MAT 211, Spring 2012 Solutions to Homework Assignment 10

Maximal grade for HW10: 100 points

Section 5.2. Perform the Gram-Schmidt process for the following systems of vectors.

1. (10 points) $v=(2,1,-2)$.

Solution: We have

$$
\|v\|=\sqrt{2^{2}+1^{2}+(-1)^{2}}=\sqrt{9}=3
$$

so the corresponding unit vector will be

$$
u=v /\|v\|=(2 / 3,1 / 3,-2 / 3) .
$$

2. (10 points) $v_{1}=(6,3,2), v_{2}=(2,-6,3)$.

Solution: We have

$$
v_{1} \cdot v_{1}=6^{2}+3^{2}+2^{2}=49, \quad v_{2} \cdot v_{2}=49, v_{1} \cdot v_{2}=12-18+6=0
$$

Therefore the corresponding orthonormal basis will be

$$
u_{1}=v_{1} / 7=(6 / 7,3 / 7,2 / 7), \quad u_{2}=v_{2} / 7=(2 / 7,-6 / 7,3 / 7)
$$

6. (15 points) $v_{1}=(2,0,0), v_{2}=(3,4,0), v_{3}=(5,6,7)$.

Solution: We have

$$
u_{1}=v_{1} /\left\|v_{1}\right\|=(1,0,0),
$$

Now we can compute the second vector:
$v_{2}^{\|}=\left(v_{2} \cdot u_{1}\right) u_{1}=3 u_{1}=(3,0,0), \quad v_{2}^{\perp}=v_{2}-v_{2}^{\|}=(0,4,0), \quad u_{2}=v_{2}^{\perp} /\left\|v_{2}^{\perp}\right\|=(0,1,0)$.
And the third vector:

$$
\begin{gathered}
v_{3}^{\|}=\left(v_{3} \cdot u_{1}\right) u_{1}+\left(v_{3} \cdot u_{2}\right) u_{2}=5 u_{1}+6 u_{2}=(5,6,0), \quad v_{3}^{\perp}=v_{3}-v_{3}^{\|}=(0,0,7) \\
u_{3}=v_{3}^{\perp} /\left\|v_{3}^{\perp}\right\|=(0,0,1) .
\end{gathered}
$$

To sum up,

$$
u_{1}=(1,0,0), u_{2}=(0,1,0), u_{3}=(0,0,1)
$$

10. (15 points) $v_{1}=(1,1,1,1), v_{2}=(6,4,6,4)$.

Solution: We have

$$
\left\|v_{1}\right\|^{2}=1+1+1+1=4, \quad u_{1}=v_{1} /\left\|v_{1}\right\|=(1 / 2,1 / 2,1 / 2,1 / 2)
$$

Now

$$
\begin{aligned}
& \qquad v_{2}^{\|}=\left(v_{2} \cdot u_{1}\right) u_{1}=(3+2+3+2) u_{1}=10 u_{1}=(5,5,5,5) \\
& v_{2}^{\perp}=v_{2}-v_{2}^{\|}=(6,4,6,4)-(5,5,5,5)=(1,-1,1,-1), \quad u_{2}=v_{2}^{\perp} /\left\|v_{2}^{\perp}\right\|=(1 / 2,-1 / 2,1 / 2,-1 / 2) \\
& \text { To sum up, }
\end{aligned}
$$

$$
u_{1}=(1 / 2,1 / 2,1 / 2,1 / 2), \quad u_{2}=(1 / 2,-1 / 2,1 / 2,-1 / 2)
$$

Section 5.3. Verify if a matrix is orthogonal.

1. (10 points)

$$
A=\left(\begin{array}{cc}
0.6 & 0.8 \\
0.8 & 0.6
\end{array}\right)
$$

Solution: We have to check that $A^{t} \cdot A=I$. We have

$$
A^{T} \cdot A=\left(\begin{array}{cc}
0.6 & 0.8 \\
0.8 & 0.6
\end{array}\right) \cdot\left(\begin{array}{cc}
0.6 & 0.8 \\
0.8 & 0.6
\end{array}\right)=\left(\begin{array}{cc}
1 & 0.96 \\
0.96 & 1
\end{array}\right)
$$

so the matrix A is not orthogonal.
2. (10 points)

$$
A=\left(\begin{array}{cc}
-0.8 & 0.6 \\
0.6 & 0.8
\end{array}\right)
$$

Solution: We have to check that $A^{t} \cdot A=I$. We have

$$
A^{T} \cdot A=\left(\begin{array}{cc}
-0.8 & 0.6 \\
0.6 & 0.8
\end{array}\right) \cdot\left(\begin{array}{cc}
-0.8 & 0.6 \\
0.6 & 0.8
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

so the matrix A is orthogonal.
37. (15 points) Is there an orthogonal transformation T from \mathbb{R}^{3} to \mathbb{R}^{3} such that

$$
T\left(\begin{array}{l}
2 \\
3 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
2
\end{array}\right), \quad T\left(\begin{array}{c}
-3 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right) ?
$$

Solution: Let $v_{1}=(2,3,0), v_{2}=(-3,2,0)$. Then $v_{1} \cdot v_{2}=0$, but

$$
T\left(v_{1}\right) \cdot T\left(v_{2}\right)=(3,0,2) \cdot(2,-3,0)=6
$$

Since orthogonal transformations should preserve the scalar product of vectors, T cannot be orthogonal.
41. (15 points) Find the matrix A of the orthogonal projection onto the line in \mathbb{R}^{n} spanned by the vector $v=(1,1, \ldots, 1)$.

Solution: We have

$$
\|v\|^{2}=1+1+\ldots+1=n, \quad\|v\|=\sqrt{n}
$$

therefore to get an unit vector we have to consider

$$
u=v /\|v\|=\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right) .
$$

A projection of a vector $x=\left(x_{1}, \ldots x_{n}\right)$ can be computed as follows:

$$
\begin{gathered}
x \cdot u=\frac{x_{1}}{\sqrt{n}}+\ldots+\frac{x_{n}}{\sqrt{n}} \\
x^{\|}=(x \cdot u) u=\left(\frac{x_{1}}{n}+\ldots+\frac{x_{n}}{n}, \ldots, \frac{x_{1}}{n}+\ldots+\frac{x_{n}}{n}\right),
\end{gathered}
$$

so the matrix of the projection has a form

$$
P=\left(\begin{array}{ccc}
\frac{1}{n} & \cdots & \frac{1}{n} \\
\vdots & \vdots & \vdots \\
\frac{1}{n} & \cdots & \frac{1}{n}
\end{array}\right)
$$

