MAT 211 Introduction to Linear Algebra
 Spring 2011
 Final exam

Problem 1. Use Gauss-Jordan elimination to find all solutions of the following system:

$$
\left|\begin{array}{rl}
x_{1}+2 x_{3}+4 x_{4}=c & -8 \\
& \\
3 x_{1}-3 x_{3}-x_{4} & =6 \\
& +4 x_{2}-6 x_{3}+8 x_{4}= \\
& -x_{2}+3 x_{3}+4 x_{4}= \\
= & -12
\end{array}\right|
$$

Solution. We write the system in matrix form and use Gauss-Jordan elimination:

$$
\left.\left.\left.\begin{array}{l}
{\left[\begin{array}{cccc|c}
1 & 0 & 2 & 4 & -8 \\
0 & 1 & -3 & -1 & 6 \\
3 & 4 & -6 & 8 & 0 \\
0 & -1 & 3 & 4 & -12
\end{array}\right]-3 \cdot \mathrm{I} \rightarrow\left[\begin{array}{cccc|c}
1 & 0 & 2 & 4 & -8 \\
0 & 1 & -3 & -1 & 6 \\
0 & 4 & -12 & -4 & 24 \\
0 & -1 & 3 & 4 & -12
\end{array}\right] \begin{array}{c}
\\
-4 \cdot \text { II } \\
+1 \cdot \text { II }
\end{array} \rightarrow} \\
{\left[\begin{array}{cccc|c}
1 & 0 & 2 & 4 & -8 \\
0 & 1 & -3 & -1 & 6 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & -6
\end{array}\right] \begin{array}{c}
\text { move to IV } \\
\text { move to III }
\end{array} \rightarrow\left[\begin{array}{cccc|c}
1 & 0 & 2 & 4 & -8 \\
0 & 1 & -3 & -1 & 6 \\
0 & 0 & 0 & 3 & -6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \div 3 \rightarrow} \\
\hline
\end{array}\right] \begin{array}{cccc|c}
1 & 0 & 2 & 4 & -8 \\
0 & 1 & -3 & -1 & 6 \\
0 & 0 & 0 & 1 & -4 \cdot \text { III } \\
0 & 0 & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{cccc|c}
1 & 0 & 2 & 0 & 0 \\
0 & 1 & -3 & 0 & 4 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\right) .
$$

We see that x_{1}, x_{2} and x_{4} are leading variables, while x_{3} is a free variable. We set $x_{3}=s$, and then $x_{1}=-2 x_{3}, x_{2}=3 x_{3}+4$, and $x_{4}=-2$, so therefore

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 s \\
3 s+4 \\
s \\
-2
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
3 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
4 \\
0 \\
-2
\end{array}\right]
$$

Problem 2. Find the matrices of the following linear transformations from \mathbb{R}^{2} to \mathbb{R}^{2} :

1. Counterclockwise rotation through an angle of $2 \pi / 3$.
2. Reflection about the line $x=y$.
3. Orthogonal projection onto the line $x+2 y=0$.

Which of these transformations are invertible?
Solution. For the first problem, we use the rotation formula:

$$
\left[\begin{array}{cc}
\cos (2 \pi / 3) & -\sin (2 \pi / 3) \\
\sin (2 \pi / 3) & \cos (2 \pi / 3)
\end{array}\right]=\left[\begin{array}{cc}
-1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right] .
$$

For the second problem, it is convenient to introduce the basis $\mathcal{B}=\left(\vec{v}_{1}, \vec{v}_{2}\right)$, where \vec{v}_{1} is a vector on the line, and \vec{v}_{2} is a vector orthogonal to the line:

