
MAT 211 Introduction to Linear Algebra
Spring 2011
Final exam

Problem 1. Find all solutions of the system∣∣∣∣∣∣
x + 2y + 3z = a
x + 3y + 8z = b
x + 2y + 2z = c

∣∣∣∣∣∣ ,
where a, b and c are arbitrary constants.

Solution. We use Gauss–Jordan elimination:∣∣∣∣∣∣
x + 2y + 3z = a
x + 3y + 8z = b
x + 2y + 2z = c

∣∣∣∣∣∣ −1 · I
−1 · I

→

∣∣∣∣∣∣
x + 2y + 3z = a

y + 5z = b− a
−z = c− a

∣∣∣∣∣∣
−2 · II

→

∣∣∣∣∣∣
x − 7z = 3a− 2b

y + 5z = b− a
−z = c− a

∣∣∣∣∣∣ ×(−1)
→

∣∣∣∣∣∣
x − 7z = 3a− 2b

y + 5z = b− a
z = a− c

∣∣∣∣∣∣
+7 · III
−5 · III →

∣∣∣∣∣∣
x = 10a− 2b− 7c

y = −6a+ b+ 5c
z = a− c

∣∣∣∣∣∣
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Problem 2. Let T be the linear transformation with matrix

A =

[
1/2 −1/2
−1/2 1/2

]
.

(with respect to the standard basis).

1. Find a vector ~v1 that spans the kernel of T and a vector ~v2 that spans
the image of T .

2. Let B be the basis consisting of ~v1 and ~v2. Find the matrix B of T with
respect to the basis B.

3. Describe the transformation T geometrically.

Solution. We see that the second column vector of A is (−1) times the first,
so the vector

~v1 =

[
1
1

]
is in the kernel of A (the kernel cannot be two-dimensional, since then A
would be the zero matrix). Either of the column vectors spans the image,
but it is convenient to rescale them and get rid of the denominators, so we
choose

~v2 =

[
1
−1

]
.

The matrix B is found using the change of basis formula:

B = S−1AS =

[
1 1
1 −1

]−1 [
1/2 −1/2
−1/2 1/2

] [
1 1
1 −1

]

= −1

2

[
−1 −1
−1 1

] [
0 1
0 −1

]
== −1

2

[
0 0
0 −2

]
=

[
0 0
0 −1

]
.

In other words, T (~v1) = ~0 and T (~v2) = ~v2. Since ~v1 and ~v2 are orthogonal,
we conclude that T is an orthogonal projection onto the line spanned by ~v2,
which is the line x+ y = 0.
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Problem 3. Let A be the matrix
1 0 2 4
0 1 −3 −1
3 4 −6 8
0 −1 3 1


1. Find the reduced row-echelon form of A.

2. Find a basis for the kernel of A.

3. Find a basis for the image of A.

Solution.
First we row-reduce:

1 0 2 4
0 1 −3 −1
3 4 −6 8
0 −1 3 1

 −3 · I →


1 0 2 4
0 1 −3 −1
0 4 −12 −4
0 −1 3 1

 −4 · II
+1 · II

→


1 0 2 4
0 1 −3 −1
0 0 0 0
0 0 0 0

 .
To find a basis for the kernel, we look at the free variables. Here x3 and x4
are free, setting x3 = s and x4 = t, we get that

x1
x2
x3
x4

 =


−2s− 4t

3s+ t
s
t

 = s


−2
3
1
0

+ t


−4
1
0
1

 = s~v1 + t~v2.

The vectors ~v1 and ~v2 span the kernel of A.
To find a basis for the image, we instead look at the leading variables.

Since x1 and x2 are leading, the first two columns of A are linearly indepen-
dent, while the others are in their span, hence the image is spanned by the
vectors

~w1 =


1
0
3
0

 , ~w2 =


0
1
4
−1

 .
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Problem 4. Let P2 denote the space of polynomials of degree less than or
equal to two, and let T be the transformation from P2 to P2 be defined by
formula:

T (f(t)) = f(2t− 1)

e.g. if f(t) = t2 + t+ 1, then T (f(t)) = (2t− 1)2 + (2t− 1) + 1 = 4t2 + 2t+ 1.

