Spring 2011
Final exam
Problem 1. Find all solutions of the system

$$
\left|\begin{array}{l}
x+2 y+3 z=a \\
x+3 y+8 z=b \\
x+2 y+2 z=c
\end{array}\right|
$$

where a, b and c are arbitrary constants.
Solution. We use Gauss-Jordan elimination:

$$
\begin{aligned}
& \left|\begin{array}{r}
x+2 y+3 z=a \\
x+3 y+8 z=b \\
x+2 y+2 z=c
\end{array}\right|-1 \cdot I \rightarrow\left|\begin{array}{rl}
x+2 y+3 z & =a \\
y+5 z & =b-a \\
-z & =c-a
\end{array}\right|-I I n+
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{cccc}
x & & & 10 a-2 b-7 c \\
y & & = & -6 a+b+5 c \\
& z & = & a-c
\end{array} \right\rvert\,
\end{aligned}
$$

Problem 2. Let T be the linear transformation with matrix

$$
A=\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right] .
$$

(with respect to the standard basis).

1. Find a vector \vec{v}_{1} that spans the kernel of T and a vector \vec{v}_{2} that spans the image of T.
2. Let \mathcal{B} be the basis consisting of \vec{v}_{1} and \vec{v}_{2}. Find the matrix B of T with respect to the basis \mathcal{B}.
3. Describe the transformation T geometrically.

Solution. We see that the second column vector of A is (-1) times the first, so the vector

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

is in the kernel of A (the kernel cannot be two-dimensional, since then A would be the zero matrix). Either of the column vectors spans the image, but it is convenient to rescale them and get rid of the denominators, so we choose

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

The matrix B is found using the change of basis formula:

$$
\begin{gathered}
B=S^{-1} A S=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
=-\frac{1}{2}\left[\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]==-\frac{1}{2}\left[\begin{array}{cc}
0 & 0 \\
0 & -2
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right] .
\end{gathered}
$$

In other words, $T\left(\vec{v}_{1}\right)=\overrightarrow{0}$ and $T\left(\vec{v}_{2}\right)=\vec{v}_{2}$. Since \vec{v}_{1} and \vec{v}_{2} are orthogonal, we conclude that T is an orthogonal projection onto the line spanned by \vec{v}_{2}, which is the line $x+y=0$.

Problem 3. Let A be the matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
3 & 4 & -6 & 8 \\
0 & -1 & 3 & 1
\end{array}\right]
$$

1. Find the reduced row-echelon form of A.
2. Find a basis for the kernel of A.
3. Find a basis for the image of A.

Solution.

First we row-reduce:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
3 & 4 & -6 & 8 \\
0 & -1 & 3 & 1
\end{array}\right] } & -3 \cdot I
\end{aligned} \begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .\left[\begin{array}{cccc}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
0 & 4 & -12 & -4 \\
0 & -1 & 3 & 1
\end{array}\right]}
\end{aligned}
$$

To find a basis for the kernel, we look at the free variables. Here x_{3} and x_{4} are free, setting $x_{3}=s$ and $x_{4}=t$, we get that

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 s-4 t \\
3 s+t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
3 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-4 \\
1 \\
0 \\
1
\end{array}\right]=s \vec{v}_{1}+t \vec{v}_{2} .
$$

The vectors \vec{v}_{1} and \vec{v}_{2} span the kernel of A.
To find a basis for the image, we instead look at the leading variables. Since x_{1} and x_{2} are leading, the first two columns of A are linearly independent, while the others are in their span, hence the image is spanned by the vectors

$$
\vec{w}_{1}=\left[\begin{array}{l}
1 \\
0 \\
3 \\
0
\end{array}\right], \quad \vec{w}_{2}=\left[\begin{array}{c}
0 \\
1 \\
4 \\
-1
\end{array}\right]
$$

Problem 4. Let P_{2} denote the space of polynomials of degree less than or equal to two, and let T be the transformation from P_{2} to P_{2} be defined by formula:

$$
T(f(t))=f(2 t-1)
$$

e.g. if $f(t)=t^{2}+t+1$, then $T(f(t))=(2 t-1)^{2}+(2 t-1)+1=4 t^{2}+2 t+1$.

1. Show that T is a linear transformation.
2. Let $\mathcal{B}=\left(1, t, t^{2}\right)$ be the standard basis of P_{2}. Find the matrix B of T with respect to the basis \mathcal{B}.
3. Find a basis for the kernel of B (Hint: what is the kernel of the transformation T ?)
4. Find a basis for the image of B.

