MAT 211, Spring 2012 Solutions to Homework Assignment 11

Maximal grade for HW11: 100 points

Section 5.3. Suppose that the matrices A and B are orthogonal. Which of these matrices are orthogonal as well?
5. (10 points) $3 A$

Solution: Since A is orthogonal, $A^{T} A=I$. Therefore

$$
(3 A)^{T} \cdot(3 A)=9 A^{T} A=9 I
$$

so $3 A$ is not orthogonal.
6. (10 points) $-B$

Solution: Since B is orthogonal, $B^{T} B=I$. Therefore

$$
(-B)^{T} \cdot(-B)=B^{T} B=I
$$

so $-B$ is orthogonal.
7. (10 points) $A B$

Solution: Since A and B are orthogonal, $A^{T} A=B^{T} B=I$. Therefore

$$
(A B)^{T} \cdot(A B)=B^{T} A^{T} A B=B^{T} B=I
$$

so $A B$ is orthogonal.
40. (15 points) Consider the subspace W of \mathbb{R}^{4} spanned by the vectors $v_{1}=(1,1,1,1)$ and $v_{2}=(1,9,-5,3)$. Find the matrix of the orthogonal projection onto W.

Solution: Let us find the orthonormal basis in W by Gram-Schmidt process. The length of v_{1} equals to $\left\|v_{1}\right\|=\sqrt{1^{2}+1^{2}+1^{2}+1^{2}}=\sqrt{4}=2$. Therefore

$$
u_{1}=v_{1} /\left\|v_{1}\right\|=(1 / 2,1 / 2,1 / 2,1 / 2)
$$

Now

$$
\begin{gathered}
v_{2}^{\|}=\left(v_{2} \cdot u_{1}\right) u_{1}=(1 / 2+9 / 2-5 / 2+3 / 2) u_{1}=4 u_{1}=(2,2,2,2), \\
v_{2}^{\perp}=v_{2}-v_{2}^{\perp}=(1,9,-5,3)-(2,2,2,2)=(-1,7,-7,1), \\
\left\|v_{2}^{\perp}\right\|=\sqrt{(-1)^{2}+7^{2}+(-7)^{2}+1^{2}}=\sqrt{100}=10,
\end{gathered}
$$

so

$$
u_{2}=v_{2}^{\perp} /\left\|v_{2}^{\perp}\right\|=(-1 / 10,7 / 10,-7 / 10,1 / 10) .
$$

Therefore the matrix Q with columns u_{1} and u_{2} has a form

$$
Q=\left(\begin{array}{cc}
1 / 2 & -1 / 10 \\
1 / 2 & 7 / 10 \\
1 / 2 & -7 / 10 \\
1 / 2 & 1 / 10
\end{array}\right)
$$

and the matrix of the projection onto W equals to
$Q Q^{T}=\left(\begin{array}{cc}1 / 2 & -1 / 10 \\ 1 / 2 & 7 / 10 \\ 1 / 2 & -7 / 10 \\ 1 / 2 & 1 / 10\end{array}\right) \cdot\left(\begin{array}{cccc}1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\ -1 / 10 & 7 / 10 & -7 / 10 & 1 / 10\end{array}\right)=\left(\begin{array}{cccc}13 / 50 & 9 / 50 & 8 / 25 & 6 / 25 \\ 9 / 50 & 37 / 50 & -6 / 25 & 8 / 25 \\ 8 / 25 & -6 / 25 & 37 / 50 & 9 / 50 \\ 6 / 25 & 8 / 25 & 9 / 50 & 13 / 50\end{array}\right)$

Section 5.4. 19. (10 points) Find the least-squares solution of the system $A x=b$, where

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

and $b=(1,1,1)$.
Solution: We have to solve the equation $A^{T} A x=A^{T} b$:

$$
A^{T} A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
A^{T} b=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\binom{1}{1}
$$

Therefore $x^{*}=(1,1)$.
29. (15 points) Find the least-squares solution of the system $A x=B$, where

$$
A=\left(\begin{array}{cc}
1 & 1 \\
10^{-10} & 0 \\
0 & 10^{-10}
\end{array}\right)
$$

and $b=\left(1,10^{-10}, 10^{-10}\right)$.
Solution: We have to solve the equation $A^{T} A x=A^{T} b$:

$$
\begin{gathered}
A^{T} A=\left(\begin{array}{ccc}
1 & 10^{-10} & 0 \\
1 & 0 & 10^{-10}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
10^{-10} & 0 \\
0 & 10^{-10}
\end{array}\right)=\left(\begin{array}{cc}
1+10^{-20} & 1 \\
1 & 1+10^{-20}
\end{array}\right), \\
A^{T} b=\left(\begin{array}{ccc}
1 & 10^{-10} & 0 \\
1 & 0 & 10^{-10}
\end{array}\right)\left(\begin{array}{c}
1 \\
10^{-10} \\
10^{-10}
\end{array}\right)=\binom{1+10^{-20}}{1+10^{-20}}
\end{gathered}
$$

It is easy to check that the solution to this system is

$$
x=\left(\frac{1+10^{-20}}{2+10^{-20}}, \frac{1+10^{-20}}{2+10^{-20}}\right) \approx\left(\frac{1}{2}, \frac{1}{2}\right) .
$$

30. (15 points) Fit a linear function of the form $f=c_{0}+c_{1} t$ to the data points $(0,0),(0,1),(1,1)$ using least squares.

Solution: We have to solve a linear system

$$
\left\{\begin{array}{l}
c_{0}+0 c_{1}=0 \\
c_{0}+0 c_{1}=1 \\
c_{0}+1 c_{1}=1
\end{array}\right.
$$

using least squares method. Its matrix equal to

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right)
$$

and $b=(0,1,1)$. We have to solve the equation $A^{T} A x=A^{T} b$:

$$
\begin{gathered}
A^{T} A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right), \\
A^{T} b=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\binom{2}{1}
\end{gathered}
$$

Therefore

$$
\left\{\begin{array}{l}
3 c_{0}+c_{1}=2 \\
c_{0}+c_{1}=1
\end{array}\right.
$$

so $c_{0}=1 / 2, c_{1}=1 / 2$.
31. (15 points) Fit a linear function of the form $f=c_{0}+c_{1} t$ to the data points $(0,3),(1,3),(1,6)$ using least squares.

Solution: We have to solve a linear system

$$
\left\{\begin{array}{l}
c_{0}+0 c_{1}=3 \\
c_{0}+1 c_{1}=3 \\
c_{0}+1 c_{1}
\end{array}=6\right.
$$

using least squares method. Its matrix equal to

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 1
\end{array}\right)
$$

and $b=(3,3,6)$. We have to solve the equation $A^{T} A x=A^{T} b$:

$$
\begin{gathered}
A^{T} A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right), \\
A^{T} b=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
3 \\
6
\end{array}\right)=\binom{12}{9}
\end{gathered}
$$

Therefore

$$
\left\{\begin{array}{l}
3 c_{0}+2 c_{1}=12 \\
2 c_{0}+2 c_{1}=9
\end{array}\right.
$$

so $c_{0}=3, c_{1}=3 / 2$.

