
MAT 211 Introduction to Linear Algebra
Spring 2011
Final exam

Problem 1. Use Gauss–Jordan elimination to find all solutions of the fol-
lowing system: ∣∣∣∣∣∣∣∣

x1 + 2x3 + 4x4 = −8
x2 − 3x3 − x4 = 6

3x1 + 4x2 − 6x3 + 8x4 = 0
− x2 + 3x3 + 4x4 = −12

∣∣∣∣∣∣∣∣
Solution. We write the system in matrix form and use Gauss–Jordan elim-
ination:

1 0 2 4
0 1 −3 −1
3 4 −6 8
0 −1 3 4

∣∣∣∣∣∣∣∣
−8
6
0
−12

 −3 · I →


1 0 2 4
0 1 −3 −1
0 4 −12 −4
0 −1 3 4

∣∣∣∣∣∣∣∣
−8
6
24
−12

 −4 · II
+1 · II

→


1 0 2 4
0 1 −3 −1
0 0 0 0
0 0 0 3

∣∣∣∣∣∣∣∣
−8
6
0
−6

 move to IV
move to III

→


1 0 2 4
0 1 −3 −1
0 0 0 3
0 0 0 0

∣∣∣∣∣∣∣∣
−8
6
−6
0

 ÷3
→


1 0 2 4
0 1 −3 −1
0 0 0 1
0 0 0 0

∣∣∣∣∣∣∣∣
−8
6
−2
0


−4 · III
+1 · III →


1 0 2 0
0 1 −3 0
0 0 0 1
0 0 0 0

∣∣∣∣∣∣∣∣
0
4
−2
0


We see that x1, x2 and x4 are leading variables, while x3 is a free variable.
We set x3 = s, and then x1 = −2x3, x2 = 3x3 + 4, and x4 = −2, so therefore

x1
x2
x3
x4

 =


−2s

3s+ 4
s
−2

 = s


−2
3
1
0

+


0
4
0
−2
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Problem 2. Find the matrices of the following linear transformations from
R2 to R2:

1. Counterclockwise rotation through an angle of 2π/3.

2. Reflection about the line x = y.

3. Orthogonal projection onto the line x+ 2y = 0.

Which of these transformations are invertible?

Solution. For the first problem, we use the rotation formula:[
cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

]
=

[
−1/2 −

√
3/2√

3/2 −1/2

]
.

For the second problem, it is convenient to introduce the basis B = (~v1, ~v2),
where ~v1 is a vector on the line, and ~v2 is a vector orthogonal to the line:

~v1 =

[
1
1

]
, ~v2 =

[
1
−1

]
.

Then T (~v1) = ~v1, T (~v2) = −~v2, so the matrix B of the transformation T
with respect to the basis B is

B =

[
1 0
0 −1

]
The matrix of T with respect to the standard basis is

A = SBS−1 =

[
1 1
1 −1

] [
1 0
0 −1

] [
1 1
1 −1

]−1
=

[
1 1
−1 1

]
1

2

[
−1 1
1 1

]
=

[
0 1
1 0

]
.

For the third problem, the solution is similar. We introduce the basis B =
(~v1, ~v2), where ~v1 is a vector on the line, and ~v2 is a vector orthogonal to the
line:

~v1 =

[
2
−1

]
, ~v2 =

[
1
2

]
.

Then T (~v1) = ~v1, T (~v2) = ~0, so the matrix B of the transformation T with
respect to the basis B is

B =

[
1 0
0 0

]
The matrix of T with respect to the standard basis is

A = SBS−1 =

[
2 1
−1 2

] [
1 0
0 0

] [
2 1
−1 2

]−1
=

[
2 0
−1 0

]
1

5

[
2 −1
1 2

]
=

[
4/5 −2/5
−2/5 1/5

]
.

