MAT 211, Spring 2012 Solutions to Homework Assignment 12

Maximal grade for HW12: 100 points

Section 6.1 Find the determinants and find out if a matrix is invertible 6. (10 points)

$$
\left(\begin{array}{lll}
6 & 0 & 0 \\
5 & 4 & 0 \\
3 & 2 & 1
\end{array}\right) .
$$

Solution: This is a lower-triangular matrix, so its determinant equals to the product of its diagonal entries: $\operatorname{det} A=6 \cdot 4 \cdot 1=24$. Since $\operatorname{det} A \neq 0$, the matrix is invertible.
8. (20 points)

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
3 & 2 & 1
\end{array}\right) .
$$

Solution: 1) Let us subtract the first row from the second, and the first, multiplied by 3 , from the third row:

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & -4 & -8
\end{array}\right)
$$

Subtract the second row, multiplied by 4 , from the third:

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

We see that the matrix has rank 2, so it is not invertible and its determinant vanishes.
2)

$$
\begin{gathered}
\operatorname{det} A=1 \cdot\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|-2 \cdot\left|\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right|+3 \cdot\left|\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right|= \\
1(1-2)-2(1-3)+3(2-3)=-1+4-3=0
\end{gathered}
$$

12. (10 points) Determine all k such that the matrix is invertible: $\left(\begin{array}{ll}1 & k \\ k & 4\end{array}\right)$.

Solution: The determinant of this matrix equals to $4-k^{2}$, so it vanishes at $k= \pm 2$. Therefore the matrix is invertible, if $k \neq 2$ and $k \neq(-2)$.
21. (20 points) Determine all k such that the matrix is invertible: $\left(\begin{array}{ccc}k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k\end{array}\right)$.

Solution:

$$
\begin{gathered}
\operatorname{det} A=k \cdot\left|\begin{array}{cc}
k & 1 \\
1 & k
\end{array}\right|-1 \cdot\left|\begin{array}{cc}
1 & 1 \\
1 & k
\end{array}\right|+1 \cdot\left|\begin{array}{cc}
1 & k \\
1 & 1
\end{array}\right|= \\
k\left(k^{2}-1\right)-(k-1)+(1-k)=k(k-1)(k+1)-2(k-1)=\left(k^{2}+k-2\right)(k-1)=(k-1)(k+2)(k-1)
\end{gathered}
$$

Therefore the matrix is invertible, if $k \neq 1$ and $k \neq(-2)$.
Section 6.2 29. (20 points) Let P_{n} denote the $n \times n$ matrix whose entries are all ones, except the zeroes directly below the main diagonal. Find the determinant of P_{n}.

Answer: $\operatorname{det} P_{n}=1$.
Solution: Let us apply the Gauss-Jordan elimination to P_{n}. The process is similar for all n, let us illustrate it for $n=5$:

$$
P_{5}=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

Subtract the second row from the first:

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

Subtract the first row from all other rows:

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

Remark that we get 1 in the top left corner and P_{4} in the complement to it. Let us repeat the same procedures with P_{4} :

Subtract the third row from the second:

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

Subtract the second row from all further rows:

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Subtract the 4th row from the 3rd:

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Subtract the 3rd row from all further rows:

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Subtract the 5th row from the 4th:

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

We get a unit matrix with the determinant 1 . Since we used the elementary transformations of the 3rd type only, they did not change the determinant and $\operatorname{det} P_{5}=\operatorname{det} P_{n}=1$.

Section 6.3 22. (20 points) Solve the linear system using Cramer's rule:

$$
\left\{\begin{array}{l}
3 x+7 y \\
4 x+11 y=3
\end{array}\right.
$$

Solution: We have

$$
\begin{gathered}
x=\frac{\left|\begin{array}{cc}
1 & 7 \\
3 & 11
\end{array}\right|}{\left|\begin{array}{cc}
3 & 7 \\
4 & 11
\end{array}\right|}=\frac{11-21}{33-28}=-\frac{10}{5}=-2, \\
y=\frac{\left|\begin{array}{cc}
3 & 1 \\
4 & 3
\end{array}\right|}{\left|\begin{array}{cc}
3 & 7 \\
4 & 11
\end{array}\right|}=\frac{9-4}{33-28}=\frac{5}{5}=1 .
\end{gathered}
$$

