MAT 211, Spring 2012 Solutions to Homework Assignment 8

Maximal grade for HW8: 100 points

Section 5.1. 2. (10 points) Find the length of a vector $v=(2,3,4)$.
Answer: $\sqrt{29}$.
Solution: The length of a vector can be found using a formula

$$
v \cdot v=\|v\|^{2} \quad \Longleftrightarrow \quad\|v\|=\sqrt{v \cdot v} .
$$

We have

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{2^{2}+3^{2}+4^{2}}=\sqrt{29} .
$$

4. (20 points) Find the angle between the vectors $u=(1,1)$ and $v=$ $(7,11)$.

Answer: $\alpha=\arccos \left(\frac{9}{\sqrt{85}}\right)$.
Solution: The angle between two vectors can be found using a formula

$$
u \cdot v=\|u\| \cdot\|v\| \cdot \cos (\alpha) \quad \Longleftrightarrow \quad \alpha=\arccos \left(\frac{u \cdot v}{\|u\| \cdot\|v\|}\right) .
$$

We have
$u \cdot v=1 \cdot 7+1 \cdot 11=18, \quad\|u\|=\sqrt{1^{2}+1^{2}}=\sqrt{2}, \quad\|v\|=\sqrt{7^{2}+11^{2}}=\sqrt{170}$, hence

$$
\alpha=\arccos \left(\frac{18}{\sqrt{2} \sqrt{170}}\right)=\arccos \left(\frac{9}{\sqrt{85}}\right) .
$$

6. (20 points) Find the angle between the vectors $u=(1,-1,2,-2)$ and $v=(2,3,4,5)$.

Answer: $\alpha=\arccos \left(\frac{-1}{2 \sqrt{15}}\right)$.
Solution: We have

$$
\begin{gathered}
u \cdot v=1 \cdot 2-1 \cdot 3+2 \cdot 4-2 \cdot 5=-3, \quad\|u\|=\sqrt{1^{2}+(-1)^{2}+2^{2}+(-2)^{2}}=\sqrt{10}, \\
\|v\|=\sqrt{2^{2}+3^{2}+4^{2}+5^{2}}=\sqrt{54} .
\end{gathered}
$$

Therefore

$$
\alpha=\arccos \left(\frac{u \cdot v}{\|u\| \cdot\|v\|}\right)=\arccos \left(\frac{-3}{\sqrt{10} \sqrt{54}}\right)=\arccos \left(\frac{-1}{2 \sqrt{15}}\right) .
$$

10. (10 points) For which values of the constant k are the vectors $u=$ $(2,3,4)$ and $v=(1, k, 1)$ perpendicular?

Answer: $k=-2$.
Solution: The vectors u and v are perpendicular, if

$$
u \cdot v=0 \quad \Longleftrightarrow \quad 2+3 k+4=0 \quad \Longleftrightarrow \quad k=-2 .
$$

11. (20 points) Consider the vectors $u=(1,1, \ldots, 1)$ and $v=(1,0, \ldots, 0)$ in \mathbb{R}^{n}.
a) Find the angle θ between them for $n=2,3,4$.
b) Find the limit of θ as n approaches infinity.

Answer: $\theta=\arccos \left(\frac{1}{\sqrt{n}}\right), \lim _{n \rightarrow \infty} \theta(n)=\frac{\pi}{2}$.
Solution: We have

$$
u \cdot v=1, \quad\|u\|=\sqrt{1^{2}+\ldots+1^{2}}=\sqrt{n}, \quad\|v\|=\sqrt{1}=1
$$

so $\theta=\arccos \left(\frac{1}{\sqrt{n}}\right)$. As n approaches infinity, $\frac{1}{\sqrt{n}}$ approaches 0 , so $\theta(n)$ approaches $\arccos (0)=\pi / 2$.

For $n=2$ we have $\theta=\arccos \left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$, for $n=3 \theta=\arccos \left(\frac{1}{\sqrt{3}}\right)$, for $n=4 \theta=\arccos \left(\frac{1}{2}\right)=\frac{\pi}{3}$.
15. (20 points) Consider the vectors $v=(1,2,3,4)$ in \mathbb{R}^{4}. Find a basis of the subspace of \mathbb{R}^{4} consisting of all vectors perpendicular to v.

Solution: Let $u=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ be a vectors from this subspace, then

$$
u \perp v \quad \Longleftrightarrow \quad u \cdot v=0 \quad \Longleftrightarrow \quad u_{1}+2 u_{2}+3 u_{3}+4 u_{4}=0
$$

This a linear equation on u_{i}, and we can choose u_{2}, u_{3}, u_{4} as free parameters and compute $u_{1}=-2 u_{2}-3 u_{3}-4 u_{4}$. Therefore the basis in the space of solutions is given by the vectors $(-2,1,0,0),(-3,0,1,0),(-4,0,0,1)$.