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

Then $T\left(\vec{v}_{1}\right)=\vec{v}_{1}, T\left(\vec{v}_{2}\right)=-\vec{v}_{2}$, so the matrix B of the transformation T with respect to the basis \mathcal{B} is

$$
B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

The matrix of T with respect to the standard basis is
$A=S B S^{-1}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
For the third problem, the solution is similar. We introduce the basis $\mathcal{B}=$ $\left(\vec{v}_{1}, \vec{v}_{2}\right)$, where \vec{v}_{1} is a vector on the line, and \vec{v}_{2} is a vector orthogonal to the line:

$$
\vec{v}_{1}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Then $T\left(\vec{v}_{1}\right)=\vec{v}_{1}, T\left(\vec{v}_{2}\right)=\overrightarrow{0}$, so the matrix B of the transformation T with respect to the basis \mathcal{B} is

$$
B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

The matrix of T with respect to the standard basis is
$A=S B S^{-1}=\left[\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right]^{-1}=\left[\begin{array}{cc}2 & 0 \\ -1 & 0\end{array}\right] \frac{1}{5}\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}4 / 5 & -2 / 5 \\ -2 / 5 & 1 / 5\end{array}\right]$

Problem 3. Find the inverse of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{array}\right]
$$

Solution. To find the inverse, we adjoin a 3×3 identity matrix and find the reduced row echelon form of the resulting 3×6 matrix:

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 3 & 0 & 1 & 0 \\
1 & 3 & 6 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
-1 \cdot \mathrm{I} \\
-1 \cdot \mathrm{I}
\end{array} \rightarrow\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & -1 & 1 & 0 \\
0 & 2 & 5 & -1 & 0 & 1
\end{array}\right] \begin{array}{c}
-1 \cdot \mathrm{II} \\
-2 \cdot \mathrm{II}
\end{array} \rightarrow} \\
& {\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & 2 & -1 & 0 \\
0 & 1 & 2 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 & -2 & 1
\end{array}\right]+\begin{array}{l}
+1 \cdot \mathrm{III} \\
-2 \cdot \mathrm{III}
\end{array} \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 3 & -3 & 1 \\
0 & 1 & 0 & -3 & 5 & -2 \\
0 & 0 & 1 & 1 & -2 & 1
\end{array}\right]}
\end{aligned}
$$

The matrix in the right hand side is the inverse:

$$
\left[\begin{array}{ccc}
3 & -3 & 1 \\
-3 & 5 & -2 \\
1 & -2 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{array}\right]^{-1}
$$

Problem 4. Find the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$, where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

with respect to the basis $\mathcal{B}=\left(\vec{v}_{1}, \vec{v}_{2}\right)$, where

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Solution. Let S be the change of basis matrix:

$$
S=\left[\vec{v}_{1} \vec{v}_{2}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] .
$$

Then the matrix B of the transformation T with respect to the basis \mathcal{B} is

$$
\begin{gathered}
B=S^{-1} A S=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]= \\
=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
2 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
4 & 6
\end{array}\right] .
\end{gathered}
$$

Problem 5. Consider the vector

$$
\vec{v}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

in \mathbb{R}^{3}.

1. Find a basis of the subspace of \mathbb{R}^{3} consisting of all vectors perpendicular to \vec{v}.
2. Find an orthonormal basis of this subspace.

Solution. A vector

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

is orthogonal to \vec{v} if and only if their dot product is zero:

$$
x_{1}+x_{2}+x_{3}=0 .
$$

In this equation, x_{1} is a leading variable, while x_{2} and x_{3} are free. Setting $x_{2}=s$ and $x_{3}=t$, we get

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-s-t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

so the vectors

$$
\vec{w}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \quad \vec{w}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

form a basis for the subspace.
To find an orthonormal basis for this subspace, we perform the GramSchmidt process on \vec{w}_{1} and \vec{w}_{2} :
$\vec{u}_{1}=\frac{\vec{w}_{1}}{\| \vec{w}_{1}}=\left[\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0\end{array}\right], \quad \vec{w}_{2}^{\perp}=\vec{w}_{2}-\left(\vec{w}_{2} \cdot \vec{u}_{1}\right) \vec{u}_{1}=\left[\begin{array}{c}-1 / 2 \\ 1 / 2 \\ 1\end{array}\right], \quad \vec{u}_{2}=\frac{\vec{w}_{2}^{\perp}}{\left\|\vec{w}_{2}^{\perp}\right\|}=\left[\begin{array}{c}-1 / \sqrt{6} \\ 1 / \sqrt{6} \\ 2 / \sqrt{6}\end{array}\right]$.

