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ON FERMAT'S LAST THEOREM 

BY Louis LONG 

In my note in the December 1960 Gazette I proved that if there is 
an odd prime p and numbers a, b, c prime to p such that 

a2p + b2p =c2p (1) 

then p necessarily has one of the forms 120k + 1, 120k + 49. 
In the present note I extend the range of values of p for which 

equation (1) has no solution with a, b, c prime to p. My method is to 
find values of p for which one of the numbers a, b, c in equation (1) is 
necessarily divisible by 11. 

Any odd prime p has one of the forms 

10k?1, 10k?3 

(for numbers of the form 10k ? 5 are not prime). I showed in my 
previous note that (1) has no solution prime to p when p has the 
forms 5k ? 2, and so there remains to consider only values of p of 
the form 10k ?+ 1. I have obtained no results in the case 10k + 1 
and I shall now consider the case 10k - 1. With p = 10k - 1 equation 
(1) takes the form 

(a2)10k-1 + (b2)10k-1 = (c2)10k-1 

and since, by Fermat's little theorem, x1?= 1 (mod 11), for any x, 
we have 

a-2+b-2=c-2 (mod 11) 

that is 

b2c2 + c2-ab2= 0 (mod 11) (1.1) 

The quadratic residues of 11 are 

+1, -2, +3, +4, +5 (1.2) 
Because none of a, b, c is divisible by p, it follows as in my previous 

note that c2 - a2, c2 - b2, a2 + b2 are all squares so that we may write 

c2 -a2 =A2 (2) 
c2- b2= B2 (3) 
a2+ b2=D2 (4) 

Considering the quadratic residues to modulus 11, listed in (1.2), and 
writing h2 for the remainder when h2 is divided by 11, we see that 
to any value of c2 correspond only two possible values of a2. Let 
s, t be the two values of a2 for a given c2; it follows that the two 
values of b2 are all s and t. If a2 and b2 have the same value, then 
by (4) we have 2a2 =D2 (mod 11), which is impossible since 2 is not a 
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quadratic residue of 11. Therefore a 2=s and b2= t (or vice-versa) 
and so 

a2+b2-c2 (mod 11) (5) 

Writing (1.1) in the form 

c2(a2+ b2)=a2b2 (mod 11) (6) 

it follows that 

c4 =a2b2 (mod 11) (7) 

Similarly 

b4= -a2c2 (mod 11), (8) 
a4= -b2c2 (mod 11) (9) 

From (7), (8), (9) we obtain 

c4=a4+b4 (mod 11) (10) 
and from (5) 

c4 = a4+ b4+2a2b2 (mod 11) (10.1) 

whence 

2a2b2=0 (mod 11) 

contradicting the hypothesis that neither a nor b is divisible by 11. 
Thus we may suppose that b is divisible by 11. 

Hence the equation (1) 
a2=b2 (mod 11) 

that is, c2- a2 is divisible by 11. 

But 

c- a2p = (c2- a2)R 

since (c2)p - (a2)P is divisible by c2 - a2, and 

R = c2(P-l) + c2(P-2)a2+... +a2(p-1) 

= c2(p-1) -a2(P-1) +a2(a2(P-2) -a2(p-2)) + ... p . a2(P-1) 

= lls +p. a2(P-1) 

Since R is a square, p . a2(p-1) is a quadratic residue of 11 and there- 
fore p itself is a quadratic residue of 11. 

Thus we have arrived at the following conclusion. 

If p is a prime of the form 10k - 1 then equation (1) has no solution 
a, b, c prime to p if p is a quadratic non-residue of 11. 

From my previous note we know that there is no solution of (1) 
prime to p unless p has one of the forms 
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120+ 1, 1201+ 49, 

only the second of which is of the form lOk -1. It remains only to 
see which of the numbers 120 +49 is a quadratic non-residue of 11. 
Since 1201 +49= 1211+44-1+5, and since the non-residues of 11 
are 

-1, +2, -3, -4, -5, 

we have 

1-5=1, -2,3,4,5 (mod 11) 
and so for the following values of p 

120(11m+6)+49 =1320n-551, (n=m +1) 

120(11m+3)+49 =1320n +409, (n=m) 

120 (1lm + 8)+49 = 1320n-311, (n =m+1) 

120(11m+9)+49 =1320n-191, (n=m+1) 

120(1llm+10)+49 = 1320n + 71 , (n =m +1) 

equation (1) has no solution with a, b, c prime to p. 
These values are all different from those already found in my 

previous note. 
The method we have used for the prime 11 may be used success- 

fully for any other prime, although we do not always obtain new 
values of p in this way. It is perhaps worth remarking, too, that 
the proof in my previous note which showed that the equation 

a2P + b2p = C2p 

has no solution in integers prime to p when p has either of the forms 
5m ? 2, is valid whether p is prime or not and so the equation 

an +bn=cn 

has no solution with a, b, c prime to n when the terminal digit of n 
is 4 or 6. 

Fair- View House L.L. 
Stratton-on-the-Fosse, Near Bath 
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