MAT 211, Spring 2012 Solutions to Homework Assignments 4 and 5

Maximal grade for HW4: 100 points;
 Maximal grade for HW5: 100 points

Section 2.1 (HW 5) 13. (20 points) Prove the following facts:
a) The 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $a d-b c \neq 0$.

Solution: Suppose that $a \neq 0$, then we can divide the first row by a :

$$
\left(\begin{array}{ll}
1 & \frac{b}{a} \\
c & d
\end{array}\right)
$$

Subtract from the second row the first multiplied by c :

$$
\left(\begin{array}{cc}
1 & \frac{b}{a} \\
0 & d-c \frac{b}{a}
\end{array}\right)=\left(\begin{array}{cc}
1 & \frac{b}{a} \\
0 & \frac{a d-b c}{a}
\end{array}\right)
$$

This matrix has rank 2 , if $a d-b c \neq 0$, and rank 1 otherwise.
If $a=0$, we can swap two rows:

$$
\left(\begin{array}{ll}
c & d \\
0 & b
\end{array}\right)
$$

This matrix has rank 2 if and only if neither b nor c equals to 0 . This is equivalent to the condition $a d-b c \neq 0$.
b) If $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible, then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Solution: Suppose that $a \neq 0$, let us find the inverse matrix using the Gauss-Jordan elimination. We start from

$$
\left(\begin{array}{ll|ll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right),
$$

divide the first row by a :

$$
\left(\begin{array}{cc|cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
c & d & 0 & 1
\end{array}\right),
$$

subtract from the second row the first multiplied by c :

$$
\left(\begin{array}{cc|cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & d-c \frac{b}{a} & -c \frac{1}{a} & 1
\end{array}\right)=\left(\begin{array}{cc|cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & \frac{a d-b c}{a} & -\frac{c}{a} & 1
\end{array}\right),
$$

multiply the second row by $\frac{a}{a d-b c}$:

$$
\left(\begin{array}{cc|cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right),
$$

subtract from the first row the second multiplied by $\frac{b}{a}$:

$$
\left(\begin{array}{cc|cc}
1 & 0 & \frac{1}{a}+\frac{b}{a} \cdot \frac{c}{a d-b c} & -\frac{b}{a} \cdot \frac{a}{a d-b c} \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right)=\left(\begin{array}{cc|cc}
1 & 0 & \frac{d}{a d-b c} & -\frac{b}{a d-b c} \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right) .
$$

The case $a=0$ is analogous.
14. (20 points) a) For which values of the parameter k is the matrix

$$
\left(\begin{array}{ll}
2 & 3 \\
5 & k
\end{array}\right)
$$

invertible?
Answer: $k \neq 7.5$.
Solution: By the previous problem, this matrix is invertible if $2 \cdot k-3 \cdot 5 \neq$ 0 , that is $k \neq \frac{15}{2}=7.5$.
b) For which values of the parameter k are all the entries of

$$
\left(\begin{array}{ll}
2 & 3 \\
5 & k
\end{array}\right)^{-1}
$$

integers?
Answer: $k=7$ or $k=8$.
Solution: By the previous problem,

$$
\left(\begin{array}{ll}
2 & 3 \\
5 & k
\end{array}\right)^{-1}=\frac{1}{2 k-15}\left(\begin{array}{cc}
k & -3 \\
-5 & 2
\end{array}\right)
$$

The entries of the inverse matrix are integers, if $D=2 k-15$ divides $2,3,5$ and k. Since D should divide 2 and 3 , it can be equal to 1 or to -1 . If $2 k-15=1$, then $k=8$, if $2 k-15=-1$, then $k=7$.

Section 2.2 (HW 4) Find the matrices of the linear transformations from \mathbb{R}^{3} to \mathbb{R}^{3}.
19. (20 points) The orthogonal projection onto the $x-y$ plane.