Problem 6. Find the determinant of the following matrix:

$$
\left[\begin{array}{lllll}
5 & 4 & 0 & 0 & 0 \\
6 & 7 & 0 & 0 & 0 \\
3 & 4 & 5 & 6 & 7 \\
2 & 1 & 0 & 1 & 2 \\
2 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Solution. The third element in the third row is the only non-zero element in its column, so any pattern giving a non-zero value will contain it:

$$
\left[\begin{array}{lllll}
5 & 4 & 0 & 0 & 0 \\
6 & 7 & 0 & 0 & 0 \\
3 & 4 & 5 & 6 & 7 \\
2 & 1 & 0 & 1 & 2 \\
2 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Any pattern containing this 5 either contains the fourth 1 in the fourth column, or is zero. Similarly, any pattern containing these two has to contain the 1 in the lower right corner, or be zero:

$$
\left[\begin{array}{lllll}
5 & 4 & 0 & 0 & 0 \\
6 & 7 & 0 & 0 & 0 \\
3 & 4 & (5) & 6 & 7 \\
2 & 1 & 0 & (1) & 2 \\
2 & 1 & 0 & 0 & (1)
\end{array}\right]
$$

Therefore, there are two non-zero patterns, one of them having disorder 0 , and the other having disorder 1 :
$\left[\begin{array}{lllll}5 & 4 & 0 & 0 & 0 \\ 6 & (9) & 0 & 0 & 0 \\ 3 & 4 & (5) & 6 & 7 \\ 2 & 1 & 0 & (1) & 2 \\ 2 & 1 & 0 & 0 & (1)\end{array}\right] \rightarrow 5 \cdot 7 \cdot 5 \cdot 1 \cdot 1=175,\left[\begin{array}{ccccc}5 & (4) & 0 & 0 & 0 \\ (6) & 7 & 0 & 0 & 0 \\ 3 & 4 & (5) & 6 & 7 \\ 2 & 1 & 0 & (1) & 2 \\ 2 & 1 & 0 & 0 & (1)\end{array}\right] \rightarrow(-1) 4 \cdot 6 \cdot 5 \cdot 1 \cdot 1=-120$,
so the determinant is $170-125=55$.

Problem 7. Let A be the matrix

$$
A=\left[\begin{array}{ccc}
4 & 0 & -2 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

1. Write down the characteristic equation of A.
2. Find the eigenvalues of A and their algebraic multiplicities.
3. For each eigenvalue, find a basis for the corresponding eigenspace. Find the geometric multiplicities of the eigenvalues of A.
4. Is the matrix A diagonalizable? If it is, find an invertible matrix S such that the matrix

$$
D=S^{-1} A S
$$

is a diagonal matrix, and find D.
Solution. The characteristic equation is

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda \cdot I_{3}\right)= & \left|\begin{array}{ccc}
4-\lambda & 0 & -2 \\
0 & 1-\lambda & 0 \\
1 & 0 & 1-\lambda
\end{array}\right|=(4-\lambda)(1-\lambda)(1-\lambda)-(-2)(1-\lambda)(1)= \\
& =(1-\lambda)\left(\lambda^{2}-5 \lambda+6\right)=(1-\lambda)(2-\lambda)(3-\lambda)
\end{aligned}
$$

The eigenvalues are 1,2 , and 3 , all with multiplicity one.
For $\lambda=1$, the eigenspace is

$$
E_{1}=\operatorname{ker}\left(A-I_{3}\right)=\operatorname{ker}\left[\begin{array}{ccc}
3 & 0 & -2 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

We set up the system

$$
\left[\begin{array}{ccc}
3 & 0 & -2 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Solving it, we get that

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=s\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

so the eigenspace E_{1} is spanned by

$$
E_{1}=\operatorname{Span}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\operatorname{Span} \vec{v}_{1} .
$$