1. Show that T is a linear transformation.

2. Let B = (1, t, t2) be the standard basis of P2. Find the matrix B of T
with respect to the basis B.

3. Find a basis for the kernel of B (Hint: what is the kernel of the trans-
formation T?)

4. Find a basis for the image of B.

Solution. To show that T is linear, we show that it preserves sums:

T (f(t) + g(t)) = f(2t− 1) + g(2t− 1) = (f + g)(2t− 1) = T ((f + g)(t)

and scalar products:

T (kf(t)) = kf(2t− 1) = (kf)(2t− 1) = T ((kf)(t)).

The action on the standard basis is the following:

T (1) = 1, T (t) = 2t− 1 = −1 + 2t, T (t2) = (2t− 1)2 = 1− 4t+ 4t2,

so the matrix B of T with respect to B is

B =
[

[T (1)]B [T (t)]B [T (t2)]B
]

=

 1 −1 1
0 2 −4
0 0 4


To find the basis for the kernel and the image of T , we note that detB = 8
is non-zero, so the matrix B is non-degenerate. Hence T has trivial kernel,
and by the rank-nullity theorem the dimension of the image is 3, hence the
image is all of P2. Therefore, the image is spanned by B.

Alternatively, the kernel of T is the set of polynomials that become zero
when you substitute 2t − 1 into them, and it is clear that only the zero
polynomial has this property.
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Problem 5. Let V be the subspace of R3 defined by the equation

2x1 − x2 − x3 = 0.

1. Find a basis for V . What is the dimension of V ?

2. Use Gram–Schmidt orthogonalization on this basis to find an orthonor-
mal basis for V .

3. Let T (~x) = projV (~x) be the orthogonal projection onto the space V .
Find a formula for T .

4. Find the matrix A of the linear transformation T .

Solution. The space V is spanned by the vectors

~v1 =

 1
2
0

 , ~v2 =

 1
0
2

 ,
and has dimension two. We apply Gram–Schmidt orthogonalization:

~u1 =
~v1
||~v1||

=

 1/
√

5

2/
√

5
0

 , ~v⊥2 = ~v2−(~v2·~u1)~u1 =

 4/5
−2/5

2

 , ~u2 =
~v⊥2
||~v⊥2 ||

=

 2/
√

30

−1/
√

30

5/
√

30

 .
The formula for the projection onto a space with an orthonormal basis is

projV (~x) = (~x · ~u1)~u1 + (~x · ~u2)~u2.

In matrix form,

projV

 x1
x2
x3

 =

(
x1√

5
+

2x2√
5

) 1/
√

5

2/
√

5
0

+

(
2x1√

30
− x2√

30
+

5x3√
30

) 2/
√

30

−1/
√

30

5/
√

30

 =

=

 x1/5 + 2x2/5
2x1/5 + 4x2/5

0

+

 4x1/30− 2x2/30 + 10x3/30
−2x1/30 + x2/30− 5x3/30

10x1/30− 5x2/30 + 25x3/30

 =

 1
3
x1 + 1

3
x2 + 1

3
x3

1
3
x1 + 5

6
x2 − 1

6
x3

1
3
x1 − 1

6
x2 + 5

6
x3

 =

=

 1/3 1/3 1/3
1/3 5/6 −1/6
1/3 −1/6 5/6

 x1
x2
x3

 .
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Problem 6. Find the determinant of the following matrix:
1 3 2 4
1 6 4 8
1 3 0 0
2 6 4 12


Solution. The easiest way to solve this problem is by row operations:∣∣∣∣∣∣∣∣

1 3 2 4
1 6 4 8
1 3 0 0
2 6 4 12

∣∣∣∣∣∣∣∣
−1 · I
−1 · I
−2 · I

=

∣∣∣∣∣∣∣∣
1 3 2 4
0 3 2 4
0 0 −2 −4
0 0 0 4

∣∣∣∣∣∣∣∣ = 1 · 3 · (−2) · 4 = 24.
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Problem 7. Let A be the matrix 1 a b
0 2 c
0 0 1

 ,
where a, b and c are constant numbers.