Answer:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Solution: We have

$$
T\left(e_{1}\right)=e_{1}=(1,0,0), \quad T\left(e_{2}\right)=e_{2}=(0,1,0), \quad T\left(e_{3}\right)=(0,0,0)
$$

It rests to write these vectors in columns of the matrix.
20. (20 points) The reflection about the $x-z$ plane.

Answer:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Solution: We have

$$
T\left(e_{1}\right)=e_{1}=(1,0,0), \quad T\left(e_{2}\right)=-e_{2}=(0,-1,0), \quad T\left(e_{3}\right)=e_{3}=(0,0,1)
$$

It rests to write these vectors in columns of the matrix.
21. (20 points) The rotation about the z-axis through an angle of $\frac{\pi}{2}$, counter-clockwise as viewed from the positive z-axis.

Answer:

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Solution: We have

$$
T\left(e_{1}\right)=e_{2}=(0,1,0), \quad T\left(e_{2}\right)=-e_{1}=(-1,0,0), \quad T\left(e_{3}\right)=e_{3}=(0,0,1)
$$

It rests to write these vectors in columns of the matrix.
22. (20 points) The rotation about the y-axis through an angle θ, counterclockwise as viewed from the positive y-axis.

Answer:

$$
\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) .
$$

Solution: We have $T\left(e_{2}\right)=e_{2}$, and the standard rotation matrix for the $x-z$ plane. Note that the counter-clockwise (as viewed from the positive y-axis) rotation goes from the positive z-axis to the positive x-axis, so it is in fact clockwise in $x-z$ plane, and its matrix is

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

It is a standard rotation matrix by angle $(-\theta)$.
23. (20 points) The reflection about the plane $y=z$.

Answer:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

Solution: We have

$$
T\left(e_{1}\right)=e_{1}=(1,0,0), \quad T\left(e_{2}\right)=e_{3}=(0,0,1), \quad T\left(e_{3}\right)=e_{2}=(0,1,0)
$$

It rests to write these vectors in columns of the matrix.

Section 2.4 (HW 5) Decide whether the matrices are invertible. If they are, find the inverse.
2. (20 points)

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Answer: Not invertible
Solution: The rows are identical, so the matrix has rank 1. Therefore it is not invertible.
4. (20 points)

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 3 & 2 \\
1 & 0 & 1
\end{array}\right) .
$$

Answer:Invertible, inverse matrix:

$$
\left(\begin{array}{ccc}
\frac{3}{2} & -1 & \frac{1}{2} \\
\frac{1}{2} & 0 & -\frac{1}{2} \\
-\frac{3}{2} & 1 & \frac{1}{2}
\end{array}\right) .
$$

Solution: Let us use the Gauss-Jordan elimination to find the inverse:

$$
\left(\begin{array}{lll|lll}
1 & 2 & 1 & 1 & 0 & 0 \\
1 & 3 & 2 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Swap the first and the third rows:

$$
\left(\begin{array}{lll|lll}
1 & 0 & 1 & 0 & 0 & 1 \\
1 & 3 & 2 & 0 & 1 & 0 \\
1 & 2 & 1 & 1 & 0 & 0
\end{array}\right) .
$$

Subtract the first row from the second and third:

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 3 & 1 & 0 & 1 & -1 \\
0 & 2 & 0 & 1 & 0 & -1
\end{array}\right)
$$

Divide the 3 rd row by 2 and swap it with 2 nd:

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 3 & 1 & 0 & 1 & -1
\end{array}\right) .
$$

Subtract from the 3rd row the second multiplied by 3 :

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 0 & 1 & -\frac{3}{2} & 1 & \frac{1}{2}
\end{array}\right)
$$

Subtract from the 1st row the 3rd:

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{3}{2} & -1 & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 0 & 1 & -\frac{3}{2} & 1 & \frac{1}{2}
\end{array}\right) .
$$

8. (20 points)

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

Answer: Invertible, inverse matrix:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

Solution: Let us use the Gauss-Jordan elimination to find the inverse:

$$
\left(\begin{array}{lll|lll}
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Swap the 1st and the 3rd rows:

$$
\left(\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

The left matrix is already in reduced row-echelon form.