Similarly, for $\lambda=2$ the eigenspace is

$$
E_{2}=\operatorname{ker}\left(A-2 I_{3}\right)=\operatorname{ker}\left[\begin{array}{ccc}
2 & 0 & -2 \\
0 & -1 & 0 \\
1 & 0 & -1
\end{array}\right]=\operatorname{Span}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\operatorname{Span} \vec{v}_{2}
$$

and for $\lambda=3$ we get

$$
E_{3}=\operatorname{ker}\left(A-3 I_{3}\right)=\operatorname{ker}\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & -2 & 0 \\
1 & 0 & -2
\end{array}\right]=\operatorname{Span}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=\operatorname{Span} \vec{v}_{3} .
$$

The three eigenvectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} correspond to different eigenvalues and are therefore linearly independent, so they form an eigenbasis for A. Therefore, the matrix A is diagonalizable - if we write it in terms of its eigenbasis, we will get a diagonal matrix. Let S be the change of base matrix to this eigenbasis:

$$
S=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

then the matrix

$$
D=S^{-1} A S=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

is diagonal, and the diagonal entries correspond to the eigenvalues of A.

Problem 8. Let P_{2} denote the space of polynomials of degree less than or equal to 2. Let T from P_{2} to P_{2} be defined as

$$
T(f)=2 f^{\prime}+f^{\prime \prime}
$$

1. Show that T is a linear transformation.
2. Let $\mathcal{B}=\left(1, t, t^{2}\right)$ be the standard basis of P_{2}. Find the matrix B of T with respect to the basis \mathcal{B}.
3. Find a basis for the kernel of T and a basis for the image of T.
4. Write down the characteristic equation for the matrix B that you found. Find the eigenvalues of B.
5. For each eigenvalue, find a basis for the corresponding eigenspace.
6. Is the matrix B diagonalizable?

Solution.

To check that T is linear, we need to show that it preserves sums:

$$
T\left(f_{1}+f_{2}=2\left(f_{1}+f_{2}\right)^{\prime}+\left(f_{1}+f_{2}\right)^{\prime \prime}=2 f_{1}^{\prime}+f_{1}^{\prime \prime}+2 f_{2}^{\prime}+f_{2}^{\prime \prime}=T\left(f_{1}\right)+T\left(f_{2}\right)\right.
$$

and scalar products:

$$
T(k f)=2(k f)^{\prime}+(k f)^{\prime \prime}=2 k f^{\prime}+k f^{\prime \prime}=k\left(2 f^{\prime}+f^{\prime \prime}\right)=k T(f) .
$$

To find the matrix B, we find the \mathcal{B}-coordinate vectors of the images of the basis elements under T :

$$
[T(1)]_{\mathcal{B}}=[0]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad[T(t)]_{\mathcal{B}}=[2]_{\mathcal{B}}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right], \quad\left[T\left(t^{2}\right)\right]_{\mathcal{B}}=[4 t+2]_{\mathcal{B}}=\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right]
$$

and then put these vectors together:

$$
B=\left[\begin{array}{lll}
0 & 2 & 2 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

The first column vector is zero, and the second and third are linearly independent. Therefore, the kernel of B is spanned by the vector

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

this corresponds to the fact that the transformation T sends all constant polynomials to zero. The image is spanned by the second and third column vectors:

$$
\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right] .
$$

The characteristic equation for B is

$$
\operatorname{det}\left(B-\lambda I_{3}\right)=\left|\begin{array}{ccc}
-\lambda & 2 & 2 \\
0 & -\lambda & 4 \\
0 & 0 & -\lambda
\end{array}\right|=(-\lambda)^{3},
$$

there is only one eigenvalue $\lambda=0$ with algebraic multiplicity 3 . The eigenspace corresponding to a zero eigenvalue is the kernel of the matrix, and we've found that the kernel is spanned by one vector. Since there is only one linearly independent eigenvector, the matrix B is not diagonalizable.

The matrix B has the property that raising it to a sufficiently high power gives the zero matrix, in this case B^{3} is the zero matrix. It turns out that this is equivalent to the characteristic polynomial being $(-\lambda)^{n}$. Matrices of this kind are called nilpotent, they are never diagonalizable.

