MAT 211, Spring 2012 Solutions to Homework Assignment 7

Maximal grade for HW7: 100 points

Section 3.2. Find a basis of the image of the matrices.
27. (10 points)

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right) .
$$

Solution: Let us transform the matrix to the reduced row-echelon form. Let us subtract the first row from the second and third:

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 2
\end{array}\right) .
$$

Let us subtract the second row multiplied by 2 from the third:

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right) .
$$

We conclude that the rank of the matrix equals to 2 , and none of its columns is redundant. Therefore the basis in the image: $(1,1,1),(1,2,3)$.
28.(10 points)

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 5 \\
1 & 3 & 7
\end{array}\right) .
$$

Solution: Let us transform the matrix to triangular form. Let us subtract the first row from the second and third:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 4 \\
0 & 2 & 6
\end{array}\right) .
$$

Let us subtract the second row multiplied by 2 from the third:

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 4 \\
0 & 0 & -2
\end{array}\right) .
$$

We conclude that the rank of the matrix equals to 3 , and none of its columns is redundant. Therefore the basis in the image: $(1,1,1),(1,2,3),(1,5,7)$.
31. (10 points)

$$
\left(\begin{array}{ll}
1 & 5 \\
2 & 6 \\
3 & 7 \\
5 & 8
\end{array}\right)
$$

Solution: Let us transform the matrix to the reduced row-echelon form. Let us subtract the first row from all other rows:

$$
\left(\begin{array}{cc}
1 & 5 \\
0 & -4 \\
0 & -8 \\
0 & -17
\end{array}\right)
$$

Divide the second row by -4 , the third by -8 and the third by -17 :

$$
\left(\begin{array}{ll}
1 & 5 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right) .
$$

Subtract the second row from third and fourth:

$$
\left(\begin{array}{ll}
1 & 5 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right) .
$$

We conclude that the rank of the matrix equals to 2 , and none of its columns is redundant. Therefore the basis in the image: $(1,2,3,5),(5,6,7,8)$.
34. (10 points) Consider the 5×4 matrix A with columns $v_{1}, v_{2}, v_{3}, v_{4}$. We are told that the vector $(1,2,3,4)$ is in the kernel of A. Write v_{4} as a linear combination of $v_{1}, v_{2}, v_{3}, v_{4}$.

Solution: By definition of the kernel, we have $v_{1}+2 v_{2}+3 v_{3}+4 v_{4}=0$, therefore

$$
v_{4}=-\frac{1}{4} v_{1}-\frac{1}{2} v_{2}-\frac{3}{4} v_{3} .
$$

52. (10 points) For which values of the constants a, b, c, d, e, f are the vectors $(a, 0,0,0),(b, c, 0,0),(d, e, f, 0)$ linearly independent?

Answer: $a \neq 0, c \neq 0$ and $f \neq 0$.
Solution: They are linearly independent if the following matrix has rank 3:

$$
\left(\begin{array}{lll}
a & b & d \\
0 & c & e \\
0 & 0 & f \\
0 & 0 & 0
\end{array}\right)
$$

We have the following cases:

1) $a \neq 0, c \neq 0$ and $f \neq 0$. Let us divide the first row by a, the second by c and the third by f :

$$
\left(\begin{array}{ccc}
1 & b / a & d / a \\
0 & 1 & e / c \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

It is clear that the rank equals to 3 .
2) $a=0$. In this case the first column is redundant.
3) $a \neq 0, c=0$ In this case we have a leading 1 in the first column in the reduced row-echelon form, but we cannot have a leading 1 in the second column. Therefore the second column is redundant.
4) $a \neq 0, c \neq 0, f=0$. In this case we have a leading 1 in the first and second columns after division by a and c, but we cannot have a leading 1 in the third column. Therefore the third column is redundant.

Section 3.3. 27. (10 points) Determine whether the following vectors form a basis of \mathbb{R}^{4} :

$$
(1,1,1,1),(1,-1,1,-1),(1,2,4,8),(1,-2,4,-8) .
$$

Solution: We have to compute the rank of the matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 2 & -2 \\
1 & 1 & 4 & 4 \\
1 & -1 & 8 & -8
\end{array}\right)
$$

Subtract the first row from all other rows:

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -2 & 1 & -3 \\
0 & 0 & 3 & 3 \\
0 & -2 & 7 & -9
\end{array}\right) .
$$

Subtract the second row from the fourth:

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -2 & 1 & -3 \\
0 & 0 & 3 & 3 \\
0 & 0 & 6 & -6
\end{array}\right) .
$$

Subtract the third row, multiplied by 2, from the fourth row:

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -2 & 1 & -3 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & -12
\end{array}\right)
$$

We see that the matrix has rank 4 , so there are no redundant vectors and the original vectors were independent, therefore they form a basis of \mathbb{R}^{4}.
29. (10 points) Find a basis of the subspace of \mathbb{R}^{3} defined by the equation $2 x_{1}+3 x_{2}+x_{3}=0$.

Solution: The values of x_{2} and x_{3} can be chosen arbitrarily, and $x_{1}=$ $-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}$. We can set $x_{2}=1$ and $x_{3}=0$, then $x_{1}=-\frac{3}{2}$, or $x_{2}=0$ and $x_{3}=$ 1 , then $x_{1}=-\frac{1}{2}$ Therefore the basis in the subspace is $\left(-\frac{3}{2}, 1,0\right),\left(-\frac{1}{2}, 0,1\right)$.
36. (10 points) Can you find a 3×3 matrix A such that $\operatorname{Im}(A)=\operatorname{Ker}(A)$? Explain.

Solution: By the Rank-Nullity theorem we have $\operatorname{dim} \operatorname{Im}(A)+\operatorname{dim} \operatorname{Ker}(A)=$ 3. Therefore if $\operatorname{Im}(A)=\operatorname{Ker}(A)$ then $\operatorname{dim} \operatorname{Im}(A)=3 / 2$, what is impossible. Therefore such a matrix does not exist.
37. (10 points) Give an example of a 4×5 matrix A with $\operatorname{dim} \operatorname{Ker}(A)=3$.

Solution: Such a matrix should have 5 columns, so its rank equals to $5-3=2$. An example of a rank 2 matrix is

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

38. (10 points) a) Consider a linear transformation T from \mathbb{R}^{5} to \mathbb{R}^{3}. What are the possible values of $\operatorname{dim} \operatorname{Ker}(T)$?
b) Consider a linear transformation T from \mathbb{R}^{4} to \mathbb{R}^{7}. What are the possible values of $\operatorname{dim} \operatorname{Im}(T)$?

Solution: a) The rank of a 3×5 matrix is bounded by 3 , so it can be equal to $0,1,2,3$. Therefore $\operatorname{dim} \operatorname{Ker}(T)=5-r k(T)$ can be equal to $5,4,3,2$.
b) The rank of a 7×4 matrix is bounded by 4 , so it can be equal to $0,1,2,3,4$. Therefore $\operatorname{dim} \operatorname{Im}(T)=\operatorname{rk}(T)$ can be equal to $0,1,2,3,4$.

