorem III. Suppose x is an even perfect number. 
It is well known that x must be of Euclid's type, namely 2r (2r+l - 1) 
where 2r+1 - 1 is a prime. Clearly x is the (2r+1- 1)th triangular 
number, so that the condition (i) is satisfied and (ii) is also satisfied 
in virtue of Theorem I. Thus the conditions are necessary. 

If x> 3 is a triangular number, say 1n (n + 1) and p2 - 1 =0 (mod x), 
p being the product of all positive odd integers <n, we shall prove 
that n is odd > 1. Since x> 3, n> 2. Suppose if possible that n is 
even; then by the above congruence it is clear that ?n is a power of 
2, say 2r and n +1 -=2'+l+1 is a prime. By the result already 
mentioned in the proof of theorem II, it follows that (n + 1) is a 
Fermat's prime and hence p2 +1 =0(mod (n+ 1)). But by hypo- 
thesis we have p2 - 1 =0 (mod (n + 1)). Therefore (n + 1) must 
divide 2 which is a contradiction to the supposition that n is even. 
Thus n is odd > 1. By theorem I, it follows that n is a Mersenne's 
prime; so that x is an even perfect number. Hence the conditions 
are sufficient. 
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