# MAT 211, Spring 2012 Solutions to Homework Assignment 1 

## Maximal grade for HW1: 100 points

Section 1.1 Find all solutions of the linear system.
2. (10 points)

$$
\left\{\begin{array}{l}
4 x+3 y=2 \\
7 x+5 y=3
\end{array}\right.
$$

Answer: $x=-1, y=2$.
Solution: Let us multiply the first equation by 2 and subtract from the second, we get

$$
\left\{\begin{array} { l } 
{ 4 x + 3 y = 2 } \\
{ - x - y = - 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
4 x+3 y=2 \\
x+y=1
\end{array}\right.\right.
$$

Let us multiply the second equation by 3 and subtract from the first one, we get

$$
\left\{\begin{array} { l l } 
{ x } & { = - 1 } \\
{ x + y } & { = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{ll}
x & =-1 \\
y & =2
\end{array}\right.\right.
$$

4. (10 points)

$$
\left\{\begin{array}{l}
2 x+4 y=2 \\
3 x+6 y=3
\end{array}\right.
$$

Answer: $x$ is arbitrary, $y=1 / 2-x / 2$.
Solution: Let us divide the first equation by 2 and divide the second one by 3 , we get

$$
\left\{\begin{array}{l}
x+2 y=1 \\
x+2 y=1
\end{array}\right.
$$

This means that $x$ can be arbitrary, and $y$ can be found from the equation $x+2 y=1 \Leftrightarrow y=1 / 2-x / 2$.
10. (20 points)

$$
\begin{cases}x+2 y+3 z= & 1 \\ 2 x+4 y+7 z= & 2 \\ 3 x+7 y+11 z= & 8\end{cases}
$$

Answer: $x=-9, y=5, z=0$.
Solution: The augmented matrix of the system has a form

$$
\left(\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
2 & 4 & 7 & 2 \\
3 & 7 & 11 & 8
\end{array}\right)
$$

Let us subtract from the second row the first multiplied by 1 and from the third row - the first multiplied by 3 :

$$
\left(\begin{array}{lll|l}
1 & 2 & 3 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 2 & 5
\end{array}\right)
$$

Swap the second row and the third:

$$
\left(\begin{array}{lll|l}
1 & 2 & 3 & 1 \\
0 & 1 & 2 & 5 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Subtract from the first row the third multiplied by 3 and from the second the third multiplied by 2 :

$$
\left(\begin{array}{lll|l}
1 & 2 & 0 & 1 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Subtract from the first row the second multiplied by 2 :

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & -9 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Finally, $x=-9, y=5, z=0$.
12. (14 points) Find all solutions and represent your solutions graphically:

$$
\begin{cases}x-2 y= & 3 \\ 2 x-4 y= & 6\end{cases}
$$

Solution: Since the second equation is just the first one multiplied by 2 , there are infinitely many solutions parameterized by the graph of a function $y=x / 2-3 / 2$ :

34. (20 points) Find all the polynomials $f(t)$ of degree $\leq 2$ whose graph run through the points $(1,1)$ and $(3,3)$, such that $f^{\prime}(2)=3$.

Answer: No solutions.
Solution: Let $f(t)=a t^{2}+b t+c$, then $f^{\prime}(t)=2 a+b$. We get a system of three linear equations on $a, b, c$ :

$$
\begin{cases}a+b+c & =1 \\ 9 a+3 b+c & =3 \\ 4 a+b & =3\end{cases}
$$

If we multiply the third equation by 2 and add to the first equation, we get $9 a+3 b+c=7$, what contradicts the second equation. Therefore this system has no solutions.

Section 1.2 18. (16 points) Determine which of the matrices below are in reduced row-echelon form:
a)

$$
\left(\begin{array}{lllll}
1 & 2 & 0 & 2 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Solution: No: leasing 1's in second and third row are above each other.
b)

$$
\left(\begin{array}{lllll}
0 & 1 & 2 & 0 & 3 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Solution: Yes.
c)

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

Solution: No: every row above a leading 1 should contain leading 1 to the left.
d)

$$
\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4
\end{array}\right)
$$

Solution: Yes.
20. (10 points) How many types of $2 \times 2$ matrices in reduced row-echelon form are there?

Solution: There are: a single rank 0 matrix

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

two rank 1 types

$$
\left(\begin{array}{ll}
1 & * \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),
$$

and a single rank 2 matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