2



Problem 3. Find the inverse of the matrix 1 1 1
1 2 3
1 3 6


Solution. To find the inverse, we adjoin a 3×3 identity matrix and find the
reduced row echelon form of the resulting 3× 6 matrix: 1 1 1

1 2 3
1 3 6

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 −1 · I
−1 · I

→

 1 1 1
0 1 2
0 2 5

∣∣∣∣∣∣
1 0 0
−1 1 0
−1 0 1

 −1 · II

−2 · II
→

 1 0 −1
0 1 2
0 0 1

∣∣∣∣∣∣
2 −1 0
−1 1 0
1 −2 1

 +1 · III
−2 · III →

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
3 −3 1
−3 5 −2
1 −2 1


The matrix in the right hand side is the inverse: 3 −3 1

−3 5 −2
1 −2 1

 =

 1 1 1
1 2 3
1 3 6

−1 .
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Problem 4. Find the matrix B of the linear transformation T (~x) = A~x,
where

A =

[
1 2
3 4

]
with respect to the basis B = (~v1, ~v2), where

~v1 =

[
1
1

]
, ~v2 =

[
1
2

]
.

Solution. Let S be the change of basis matrix:

S = [~v1 ~v2] =

[
1 1
1 2

]
.

Then the matrix B of the transformation T with respect to the basis B is

B = S−1AS =

[
1 1
1 2

]−1 [
1 2
3 4

] [
1 1
1 2

]
=

=

[
2 −1
−1 1

] [
1 2
3 4

] [
1 1
1 2

]
=

[
−1 0
2 2

] [
1 1
1 2

]
=

[
−1 −1
4 6

]
.
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Problem 5. Consider the vector

~v =

 1
1
1


in R3.

1. Find a basis of the subspace of R3 consisting of all vectors perpendicular
to ~v.

2. Find an orthonormal basis of this subspace.

Solution. A vector

~x =

 x1
x2
x3


is orthogonal to ~v if and only if their dot product is zero:

x1 + x2 + x3 = 0.

In this equation, x1 is a leading variable, while x2 and x3 are free. Setting
x2 = s and x3 = t, we get x1

x2
x3

 =

 −s− ts
t

 = s

 −1
1
0

+ t

 −1
0
1

 ,
so the vectors

~w1 =

 −1
1
0

 , ~w2 =

 −1
0
1

 ,
form a basis for the subspace.

To find an orthonormal basis for this subspace, we perform the Gram–
Schmidt process on ~w1 and ~w2:

~u1 =
~w1

||~w1

=

 −1/
√

2

1/
√

2
0

 , ~w⊥2 = ~w2−(~w2·~u1)~u1 =

 −1/2
1/2
1

 , ~u2 =
~w⊥2
||~w⊥2 ||

=

 −1/
√

6

1/
√

6

2/
√

6

 .
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Problem 6. Find the determinant of the following matrix:
5 4 0 0 0
6 7 0 0 0
3 4 5 6 7
2 1 0 1 2
2 1 0 0 1


Solution. The third element in the third row is the only non-zero element
in its column, so any pattern giving a non-zero value will contain it:

5 4 0 0 0
6 7 0 0 0
3 4 ©5 6 7
2 1 0 1 2
2 1 0 0 1


Any pattern containing this 5 either contains the fourth 1 in the fourth
column, or is zero. Similarly, any pattern containing these two has to contain
the 1 in the lower right corner, or be zero:

5 4 0 0 0
6 7 0 0 0
3 4 ©5 6 7
2 1 0 ©1 2
2 1 0 0 ©1


Therefore, there are two non-zero patterns, one of them having disorder 0,
and the other having disorder 1:
©5 4 0 0 0
6 ©7 0 0 0
3 4 ©5 6 7
2 1 0 ©1 2
2 1 0 0 ©1

→ 5·7·5·1·1 = 175,


5 ©4 0 0 0
©6 7 0 0 0
3 4 ©5 6 7
2 1 0 ©1 2
2 1 0 0 ©1

→ (−1)4·6·5·1·1 = −120,

so the determinant is 170− 125 = 55.
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Problem 7. Let A be the matrix

A =

 4 0 −2
0 1 0
1 0 1


1. Write down the characteristic equation of A.

2. Find the eigenvalues of A and their algebraic multiplicities.

3. For each eigenvalue, find a basis for the corresponding eigenspace. Find
the geometric multiplicities of the eigenvalues of A.

4. Is the matrix A diagonalizable? If it is, find an invertible matrix S such
that the matrix

D = S−1AS

is a diagonal matrix, and find D.

