MATHEMATICAL ASSOCIATION

supporting mathematics in education

3042. On Mersenne's Primes, Fermat's Primes and Even Perfect Numbers
Author(s): D. Suryanarayana
Source: The Mathematical Gazette, Vol. 46, No. 358 (Dec., 1962), pp. 319-320
Published by: The Mathematical Association
Stable URL: http://www.jstor.org/stable/3611787
Accessed: 24/03/2010 20:14

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mathas.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @ jstor.org.

The Mathematical Association is collaborating with JSTOR to digitize, preserve and extend access to The Mathematical Gazette.

3042. On Mersenne's primes, Fermat's primes and even perfect numbers

Theorem I. Let n be an odd integer >1. A necessary and sufficient condition for n to be a Mersenne's prime is that

$$
p^{2}-1 \equiv 0\left(\bmod \frac{1}{2} n(n+1)\right),
$$

p being the product of all positive odd integers $<n$.
Theorem II. Let n be an even integer >2. A necessary and sufficient condition for $(n+1)$ to be a Fermat's prime is that

$$
(p-1)\left(p^{2}+1\right) \equiv 0\left(\bmod \frac{1}{2} n(n+1)\right),
$$

p being the product of all positive odd integers $<n$.
Theorem III. For any integer $x>3$ to be an even perfect number, it is necessary and sufficient that (i) x is a triangular number and (ii) $p^{2}-\mathrm{l} \equiv 0(\bmod x), p$ being the product of all positive odd integers $<n$, where $x=\frac{1}{2} n(n+1)$ (the nth triangular number).
Proof of Theorem I. Suppose n is a Mersenne's prime, say $2^{r+1}-1$.

$$
\begin{array}{rlr}
p & =1.3 .5 \ldots .\left(2^{r+1}-3\right) \equiv-\left(2^{r+1}-2\right) \cdot-\left(2^{r+1}-4\right) \ldots . . \\
\therefore p^{2} & \equiv-\left(2^{r+1}-2\right)!\left(\bmod 2^{r+1}-1\right) \\
& \equiv 1\left(\bmod 2^{r+1}-1\right), \text { by Wilson's theorem. }
\end{array}
$$

Now consider the two sets of numbers, viz; 1, 3, 5, ..., $2^{r}-1$ and $2^{r}+1,2^{r}+3, \ldots, 2^{r+1}-3,2^{r+1}-1$. Each set is clearly a reduced residue system modulo 2^{r}. Ther efore to each member l of the first set corresponds a unique member l^{\prime} of the second set such that $l l^{\prime} \equiv 1\left(\bmod 2^{r}\right)$. Taking the product of all such congruences $\left(2^{r-1}\right.$ congruences in number), we have

$$
\begin{gather*}
p\left(2^{r+1}-1\right) \equiv 1\left(\bmod 2^{r}\right) \\
\quad \therefore p^{2} \equiv 1\left(\bmod 2^{r}\right) \tag{2}
\end{gather*}
$$

Since $\left(2^{r}, 2^{r+1}-1\right)=1$, from (1) and (2) we see that

$$
p^{2}-1 \equiv 0\left(\bmod \frac{1}{2} n(n+1)\right) .
$$

Thus the condition is necessary.
If $p^{2}-1 \equiv 0(\bmod n(n+1) / 2)$, it immediately follows that n is a prime and $n+1$ is a power of 2 , since n is odd >1; so that n is a Mersenne's prime. Hence the condition is sufficient.

Proof of Theorem II. Suppose $(n+1)$ is a Fermat's prime, say $2^{2 r}+1$. Since n is an even integer $>2, r \geqslant 1$.
$p=1.3 .5 \ldots . .\left(2^{2 r}-1\right) \equiv-2^{2 r} .-\left(2^{2 r}-2\right) \ldots . .-2\left(\bmod 2^{2 r}+1\right)$
Since $r \geqslant 1, \quad p^{2} \equiv\left(2^{2 r}\right)!\left(\bmod 2^{2 r}+1\right)$

$$
\equiv-1\left(\bmod 2^{2 r}+1\right) \text { by Wilson's theorem. }
$$

Using the same argument as in the proof of theorem I, we can prove that $p \equiv \mathrm{l}\left(\bmod 2^{2 r-1}\right)$.

Thus we see that

$$
(p-1)\left(p^{2}+1\right) \equiv 0\left(\bmod \frac{1}{2} n(n+1)\right)
$$

and so the condition is necessary.
If $(p-1)\left(p^{2}+1\right) \equiv 0\left(\bmod \frac{1}{2} n(n+1)\right)$, it immediately follows that $(n+1)$ is a prime and $\frac{1}{2} n$ is a power of 2 , since n is even >2. By the well-known result that if $2^{t}+1$ is a prime, then t is a power of 2 , it follows that $(n+1)$ is a Fermat's prime. Hence the condition is sufficient.

Proof of Theorem III. Suppose x is an even perfect number. It is well known that x must be of Euclid's type, namely $2^{r}\left(2^{r+1}-1\right)$ where $2^{r+1}-1$ is a prime. Clearly x is the $\left(2^{r+1}-1\right)$ th triangular number, so that the condition (i) is satisfied and (ii) is also satisfied in virtue of Theorem I. Thus the conditions are necessary.

If $x>3$ is a triangular number, say $\frac{1}{2} n(n+1)$ and $p^{2}-1 \equiv 0(\bmod x)$, p being the product of all positive odd integers $<n$, we shall prove that n is odd >1. Since $x>3, n>2$. Suppose if possible that n is even; then by the above congruence it is clear that $\frac{1}{2} n$ is a power of 2 , say 2^{r} and $n+1=2^{r+1}+1$ is a prime. By the result already mentioned in the proof of theorem II, it follows that $(n+1)$ is a Fermat's prime and hence $p^{2}+1 \equiv 0(\bmod (n+1))$. But by hypothesis we have $p^{2}-1 \equiv 0(\bmod (n+1))$. Therefore $(n+1)$ must divide 2 which is a contradiction to the supposition that n is even. Thus n is odd >1. By theorem I, it follows that n is a Mersenne's prime; so that x is an even perfect number. Hence the conditions are sufficient.
Department of Mathematics, D. Suryanarayana Andhra University,
Waltair, India

3043. Volume of a triangular pyramid

Let O, P_{1}, P_{2}, P_{3} be the vertices and V the volume. The following two determinantal formulae

$$
36 V^{2}=O P_{1}^{2} O P_{2}^{2} O P_{3}^{2} \quad\left|\begin{array}{ccc}
1 & \cos (1,2) & \cos (1,3) \tag{1}\\
\cos (2,1) & 1 & \cos (2,3) \\
\cos (3,1) & \cos (3,2) & 1
\end{array}\right|
$$

and
$36 V^{2}=$

$$
\begin{array}{ccc}
O P_{1}^{2} & \left(O P_{1}^{2}+O P_{2}^{2}-P_{1} P_{2}^{2}\right) / 2 & \left(O P_{1}^{2}+O P_{3}^{2}-P_{1} P_{3}^{2}\right) / 2 \tag{2}\\
\left(O P_{2}^{2}+O P_{1}^{2}-P_{2} P_{1}^{2}\right) / 2 & O P_{2}^{2} & \left(O P_{2}^{2}+O P_{3}^{2}-P_{1} P_{3}^{2}\right) / 2 \\
\left(O P_{3}^{2}+O P_{1}^{2}-P_{3} P_{1}^{2}\right) / 2 & \left(O P_{3}^{2}+O P_{2}^{2}-P_{3} P_{2}^{2}\right) / 2 & O P_{3}^{2}
\end{array}
$$