1. Find the eigenvalues of A and their algebraic multiplicities.

2. For each eigenvalue, find a basis for the corresponding eigenspace. Find
the geometric multiplicites of the eigenvalues.

3. For what values of a, b and c is the matrix A diagonalizable?

Solution. The characteristic polynomial of A is

det(A− λI3) =

∣∣∣∣∣∣
1− λ a b

0 2− λ c
0 0 1− λ

 = (1− λ)(2− λ)(1− λ),

so the eigenvalues are λ = 1 with algebraic multiplicity 2 and λ = 2 with
algebraic multiplicity 1.

The eigenspace E2 is always one-dimensional, so we describe it first:

E2 = ker(A− 2I3) =

 −1 a b
0 0 c
0 0 −1


By inspection, we see that the vector

~v1 =

 a
1
0


is in the kernel, and hence spans E2.

The eigenspace E1 is the kernel of the matrix A − I3, i.e. the set of
solutions to the system 0 a b

0 1 c
0 0 0

 x1
x2
x3

 =

 0
0
0

 .
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The second equation of the system gives us x2 = −cx3, and plugging this into
the first equation we get (b − ac)x3 = 0. Here there are two possibilities. If
b−ac = 0, then this equation is vacuous, so x1 and x3 are free variables, and
x2 = −cx3. The geometric multiplicity is 2, and a basis for the eigenspace is
then

~v2 =

 1
0
0

 ,
 0
−c
1

 .
If b− ac 6= 0, then x3 = 0 and hence x2 = 0. Then only x1 is a free variable,
and ~v2 spans the eigenspace E1, and the geometric multiplicity is 1.

The matrix A is diagonalizable if and only if the geometric multiplicities
add up to 3, i.e. if and only if b− ac = 0.
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Problem 8. Let

A =

[
a b
c d

]
be an arbitrary 2× 2 matrix.

1. Let p(λ) denote the characteristic polynomial of A:

p(λ) = λ2 + xλ+ y.

Express x and y in terms of the coefficiens of A.

2. Evaluate the matrix.
A2 + xA+ yI2

3. Find a non-zero 2× 2 matrix A such that A2 is the zero matrix.

4. Extra Credit. Show that the does not exist a 2 × 2 matrix A such
that A2 is not the zero matrix, but A3 is the zero matrix.

Solutions. The characteristic polynomial is

p(λ) =

∣∣∣∣ a− λ b
c d− λ

∣∣∣∣ = λ2 − (a+ d)λ+ (ad− bc) = λ2 − λtrA+ detA,

so x = −(a+ d) and y = ad− bc.
We know how to define the powers of a matrix, so we can plug a matrix

into a polynomial:

p(A) = A2 + xA+ y =

[
a b
c d

]2
− (a+ d)

[
a b
c d

]
+ (ad− bc)

[
1 0
0 1

]
=

=

[
a2 + bc ab+ bd
ac+ cd bc+ d2

]
−
[
a(a+ d) b(a+ d)
c(a+ d) d(a+ d)

]
+

[
ad− bc 0

0 ad− bc

]
=

[
0 0
0 0

]
.

In other words, a matrix satisfies its characteristic equation.
For part 3, we are looking for a non-zero matrix A such that A2 = 0.

First of all, det(A2) = (detA)2 = 0, so A must be degenerate. Furthermore,
A satisfies the equation A2−A ·trA+detA = 0, where A2 = 0 and detA = 0.
Therefore, trA = 0, and the characteristic polynomial of A is λ2 = 0, so A
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has one eigenvalue λ = 0 with algebraic multiplicity 2. An example of such
a matrix is [

0 1
0 0

]
For part 4, we note that again detA = 0, so the matrix A satisfies A2 −

A · trA = 0. Multiplying this by A we get that A3 = A2trA. If A3 = 0 and
A2 6= 0, then trA = 0, but then we get a contradiction, since A2 = trA = 0.
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