Solution. The characteristic equation is

det(A−λ·I3) =

∣∣∣∣∣∣
4− λ 0 −2

0 1− λ 0
1 0 1− λ

∣∣∣∣∣∣ = (4−λ)(1−λ)(1−λ)−(−2)(1−λ)(1) =

= (1− λ)(λ2 − 5λ+ 6) = (1− λ)(2− λ)(3− λ).

The eigenvalues are 1, 2, and 3, all with multiplicity one.
For λ = 1, the eigenspace is

E1 = ker(A− I3) = ker

 3 0 −2
0 0 0
1 0 0

 .
We set up the system 3 0 −2

0 0 0
1 0 0

 x1
x2
x3

 =

 0
0
0

 .
Solving it, we get that  x1

x2
x3

 = s

 0
1
0

 ,
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so the eigenspace E1 is spanned by

E1 = Span

 0
1
0

 = Span~v1.

Similarly, for λ = 2 the eigenspace is

E2 = ker(A− 2I3) = ker

 2 0 −2
0 −1 0
1 0 −1

 = Span

 1
0
1

 = Span~v2,

and for λ = 3 we get

E3 = ker(A− 3I3) = ker

 1 0 −2
0 −2 0
1 0 −2

 = Span

 2
0
1

 = Span~v3.

The three eigenvectors ~v1, ~v2 and ~v3 correspond to different eigenval-
ues and are therefore linearly independent, so they form an eigenbasis for
A. Therefore, the matrix A is diagonalizable—if we write it in terms of its
eigenbasis, we will get a diagonal matrix. Let S be the change of base matrix
to this eigenbasis:

S =

 0 1 2
1 0 0
0 1 1

 ,
then the matrix

D = S−1AS =

 1 0 0
0 2 0
0 0 3


is diagonal, and the diagonal entries correspond to the eigenvalues of A.
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Problem 8. Let P2 denote the space of polynomials of degree less than or
equal to 2. Let T from P2 to P2 be defined as

T (f) = 2f ′ + f ′′.

1. Show that T is a linear transformation.

2. Let B = (1, t, t2) be the standard basis of P2. Find the matrix B of T
with respect to the basis B.

3. Find a basis for the kernel of T and a basis for the image of T .

4. Write down the characteristic equation for the matrix B that you found.
Find the eigenvalues of B.

5. For each eigenvalue, find a basis for the corresponding eigenspace.

6. Is the matrix B diagonalizable?

Solution.
To check that T is linear, we need to show that it preserves sums:

T (f1 + f2 = 2(f1 + f2)
′ + (f1 + f2)

′′ = 2f ′1 + f ′′1 + 2f ′2 + f ′′2 = T (f1) + T (f2)

and scalar products:

T (kf) = 2(kf)′ + (kf)′′ = 2kf ′ + kf ′′ = k(2f ′ + f ′′) = kT (f).

To find the matrix B, we find the B-coordinate vectors of the images of the
basis elements under T :

[T (1)]B = [0]B =

 0
0
0

 , [T (t)]B = [2]B =

 2
0
0

 , [T (t2)]B = [4t+2]B =

 2
4
0

 ,
and then put these vectors together:

B =

 0 2 2
0 0 4
0 0 0

 .
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The first column vector is zero, and the second and third are linearly
independent. Therefore, the kernel of B is spanned by the vector 1

0
0

 ,
this corresponds to the fact that the transformation T sends all constant
polynomials to zero. The image is spanned by the second and third column
vectors:  2

0
0

 ,
 2

4
0

 .
The characteristic equation for B is

det(B − λI3) =

∣∣∣∣∣∣
−λ 2 2
0 −λ 4
0 0 −λ

∣∣∣∣∣∣ = (−λ)3,

there is only one eigenvalue λ = 0 with algebraic multiplicity 3. The eigenspace
corresponding to a zero eigenvalue is the kernel of the matrix, and we’ve found
that the kernel is spanned by one vector. Since there is only one linearly in-
dependent eigenvector, the matrix B is not diagonalizable.

The matrix B has the property that raising it to a sufficiently high power
gives the zero matrix, in this case B3 is the zero matrix. It turns out that
this is equivalent to the characteristic polynomial being (−λ)n. Matrices of
this kind are called nilpotent, they are never diagonalizable.
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