Solution. To show that T is linear, we show that it preserves sums:

$$
T(f(t)+g(t))=f(2 t-1)+g(2 t-1)=(f+g)(2 t-1)=T((f+g)(t)
$$

and scalar products:

$$
T(k f(t))=k f(2 t-1)=(k f)(2 t-1)=T((k f)(t))
$$

The action on the standard basis is the following:

$$
T(1)=1, \quad T(t)=2 t-1=-1+2 t, \quad T\left(t^{2}\right)=(2 t-1)^{2}=1-4 t+4 t^{2}
$$

so the matrix B of T with respect to \mathcal{B} is

$$
B=\left[\begin{array}{lll}
{[T(1)]_{\mathcal{B}}} & {[T(t)]_{\mathcal{B}}} & {\left[T\left(t^{2}\right)\right]_{\mathcal{B}}}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & -4 \\
0 & 0 & 4
\end{array}\right]
$$

To find the basis for the kernel and the image of T, we note that $\operatorname{det} B=8$ is non-zero, so the matrix B is non-degenerate. Hence T has trivial kernel, and by the rank-nullity theorem the dimension of the image is 3 , hence the image is all of P_{2}. Therefore, the image is spanned by \mathcal{B}.

Alternatively, the kernel of T is the set of polynomials that become zero when you substitute $2 t-1$ into them, and it is clear that only the zero polynomial has this property.

Problem 5. Let V be the subspace of \mathbb{R}^{3} defined by the equation

$$
2 x_{1}-x_{2}-x_{3}=0 .
$$

1. Find a basis for V. What is the dimension of V ?
2. Use Gram-Schmidt orthogonalization on this basis to find an orthonormal basis for V.
3. Let $T(\vec{x})=\operatorname{proj}_{V}(\vec{x})$ be the orthogonal projection onto the space V. Find a formula for T.
4. Find the matrix A of the linear transformation T.

Solution. The space V is spanned by the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

and has dimension two. We apply Gram-Schmidt orthogonalization:

$$
\vec{u}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=\left[\begin{array}{c}
1 / \sqrt{5} \\
2 / \sqrt{5} \\
0
\end{array}\right], \quad \vec{v}_{2}^{\perp}=\vec{v}_{2}-\left(\vec{v}_{2} \cdot \vec{u}_{1}\right) \vec{u}_{1}=\left[\begin{array}{c}
4 / 5 \\
-2 / 5 \\
2
\end{array}\right], \quad \vec{u}_{2}=\frac{\vec{v}_{2}^{\perp}}{\left\|\vec{v}_{2}^{\perp}\right\|}=\left[\begin{array}{c}
2 / \sqrt{30} \\
-1 / \sqrt{30} \\
5 / \sqrt{30}
\end{array}\right] .
$$

The formula for the projection onto a space with an orthonormal basis is

$$
\operatorname{proj}_{V}(\vec{x})=\left(\vec{x} \cdot \vec{u}_{1}\right) \vec{u}_{1}+\left(\vec{x} \cdot \vec{u}_{2}\right) \vec{u}_{2} .
$$

In matrix form,

$$
\begin{gathered}
\operatorname{proj}_{V}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left(\frac{x_{1}}{\sqrt{5}}+\frac{2 x_{2}}{\sqrt{5}}\right)\left[\begin{array}{c}
1 / \sqrt{5} \\
2 / \sqrt{5} \\
0
\end{array}\right]+\left(\frac{2 x_{1}}{\sqrt{30}}-\frac{x_{2}}{\sqrt{30}}+\frac{5 x_{3}}{\sqrt{30}}\right)\left[\begin{array}{c}
2 / \sqrt{30} \\
-1 / \sqrt{30} \\
5 / \sqrt{30}
\end{array}\right]= \\
=\left[\begin{array}{c}
x_{1} / 5+2 x_{2} / 5 \\
2 x_{1} / 5+4 x_{2} / 5 \\
0
\end{array}\right]+\left[\begin{array}{c}
4 x_{1} / 30-2 x_{2} / 30+10 x_{3} / 30 \\
-2 x_{1} / 30+x_{2} / 30-5 x_{3} / 30 \\
10 x_{1} / 30-5 x_{2} / 30+25 x_{3} / 30
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} x_{1}+\frac{1}{3} x_{2}+\frac{1}{3} x_{3} \\
\frac{1}{3} x_{1}+\frac{5}{6} x_{2}-\frac{1}{6} x_{3} \\
\frac{1}{3} x_{1}-\frac{1}{6} x_{2}+\frac{5}{6} x_{3}
\end{array}\right]= \\
=\left[\begin{array}{ccc}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 5 / 6 & -1 / 6 \\
1 / 3 & -1 / 6 & 5 / 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
\end{gathered}
$$

Problem 6. Find the determinant of the following matrix:

$$
\left[\begin{array}{cccc}
1 & 3 & 2 & 4 \\
1 & 6 & 4 & 8 \\
1 & 3 & 0 & 0 \\
2 & 6 & 4 & 12
\end{array}\right]
$$

Solution. The easiest way to solve this problem is by row operations:

$$
\left|\begin{array}{cccc}
1 & 3 & 2 & 4 \\
1 & 6 & 4 & 8 \\
1 & 3 & 0 & 0 \\
2 & 6 & 4 & 12
\end{array}\right| \begin{aligned}
& -1 \cdot I \\
& -1 \cdot I \\
& -2 \cdot I
\end{aligned}=\left|\begin{array}{cccc}
1 & 3 & 2 & 4 \\
0 & 3 & 2 & 4 \\
0 & 0 & -2 & -4 \\
0 & 0 & 0 & 4
\end{array}\right|=1 \cdot 3 \cdot(-2) \cdot 4=24 .
$$

Problem 7. Let A be the matrix

$$
\left[\begin{array}{ccc}
1 & a & b \\
0 & 2 & c \\
0 & 0 & 1
\end{array}\right]
$$

where a, b and c are constant numbers.

