MAT 211 Introduction to Linear Algebra Spring 2011 Final exam

Problem 1. Find all solutions of the system

$$\begin{vmatrix} x &+ 2y &+ 3z &= a \\ x &+ 3y &+ 8z &= b \\ x &+ 2y &+ 2z &= c \end{vmatrix},$$

where a, b and c are arbitrary constants.

Solution. We use Gauss–Jordan elimination:

Problem 2. Let T be the linear transformation with matrix

$$A = \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}.$$

(with respect to the standard basis).

- 1. Find a vector \vec{v}_1 that spans the kernel of T and a vector \vec{v}_2 that spans the image of T.
- 2. Let \mathcal{B} be the basis consisting of $\vec{v_1}$ and $\vec{v_2}$. Find the matrix B of T with respect to the basis \mathcal{B} .
- 3. Describe the transformation T geometrically.

Solution. We see that the second column vector of A is (-1) times the first, so the vector

$$\vec{v}_1 = \left[\begin{array}{c} 1\\1 \end{array} \right]$$

is in the kernel of A (the kernel cannot be two-dimensional, since then A would be the zero matrix). Either of the column vectors spans the image, but it is convenient to rescale them and get rid of the denominators, so we choose

$$\vec{v}_2 = \begin{bmatrix} 1\\ -1 \end{bmatrix}.$$

The matrix B is found using the change of basis formula:

$$B = S^{-1}AS = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$= -\frac{1}{2} \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$$

In other words, $T(\vec{v}_1) = \vec{0}$ and $T(\vec{v}_2) = \vec{v}_2$. Since \vec{v}_1 and \vec{v}_2 are orthogonal, we conclude that T is an orthogonal projection onto the line spanned by \vec{v}_2 , which is the line x + y = 0.

Problem 3. Let A be the matrix

1	0	2	4
0	1	-3	-1
3	4	-6	8
0	-1	3	1

- 1. Find the reduced row-echelon form of A.
- 2. Find a basis for the kernel of A.
- 3. Find a basis for the image of A.

Solution.

First we row-reduce:

$$\begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 3 & 4 & -6 & 8 \\ 0 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{-3 \cdot I} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 0 & 4 & -12 & -4 \\ 0 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{-4 \cdot II} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 4 & -12 & -4 \\ 0 & -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} -4 \cdot II \\ +1 \cdot II \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

To find a basis for the kernel, we look at the free variables. Here x_3 and x_4 are free, setting $x_3 = s$ and $x_4 = t$, we get that

$$\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix} = \begin{bmatrix} -2s - 4t\\3s + t\\s\\t \end{bmatrix} = s \begin{bmatrix} -2\\3\\1\\0 \end{bmatrix} + t \begin{bmatrix} -4\\1\\0\\1 \end{bmatrix} = s\vec{v_1} + t\vec{v_2}.$$

The vectors \vec{v}_1 and \vec{v}_2 span the kernel of A.

To find a basis for the image, we instead look at the leading variables. Since x_1 and x_2 are leading, the first two columns of A are linearly independent, while the others are in their span, hence the image is spanned by the vectors

$$\vec{w}_1 = \begin{bmatrix} 1\\0\\3\\0 \end{bmatrix}, \quad \vec{w}_2 = \begin{bmatrix} 0\\1\\4\\-1 \end{bmatrix}.$$

Problem 4. Let P_2 denote the space of polynomials of degree less than or equal to two, and let T be the transformation from P_2 to P_2 be defined by formula:

$$T(f(t)) = f(2t - 1)$$

e.g. if $f(t) = t^2 + t + 1$, then $T(f(t)) = (2t - 1)^2 + (2t - 1) + 1 = 4t^2 + 2t + 1$.

- 1. Show that T is a linear transformation.
- 2. Let $\mathcal{B} = (1, t, t^2)$ be the standard basis of P_2 . Find the matrix B of T with respect to the basis \mathcal{B} .
- 3. Find a basis for the kernel of B (Hint: what is the kernel of the transformation T?)
- 4. Find a basis for the image of B.

