MAT 211, Spring 2012 Solutions to Homework Assignment 6

Maximal grade for HW6: 100 points

Section 3.1. Describe the kernel of a matrix.
2. (10 points)

$$
A=\left(\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right) .
$$

Solution: We have a system of linear equations with the augmented matrix

$$
\left(\begin{array}{ll|l}
2 & 3 & 0 \\
6 & 9 & 0
\end{array}\right) .
$$

Subtract the first row, multiplied by 3 , from the second row:

$$
\left(\begin{array}{ll|l}
2 & 3 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Divide the first row by 2 :

$$
\left(\begin{array}{cc|c}
1 & 3 / 2 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Therefore x_{2} is arbitrary, $x_{1}=-\frac{3}{2} x_{2}$.
6. (10 points)

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Solution: We have a system of linear equations with the augmented matrix

$$
\left(\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right) .
$$

Subtract the first row from the second and the third:

$$
\left(\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore x_{2} and x_{3} are arbitrary, $x_{1}=-x_{2}-x_{3}$.
10. (10 points)

$$
A=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Solution: We have a system of linear equations with the augmented matrix

$$
\left(\begin{array}{llll|l}
1 & 2 & 3 & 4 & 0 \\
0 & 1 & 2 & 3 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Subtract the third row from the second and the first:

$$
\left(\begin{array}{llll|l}
1 & 2 & 3 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

Subtract the second row (multiplied by 2) from the first row:

$$
\left(\begin{array}{cccc|c}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Therefore x_{3} is arbitrary, $x_{1}=x_{3}, x_{2}=-2 x_{3}, x_{4}=0$.
Describe the image of the transformation geometrically.
18. (10 points)

$$
A=\left(\begin{array}{cc}
1 & 4 \\
3 & 12
\end{array}\right)
$$

Solution: We have a system of linear equations with the augmented matrix

$$
\left(\begin{array}{cc|c}
1 & 4 & y_{1} \\
3 & 12 & y_{2}
\end{array}\right) .
$$

Subtract the first row, multiplied by 3 , from the second row:

$$
\left(\begin{array}{cc|c}
1 & 4 & y_{1} \\
0 & 0 & y_{2}-3 y_{1}
\end{array}\right)
$$

The system has a solution, if $y_{2}-3 y_{1}=0$, so the image is a line defined by the equation $y_{2}=3 y_{1}$.
22. (10 points)

$$
A=\left(\begin{array}{lll}
2 & 1 & 3 \\
3 & 4 & 2 \\
6 & 5 & 7
\end{array}\right)
$$

Solution: We have a system of linear equations with the augmented matrix

$$
\left(\begin{array}{lll|l}
2 & 1 & 3 & y_{1} \\
3 & 4 & 2 & y_{2} \\
6 & 5 & 7 & y_{3}
\end{array}\right)
$$

Subtract the first row, multiplied by $3 / 2$, from the second row, and subtract the first row, multiplied by 3 , from the third row:

$$
\left(\begin{array}{ccc|c}
2 & 1 & 3 & y_{1} \\
0 & 5 / 2 & -5 / 2 & y_{2}-\frac{3}{2} y_{1} \\
0 & 2 & -2 & y_{3}-3 y_{1}
\end{array}\right)
$$

Divide the second row by $5 / 2$, and the third by 2 :

$$
\left(\begin{array}{ccc|c}
2 & 1 & 3 & y_{1} \\
0 & 1 & -1 & \frac{2}{5} y_{2}-\frac{3}{5} y_{1} \\
0 & 1 & -1 & \frac{1}{2} y_{3}-\frac{3}{2} y_{1}
\end{array}\right)
$$

Subtract the second row from the third:

$$
\left(\begin{array}{ccc|c}
2 & 1 & 3 & y_{1} \\
0 & 1 & -1 & \frac{2}{5} y_{2}-\frac{3}{5} y_{1} \\
0 & 0 & 0 & -\frac{9}{10} y_{1}-\frac{2}{5} y_{2}+\frac{1}{2} y_{3}
\end{array}\right) .
$$

The system has a solution, if $-\frac{9}{10} y_{1}-\frac{2}{5} y_{2}+\frac{1}{2} y_{3}=0$. This is a plane in \mathbb{R}^{3}.
25. (10 points) Describe the image and kernel of the rotation through an angle of $\pi / 4$ on the counter-clockwise direction on the plane.

Solution: The rotation is an invertible transformation since the inverse transformation is a clockwise rotation by the same angle. Therefore $\operatorname{Ker}(T)=0, \operatorname{Im}(T)=\mathbb{R}^{2}$.
37. (20 points) For the matrix

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

describe the images and kernels of the matrices A, A^{2}, A^{3} geometrically.
Solution: We have

$$
\begin{aligned}
A^{2} & =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
A^{3} & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Therefore
$A\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{3}, 0\right), \quad A^{2}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}, 0,0\right), \quad A^{3}\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$,
so $\operatorname{Ker}(A)$ is a line $x_{2}=x_{3}=0, \operatorname{Im}(A)$ is a plane $x_{3}=0 ; \operatorname{Ker}\left(A^{2}\right)$ is a plane $x_{3}=0, \operatorname{Im}\left(A^{2}\right)$ is a line $x_{1}=x_{2}=0 ; \operatorname{Ker}\left(A^{3}\right)=\mathbb{R}^{3}, \operatorname{Im}\left(A^{3}\right)=0$.

Section 3.2. Determine if a set is a linear subspace in \mathbb{R}^{3}.

1. (10 points) $\{(x, y, z) \mid x+y+z=1\}$.

Solution: It is not a linear subspace, since it does not contain a zero vector $(0,0,0)$.
3. (10 points) $\{(x+2 y+3 z, 4 x+5 y+6 z, 7 x+8 y+9 z)\}$.

Solution: It is a linear subspace, since
$(x+2 y+3 z, 4 x+5 y+6 z, 7 x+8 y+9 z)=x(1,4,7)+y(2,5,8)+z(3,6,9)$,
so the set of all such vectors for all possible values of x, y, z can be described as a linear span of vectors $(1,4,7),(2,5,8),(3,6,9)$.

