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MATHEMATICAL NOTES 319

3042. On Mersenne’s primes, Fermat’s primes and even perfect
numbers
Theorem I. Let n be an odd integer >1. A necessary and suffi-
cient condition for » to be a Mersenne’s prime is that

p?-1=0 (mod %n(n +1)),

p being the product of all positive odd integers <n.
Theorem II. Let n be an even integer >2. A necessary and
sufficient condition for (n +1) to be a Fermat’s prime is that

(p-1)(p*+1)=0 (mod gn(n+1)),

p being the product of all positive odd integers <n.

Theorem I1I. For any integer >3 to be an even perfect number,
it is necessary and sufficient that (i) « is a triangular number and
(ii) p? - 1=0 (mod z), p being the product of all positive odd integers
<n, where  =3n(n +1) (the nth triangular number).

Proof of Theorem 1. Suppose n is a Mersenne’s prime, say 27+ —1.

p=1.3.5.....(2"-3)=-(211-2). - (21 -4). ....
~2(mod 27+ - 1)
. opi= —(2r1 - 2)! (mod 271 - 1)
1(mod 27+! - 1), by Wilson’s theorem. (1)

Now consider the two sets of numbers, viz; 1,3, 5, ..., 2" -1 and
2r+1,27+3, ...,21 -3,2™*1 1. Each set is clearly a reduced
residue system modulo 2. Therefore to each member I of the first
set corresponds a unique member I’ of the second set such that
I’ =1(mod 27). Taking the product of all such congruences (27!
congruences in number), we have

p(2r+ -1)=1(mod 27)
. p?=1(mod 27) 2)
Since (27, 2741 -1) =1, from (1) and (2) we see that
p%*—1=0 (mod {n(n +1)).

Thus the condition is necessary.

If p?-1=0 (mod n(n +1)/2), it immediately follows that = is a
prime and = +1 is a power of 2, since n is odd >1; so that n is a
Mersenne’s prime. Hence the condition is sufficient.

Proof of Theorem II. Suppose (n+1) is a Fermat’s prime, say
2% +1. Since n is an even integer >2, r=1.

p=1.3.5.....2¥-1)=-2¥. - (2¥-2)..... —2(mod 2% +1)
Since =1, p?=(2%)! (mod 2% +1)
= —1(mod 2% +1) by Wilson’s theorem.
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Using the same argument as in the proof of theorem I, we can
prove that p=1(mod 2%¥-1).
Thus we see that

(p-1)(p2+1)=0 (mod 4n(n +1))

and so the condition is necessary.

If (p-1)(p*+1)=0(mod }n(n +1)), it immediately follows that
(n+1) is a prime and %= is a power of 2, since % is even >2. By the
well-known result that if 2¢+1 is a prime, then ¢ is a power of 2,
it follows that (» +1) is a Fermat’s prime. Hence the condition is
sufficient.

Proof of Theorem I1I. Suppose z is an even perfect number.
It is well known that « must be of Euclid’s type, namely 27(27+ — 1)
where 271 -1 is a prime. Clearly = is the (27+! —1)th triangular
number, so that the condition (i) is satisfied and (ii) is also satisfied
in virtue of Theorem I. Thus the conditions are necessary.

If x> 3 is a triangular number, say 3n(n +1) and p? - 1 =0 (mod x),
p being the product of all positive odd integers <n, we shall prove
that » is odd >1. Since >3, n>>2. Suppose if possible that » is
even; then by the above congruence it is clear that in is a power of
2, say 2" and n+1=2"1+1 is a prime. By the result already
mentioned in the proof of theorem II, it follows that (n+1) is &
Fermat’s prime and hence p2+1=0(mod (n +1)). But by hypo-
thesis we have p?-1=0 (mod (n+1)). Therefore (n+1) must
divide 2 which is a contradiction to the supposition that » is even.
Thus » is odd >1. By theorem I, it follows that » is a Mersenne’s
prime; so that x is an even perfect number. Hence the conditions
are sufficient.
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3043. Volume of a triangular pyramid

Let O, P,, P,, P, be the vertices and V the volume. The following
two determinantal formulae

36V2=0P20P0OP% 1 cos (1,2) cos(l1,3)
cos (2, 1) 1 cos (2, 3)
cos (3,1) cos (3, 2) 1 (1)
and
36V2=
i OP} (OP} +OP; - P,P3)/2 (OP:+OP: - P,P%)2
(OP; +OP: - P,P%)/2 OP} (OP} +OP3 - P,P%)/2
(OP; +OP} — P,P%)/2 (OP%+OP: - P,P%)/2 OP%
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