Solution. To show that T is linear, we show that it preserves sums:

$$T(f(t) + g(t)) = f(2t - 1) + g(2t - 1) = (f + g)(2t - 1) = T((f + g)(t))$$

and scalar products:

$$T(kf(t)) = kf(2t - 1) = (kf)(2t - 1) = T((kf)(t)).$$

The action on the standard basis is the following:

$$T(1) = 1$$
, $T(t) = 2t - 1 = -1 + 2t$, $T(t^2) = (2t - 1)^2 = 1 - 4t + 4t^2$,

so the matrix B of T with respect to \mathcal{B} is

$$B = \begin{bmatrix} [T(1)]_{\mathcal{B}} & [T(t)]_{\mathcal{B}} & [T(t^2)]_{\mathcal{B}} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & 4 \end{bmatrix}$$

To find the basis for the kernel and the image of T, we note that det B = 8 is non-zero, so the matrix B is non-degenerate. Hence T has trivial kernel, and by the rank-nullity theorem the dimension of the image is 3, hence the image is all of P_2 . Therefore, the image is spanned by \mathcal{B} .

Alternatively, the kernel of T is the set of polynomials that become zero when you substitute 2t - 1 into them, and it is clear that only the zero polynomial has this property.

Problem 5. Let V be the subspace of \mathbb{R}^3 defined by the equation

$$2x_1 - x_2 - x_3 = 0.$$

- 1. Find a basis for V. What is the dimension of V?
- 2. Use Gram–Schmidt orthogonalization on this basis to find an orthonormal basis for V.
- 3. Let $T(\vec{x}) = \text{proj}_V(\vec{x})$ be the orthogonal projection onto the space V. Find a formula for T.
- 4. Find the matrix A of the linear transformation T.

Solution. The space V is spanned by the vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1\\0\\2 \end{bmatrix},$$

and has dimension two. We apply Gram-Schmidt orthogonalization:

$$\vec{u}_1 = \frac{\vec{v}_1}{||\vec{v}_1||} = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}, \quad \vec{v}_2^{\perp} = \vec{v}_2 - (\vec{v}_2 \cdot \vec{u}_1)\vec{u}_1 = \begin{bmatrix} 4/5 \\ -2/5 \\ 2 \end{bmatrix}, \quad \vec{u}_2 = \frac{\vec{v}_2^{\perp}}{||\vec{v}_2^{\perp}||} = \begin{bmatrix} 2/\sqrt{30} \\ -1/\sqrt{30} \\ 5/\sqrt{30} \end{bmatrix}$$

The formula for the projection onto a space with an orthonormal basis is

$$\operatorname{proj}_{V}(\vec{x}) = (\vec{x} \cdot \vec{u}_{1})\vec{u}_{1} + (\vec{x} \cdot \vec{u}_{2})\vec{u}_{2}.$$

In matrix form,

$$\operatorname{proj}_{V} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \left(\frac{x_{1}}{\sqrt{5}} + \frac{2x_{2}}{\sqrt{5}} \right) \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix} + \left(\frac{2x_{1}}{\sqrt{30}} - \frac{x_{2}}{\sqrt{30}} + \frac{5x_{3}}{\sqrt{30}} \right) \begin{bmatrix} 2/\sqrt{30} \\ -1/\sqrt{30} \\ 5/\sqrt{30} \end{bmatrix} = \\ = \begin{bmatrix} x_{1}/5 + 2x_{2}/5 \\ 2x_{1}/5 + 4x_{2}/5 \\ 0 \end{bmatrix} + \begin{bmatrix} 4x_{1}/30 - 2x_{2}/30 + 10x_{3}/30 \\ -2x_{1}/30 + x_{2}/30 - 5x_{3}/30 \\ 10x_{1}/30 - 5x_{2}/30 + 25x_{3}/30 \end{bmatrix} = \begin{bmatrix} \frac{1}{3}x_{1} + \frac{1}{3}x_{2} + \frac{1}{3}x_{3} \\ \frac{1}{3}x_{1} + \frac{5}{6}x_{2} - \frac{1}{6}x_{3} \\ \frac{1}{3}x_{1} - \frac{1}{6}x_{2} + \frac{5}{6}x_{3} \end{bmatrix} = \\ = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 5/6 & -1/6 \\ 1/3 & -1/6 & 5/6 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}.$$

Problem 6. Find the determinant of the following matrix:

Solution. The easiest way to solve this problem is by row operations:

$$\begin{vmatrix} 1 & 3 & 2 & 4 \\ 1 & 6 & 4 & 8 \\ 1 & 3 & 0 & 0 \\ 2 & 6 & 4 & 12 \end{vmatrix} -1 \cdot I = \begin{vmatrix} 1 & 3 & 2 & 4 \\ 0 & 3 & 2 & 4 \\ 0 & 0 & -2 & -4 \\ 0 & 0 & 0 & 4 \end{vmatrix} = 1 \cdot 3 \cdot (-2) \cdot 4 = 24.$$

Problem 7. Let A be the matrix

$$\left[\begin{array}{rrrr} 1 & a & b \\ 0 & 2 & c \\ 0 & 0 & 1 \end{array}\right],$$

where a, b and c are constant numbers.