1. Find the eigenvalues of A and their algebraic multiplicities.
2. For each eigenvalue, find a basis for the corresponding eigenspace. Find the geometric multiplicites of the eigenvalues.
3. For what values of a, b and c is the matrix A diagonalizable?

Solution. The characteristic polynomial of A is

$$
\left.\operatorname{det}\left(A-\lambda I_{3}\right)=\left\lvert\, \begin{array}{ccc}
1-\lambda & a & b \\
0 & 2-\lambda & c \\
0 & 0 & 1-\lambda
\end{array}\right.\right]=(1-\lambda)(2-\lambda)(1-\lambda)
$$

so the eigenvalues are $\lambda=1$ with algebraic multiplicity 2 and $\lambda=2$ with algebraic multiplicity 1 .

The eigenspace E_{2} is always one-dimensional, so we describe it first:

$$
E_{2}=\operatorname{ker}\left(A-2 I_{3}\right)=\left[\begin{array}{ccc}
-1 & a & b \\
0 & 0 & c \\
0 & 0 & -1
\end{array}\right]
$$

By inspection, we see that the vector

$$
\vec{v}_{1}=\left[\begin{array}{l}
a \\
1 \\
0
\end{array}\right]
$$

is in the kernel, and hence spans E_{2}.
The eigenspace E_{1} is the kernel of the matrix $A-I_{3}$, i.e. the set of solutions to the system

$$
\left[\begin{array}{lll}
0 & a & b \\
0 & 1 & c \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The second equation of the system gives us $x_{2}=-c x_{3}$, and plugging this into the first equation we get $(b-a c) x_{3}=0$. Here there are two possibilities. If $b-a c=0$, then this equation is vacuous, so x_{1} and x_{3} are free variables, and $x_{2}=-c x_{3}$. The geometric multiplicity is 2 , and a basis for the eigenspace is then

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
-c \\
1
\end{array}\right] .
$$

If $b-a c \neq 0$, then $x_{3}=0$ and hence $x_{2}=0$. Then only x_{1} is a free variable, and \vec{v}_{2} spans the eigenspace E_{1}, and the geometric multiplicity is 1 .

The matrix A is diagonalizable if and only if the geometric multiplicities add up to 3 , i.e. if and only if $b-a c=0$.

Problem 8. Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

be an arbitrary 2×2 matrix.

1. Let $p(\lambda)$ denote the characteristic polynomial of A :

$$
p(\lambda)=\lambda^{2}+x \lambda+y
$$

Express x and y in terms of the coefficiens of A.
2. Evaluate the matrix.

$$
A^{2}+x A+y I_{2}
$$

3. Find a non-zero 2×2 matrix A such that A^{2} is the zero matrix.
4. Extra Credit. Show that the does not exist a 2×2 matrix A such that A^{2} is not the zero matrix, but A^{3} is the zero matrix.

Solutions. The characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right|=\lambda^{2}-(a+d) \lambda+(a d-b c)=\lambda^{2}-\lambda \operatorname{tr} A+\operatorname{det} A
$$

so $x=-(a+d)$ and $y=a d-b c$.
We know how to define the powers of a matrix, so we can plug a matrix into a polynomial:

$$
\begin{aligned}
& p(A)=A^{2}+x A+y=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{2}-(a+d)\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+(a d-b c)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]= \\
& =\left[\begin{array}{cc}
a^{2}+b c & a b+b d \\
a c+c d & b c+d^{2}
\end{array}\right]-\left[\begin{array}{ll}
a(a+d) & b(a+d) \\
c(a+d) & d(a+d)
\end{array}\right]+\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

In other words, a matrix satisfies its characteristic equation.
For part 3, we are looking for a non-zero matrix A such that $A^{2}=0$. First of all, $\operatorname{det}\left(A^{2}\right)=(\operatorname{det} A)^{2}=0$, so A must be degenerate. Furthermore, A satisfies the equation $A^{2}-A \cdot \operatorname{tr} A+\operatorname{det} A=0$, where $A^{2}=0$ and $\operatorname{det} A=0$. Therefore, $\operatorname{tr} A=0$, and the characteristic polynomial of A is $\lambda^{2}=0$, so A
has one eigenvalue $\lambda=0$ with algebraic multiplicity 2 . An example of such a matrix is

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

For part 4, we note that again $\operatorname{det} A=0$, so the matrix A satisfies $A^{2}-$ $A \cdot \operatorname{tr} A=0$. Multiplying this by A we get that $A^{3}=A^{2} \operatorname{tr} A$. If $A^{3}=0$ and $A^{2} \neq 0$, then $\operatorname{tr} A=0$, but then we get a contradiction, since $A^{2}=\operatorname{tr} A=0$.