- 1. Find the eigenvalues of A and their algebraic multiplicities.
- 2. For each eigenvalue, find a basis for the corresponding eigenspace. Find the geometric multiplicities of the eigenvalues.
- 3. For what values of a, b and c is the matrix A diagonalizable?

Solution. The characteristic polynomial of A is

$$\det(A - \lambda I_3) = \begin{vmatrix} 1 - \lambda & a & b \\ 0 & 2 - \lambda & c \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda)(1 - \lambda),$$

so the eigenvalues are $\lambda = 1$ with algebraic multiplicity 2 and $\lambda = 2$ with algebraic multiplicity 1.

The eigenspace E_2 is always one-dimensional, so we describe it first:

$$E_2 = \ker(A - 2I_3) = \begin{bmatrix} -1 & a & b \\ 0 & 0 & c \\ 0 & 0 & -1 \end{bmatrix}$$

By inspection, we see that the vector

$$\vec{v}_1 = \left[\begin{array}{c} a \\ 1 \\ 0 \end{array} \right]$$

is in the kernel, and hence spans E_2 .

The eigenspace E_1 is the kernel of the matrix $A - I_3$, i.e. the set of solutions to the system

$$\begin{bmatrix} 0 & a & b \\ 0 & 1 & c \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The second equation of the system gives us $x_2 = -cx_3$, and plugging this into the first equation we get $(b - ac)x_3 = 0$. Here there are two possibilities. If b - ac = 0, then this equation is vacuous, so x_1 and x_3 are free variables, and $x_2 = -cx_3$. The geometric multiplicity is 2, and a basis for the eigenspace is then

$$\vec{v}_2 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-c\\1 \end{bmatrix}.$$

If $b - ac \neq 0$, then $x_3 = 0$ and hence $x_2 = 0$. Then only x_1 is a free variable, and \vec{v}_2 spans the eigenspace E_1 , and the geometric multiplicity is 1.

The matrix A is diagonalizable if and only if the geometric multiplicities add up to 3, i.e. if and only if b - ac = 0.

Problem 8. Let

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

be an arbitrary 2×2 matrix.

1. Let $p(\lambda)$ denote the characteristic polynomial of A:

$$p(\lambda) = \lambda^2 + x\lambda + y.$$

Express x and y in terms of the coefficients of A.

2. Evaluate the matrix.

$$A^2 + xA + yI_2$$

- 3. Find a non-zero 2×2 matrix A such that A^2 is the zero matrix.
- 4. Extra Credit. Show that the does not exist a 2×2 matrix A such that A^2 is not the zero matrix, but A^3 is the zero matrix.

Solutions. The characteristic polynomial is

$$p(\lambda) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = \lambda^2 - (a + d)\lambda + (ad - bc) = \lambda^2 - \lambda \operatorname{tr} A + \det A,$$

so x = -(a+d) and y = ad - bc.

We know how to define the powers of a matrix, so we can plug a matrix into a polynomial:

$$p(A) = A^{2} + xA + y = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{2} - (a+d) \begin{bmatrix} a & b \\ c & d \end{bmatrix} + (ad-bc) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \\ = \begin{bmatrix} a^{2} + bc & ab + bd \\ ac + cd & bc + d^{2} \end{bmatrix} - \begin{bmatrix} a(a+d) & b(a+d) \\ c(a+d) & d(a+d) \end{bmatrix} + \begin{bmatrix} ad - bc & 0 \\ 0 & ad - bc \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

In other words, a matrix satisfies its characteristic equation.

For part 3, we are looking for a non-zero matrix A such that $A^2 = 0$. First of all, $\det(A^2) = (\det A)^2 = 0$, so A must be degenerate. Furthermore, A satisfies the equation $A^2 - A \cdot \operatorname{tr} A + \det A = 0$, where $A^2 = 0$ and $\det A = 0$. Therefore, $\operatorname{tr} A = 0$, and the characteristic polynomial of A is $\lambda^2 = 0$, so A has one eigenvalue $\lambda = 0$ with algebraic multiplicity 2. An example of such a matrix is

$$\left[\begin{array}{rrr} 0 & 1 \\ 0 & 0 \end{array}\right]$$

For part 4, we note that again det A = 0, so the matrix A satisfies $A^2 - A \cdot \text{tr}A = 0$. Multiplying this by A we get that $A^3 = A^2 \text{tr}A$. If $A^3 = 0$ and $A^2 \neq 0$, then trA = 0, but then we get a contradiction, since $A^2 = \text{tr}A = 0$.